United States Patent (19) 11 Patent Number: 4,828,822 Miihlemann Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 4,828,822 Miihlemann Et Al United States Patent (19) 11 Patent Number: 4,828,822 Miihlemann et al. (45) Date of Patent: May 9, 1989 (54) PROCESS FOR STABILIZING AQUEOUS S. Ebell, "Karies und Zuckeraustauschstoffe', Emah COMPOSITIONS CONTAINING T N SALTS rungsclorschung Hett, 1978, pp. 171-174. 75) Inventors: Hans R. Miihlemann, Zollikon; Hans H. R. Muhlemann, "Zuckerfreie, Zahnschonende und Schmid, Muttenz, both of Nicht-Kariogene Bonbons und Sussigkeiten'. Switzerland 88, Scand J. Dent. Res., 193-200 (1980), “Effect of Mouthrinses With Tin(II), Fluoride, Lanthanum Chlo 73) Assignee: GABA International AG, Basel, ride, Sodium Fluoride and Chlorohexidine on the Switzerland Amount of Lipoteichoic Acid Formed in Plaque'. (21) Appl. No.: 109,830 Substitution of Sucrose by Lycasin in Candy, Roslagen Study, Frostell et al., Acta Odontol. Scand., 1974, 32(4), 22 Filed: Oct. 16, 1987 235-54 (Eng), 71769m, CA 82-71769. Chemical Abstract, 80-128408h, Effect of Mouth Related U.S. Application Data Rinses with Sucrose, Glucose, Fructose, Lactose, Sor 63 Continuation-in-part of Ser. No. 363,013, Mar. 29, bitol, and Lycasin on the pH of Dental Plaque. 1982, abandoned, which is a continuation of Ser. No. Chemical Abstracts, 93-106820c, Effect of Inorganic 192,874, Oct. 1, 1980, abandoned. Ions and Surface Active Organic Compounds on the (30) Foreign Application Priority Data Adherence of Oral Streptococci. Oct. 2, 1979 GB United Kingdom ................. 7934159 Chemical Abstract, 93:43218q, Relation of Amylase to Starch and Lycasin Metabolism in Human Dental Jan. 24, 1980 GB United Kingdom ................. 8002433 Plaque in Vitro. Feb. 1, 1980 GB United Kingdom ................. 8003525 Fed. Reg. 17,245(1974). 51 Int. Cl." ......................... A61K 7/16; A61K 7/18; Chemical Abstract, 93:143814Z, Effect of Mouthrinses A61K 7/22 with Tin (II), Fluoride, Lanthanum Chloride, Sodium 52 U.S. C. ......................................... 424/52; 424/54 Fluoride, and Chlorhexidine on the Amount of Lipotei 58 Field of Search .................................... 424/52, 54 choic Acid Formed in Plaque. (56) References Cited Chemical Abstract, 93-143813y, Effect on low pH and Fluoride Levels Upon Growth and Sugar Catabolism U.S. PATENT DOCUMENTS by Plaque Bacteria. 3,083,143 3/1963 Schmid et al. Chemical Abstract, 163957s, Mouthwash Compositions 3,105,013 9/1963 Saul et al. Containing Maltitol. 3,277,118 10/1966 Schmid et al. 3,282,792 11/1966 Fiscella . Chemical Abstract, 91:90089s, Effects of 3 Months Fre 3,413,326 11/1968 Schmid . quent Consumption of Hydrogenated Starch Hydroly 3,445,567 5/1969 Muhler . zate (Lycasin), Maltitol, Sorbitol and Xylitol on Human 3,544,678 12/1970 Griebstein . Dental Plaque. 3,914,406 10/1975 Yankell . Chemical Abstract, 91:54724m, Acid Production from 3,932,604 1/1976 Barth . Sucrose Substitutes in Human Dental Plaque. 3,970,747 7/1976 Barth. 4,088,752 5/1978 Muhlemann et al. Chemical Abstract, 89:19588.6m, Acid Production from 4,117,109 9/1978 Stookey . Swedish Lycasin (Candy Quality) and French Lycasin 4,157,386 6/1979 La Rochelle. (80/55), in Human Dental Plaques. 4,279,888 7/1981 Suganuma et al. Chemical Abstract, 93:184332j, Lycasin Hydrogenated 4,308,252 12/1981 Tomaich et al. Hydrolyzates. 4,308,253 12/1981 Schmid et al. Chemical Abstracts, 91:Spalte 417v, An In Vivo Study of the Effects of Fluoride (Stannous Fluoride 0.4%, FOREIGN PATENT DOCUMENTS APF 1.23%, and Neutral Sodium Fluride 0.05%) on 9698.62 6/1975 Canada. Levels of Organisms Resembling Actnomyces, Gingi 865272 4/1961 United Kingdom . 869257 5/1962 United Kingdom . val Inflamation and Plaque Accumulation. 1003595 9/1965 United Kingdom . Chemical Abstract, 91-73170u, Technological Prob 1066795 4/1967 United Kingdom. lems in the Incorporation of Hydrogenated Glucose 1067352 5/1967 United Kingdom. Syrups and L-Sorbose. 1194885 6/1970 United Kingdom. Chemical Abstracts, 88-47350w, Acid Production from 1249742 10/1971 United Kingdom. Lycasin, Maltitol, Sorbitol and Xylitol by Oral Strepto 1272454 4/1972 United Kingdom. cocci and Lactobacilli. 1381826 1/1975 United Kingdom. Chemical Abstracts, 81-54360h, Topical Fluoride Prep 1475899 6/1977 United Kingdom. arations for Reducing Incidence of Dental Caries. 2007974A 10/1978 United Kingdom. Chemical Abstract, 76-57450v, Effects of Sucrose, OTHER PUBLICATIONS Starch, and a Hydrogenated Starch Derivateive on Dental Caries in the Rat. Chemical Abstract, 108480, Toxicological Aspects of Chemical Abstract, 75-74793f, Effects of Consumption Stannous Fluoride after Ingestion as a Clear, of Hydrogenated Saccharides and Sucrose on the Blood Precipitate-Free Solution Compared to Sodium Fluo Sugar Concentration. ride. Chemical Abstract, 92-35405n, Contribution of Maltitol 4,828,822 Page 2 and Lycasin to Experimental Enamel Demineralization lysis of the tin salts by the addition of certain cationic in the Human Mouth. surfactant diamine salts. The additive fully preserves, or Topical Fluoride Preparations for Reducing Incidence even potentiates, the inhibiting action of tin salts on of Dental Caries Notice of Status, 63-Pharmaceuticals, plaque formation an dental caries. The formulations Robert Doerge, 54360h. advantageously also contain a non-ionic, water-soluble Primary Examiner-Shep K. Rose addition product of ethylene oxide which further in Attorney, Agent, or Firm-Finnegan, Henderson, proves the stability. Farabow, Garrett & Dunner 57 ABSTRACT Formulations for oral care and dental care, which con tain tin (II) salts and water, are stabilized against hydro 6 Claims, No Drawings 4,828,822 1. 2 effective mouth rinse is produced P.E. Norris, J. Amer. PROCESS FOR STABILIZING AOUEOUS Pharm. Ass. 20 (1959), 86). Fresh rinsing solutions can COMPOSITIONS CONTAINING TIN SALTS also be prepared, immediately prior to use, from SnF2 tablets or by dilution of highly concentrated and more The invention relates to a process for stabilizing oral 5 stable 20% strength SnF2 solutions I.L. Shannon and compositions for the prophylaxis and combating of colleagues, J. Southern Calif. State Dent. Ass. 33 plaque formation and of dental caries, which composi (1965), 520). tions contain one or more tin (II) salts in a water con Long-lasting stability has been achieved by incorpo taining medium, and whose stability over a lengthy rating tin(II) fluoride into anhydrous glycerol I.L. period is ensured through stabilisation of the tin salt(s). 10 Shannon, Caries Res. 3 (1969), 339. The term oral compositions in particular embraces Aqueous solutions of tin(II) fluoride containing tooth-pastes, dental gels, mouthwashes, mouth sprays, added sodium fluoride, glycerol or tartaric acid at ap rinsing tablets, prophylaxis pastes, solutions for local propriate concentrations can, for a limited period of application, and the like. time, be kept in a clear, precipitate-free and esthetically The tin(II) ions have a plaque-inhibiting action; this 15 acceptable condition at room temperature and at an action has been demonstrated in dogs, for local applica elevated temperature. However, the concentration of tion, and in man, for the use of mouthwashes containing tritratable tin(II) ions proves to be greatly reduced by SnF2. It has also been found that mouthwashes contain the additives J.K. Lim, loc. cit. and J. Dent. Res. 50 ing SnF2at a concentration corresponding to 780 and (1971), 531. 3,100 ppm of Snt t reduce the formation of acid from 20 Viewed overall, the numerous attempts to stabilise sucrose in the bacterial deposits. SnF2 is generally the aqueous solutions of tin(II) fluoride have only pro recognised by scientific circles as an agent for combat duced a small partial success, namely through the prep ing dental caries, and is an effective constituent of car aration of mouthwashes immediately prior to use ies-inhibiting preparations. Anon, Federal Register 39 (1974), 17245). On the other The metabolic effects of low Snf2 concentrations in 25 hand, in conventional formulations for the care of the counteracting plaque are in the main attributable to the mouth and the teeth, which formulations are required to antibacterial action of the tin(II) ions, which probably withstand, without damage, at least a certain period of cause changes in the cell membranes of the bacteria. It storage, the problem has hitherto remained unsolved. has also been found that the reduction in plaque under Further attempts to stabilize oral aqueous composi the action of tin(II) ions is accompanied by a regression 30 tions containing a stannous salt comprise adding an of gingivitis. orally acceptable acid such that the pH of the composi In practical respects, however, it is an important tion is in the range of from 2 to 4, i.e. the composition is disadvantage that tin(II) salts, inter alia tin(II) fluoride, in substantially acidic state (GB 2,007,974, Y. Ochiai et rapidly decompose in oral preparations diluted with al.), or adding as a complexing agent hydroxyethylni water; this is true in particular for the low concentration 35 trilodiacetic acid, m-hydroxybenzoic acid, 1,2,3- ranges and at the pH values acceptable in the mouth propanetricarboxylic acid or itaconic acid (U.S. Pat. (pH from about 4.5 to 9.0), such as are encountered in No. 3,544,678, W.J. Griebstein). As further complexing mouthwashes, rinsing solutions, toothpastes and other agents of the same kind, hydroxyl substituted aliphatic formulations for the care of the mouth and of the teeth. di- and tri-carboxylic acids like malic acid and citric Freshly prepared solutions of tin(II) fluoride or of tin acid also may be used for stabilisation of Snf2 in aque (II) chloride and an alkali metal fluoride show opales ous compositions (U.S. Pat. No. 3,282,792, A.J. Fis cence and turbidity within from one to 10 minutes. cella). When the solutions are left to stand, white precipitates It has now been found, surprisingly, that the addition subsequently form, and these progressively increase in of certain water-soluble organic diamine salts to aque amount over a period of 3 to 7 days Accepted Dental 45 ous media which contain tin(II) fluoride, other tin(II) Therapeutics, 36th edition, Amer.
Recommended publications
  • United States Patent Office Patented Sept
    3,000,702 United States Patent Office Patented Sept. 19, 196 2 since potassium fluoride is very soluble. In this case, a 3,000,702 MANUEFACTURE OF SODIUM FLUOR DE double or complex salt is formed in the melt between George L. Cunningham, Burtonsville, Md., assignor to potassium fluoride and the calcium salt and that is slowly W. R. Grace & Co., New York, N.Y., a corporation extracted with water in spite of the great solubility of of Connecticut potassium fluoride in water. The corrosion of the molten No Drawing. Filed May 23, 1958, Ser. No. 737,196 melt is also a considerable problem although suitable 4. Claims. (CI. 23-88) ceramic materials have been discovered for constructing the fusion vessel. This invention relates to a process for the manufac Processes have been devised for the production of so ture of sodium fluoride relatively low in silica content. 10 dium fluoride based on the thermal decomposition of More particularly, this invention relates to a cyclic proc sodium silicofluoride to sodium fluoride and silicon tetra ess whereby sodium fluoride, relatively low in silica con fluoride (U.S. 1,896,697, U.S. 2,588,786, 1,730,915, tent and ammonium chloride, may be manufactured from 2,602,726, and U.S. 1,664,348). These processes are cheap and readily available raw materials. faulty in that relatively high temperatures are required to As manufactured at the present time, technical sodium 15 decompose the sodium silicofluoride and thus it is very fluoride contains 94% to 97% NaF and 1.5% to 5.0% difficult to carry the reaction to completion.
    [Show full text]
  • Clinical and Microbiological Study
    J Clin Exp Dent. 2015;7(5):e569-75. Combined mouthrinse in orthodontics Journal section: Oral Medicine and Pathology doi:10.4317/jced.51979 Publication Types: Research http://dx.doi.org/10.4317/jced.51979 Combined chlorhexidine-sodiumfluoride mouthrinse for orthodontic patients: Clinical and microbiological study Mahboobe Dehghani 1, Mostafa Abtahi 2, Hamed Sadeghian 3, Hooman Shafaee 1, Behrad Tanbakuchi 4 1 Assistant professor of orthodontics, Dental research center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran 2 Associate professor of orthodontics, Dental research center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran 3 Pathologist, Department of general Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 4 Assistant professor of orthodontics, Department of orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran Correspondence: Mostafa Abtahi Dental Research Center School of Dentistry Dehghani M, Abtahi M, Sadeghian H, Shafaee H, Tanbakuchi B. Com-Com- Mashhad University of Medical Sciences bined chlorhexidine-sodiumfluoride mouthrinse for orthodontic patients: Park Square, Vakilabad Blvd., Mashhad, Iran Clinical and microbiological study. J Clin Exp Dent. 2015;7(5):e569-75. [email protected] http://www.medicinaoral.com/odo/volumenes/v7i5/jcedv7i5p569.pdf Article Number: 51979 http://www.medicinaoral.com/odo/indice.htm © Medicina Oral S. L. C.I.F. B 96689336 - eISSN: 1989-5488 Received: 24/08/2014 eMail: [email protected] Accepted: 11/12/2014 Indexed in: Pubmed Pubmed Central® (PMC) Scopus DOI® System Abstract Background: Orthodontic appliances impede good dental plaque control by brushing. Antimicrobial mouth rinses were suggested to improve this performance. We therefore aimed to investigate the effects of combined mouthrinse containing chlorhexidine (CHX) and sodium fluoride (NaF) on clinical oral hygiene parameters,and plaque bacte- rial level.
    [Show full text]
  • Co-Operative Effect of Exogenous Dextranase and Sodium Fluoride On
    Journal of Dental Sciences (2016) 11,41e47 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.e-jds.com ORIGINAL ARTICLE Co-operative effect of exogenous dextranase and sodium fluoride on multispecies biofilms Yuan-xin Qiu a,b,cy, Meng-ying Mao a,by, Dan Jiang d, Xiao Hong a,b, Ying-ming Yang a,b, Tao Hu a,b* a Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China b Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China c Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, Tianjin, China d Department of Operative Dentistry and Endodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China Received 22 June 2015; Final revision received 4 August 2015 Available online 21 November 2015 KEYWORDS Abstract Background/purpose: The co-operative effect of exogenous dextranase (Dex) and confocal laser sodium fluoride (NaF) on Streptococcus mutans monospecies biofilms is impressive. Here we scanning investigated the effects of the combination on a mature cariogenic multispecies biofilm and microscopy; analyzed the potential mechanism. dextranase; Materials and methods: A multispecies biofilm of S. mutans, Lactobacillus acidophilus,and multispecies Actinomyces viscosus was established in vitro. Dex and NaF were added separately or cariogenic biofilm; together. The effects of the agents on the biomass were measured. The exopolysaccharide sodium fluoride; production was determined with the scintillation counting method. The viability and viability value morphology were evaluated using colony forming unit and confocal laser scanning micro- scopy, respectively.
    [Show full text]
  • Retention of Long-Term Interim Restorations with Sodium Fluoride Enriched Interim Cement Carolyn Strash Marquette University
    Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Retention Of Long-Term Interim Restorations With Sodium Fluoride Enriched Interim Cement Carolyn Strash Marquette University Recommended Citation Strash, Carolyn, "Retention Of Long-Term Interim Restorations With Sodium Fluoride Enriched Interim Cement" (2013). Master's Theses (2009 -). Paper 201. http://epublications.marquette.edu/theses_open/201 RETENTION OF LONG-TERM INTERIM RESTORATIONS WITH SODIUM FLUORIDE ENRICHED INTERIM CEMENT by Carolyn Strash, D.D.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science Milwaukee, Wisconsin May 2013 ABSTRACT RETENTION OF LONG-TERM INTERIM RESTORATIONS WITH SODIUM FLUORIDE ENRICHED INTERIM CEMENT Carolyn Strash, DDS Marquette University, 2013 Purpose: Interim fixed dental prostheses, or “provisional restorations”, are fabricated to restore teeth when definitive prostheses are made indirectly. Patients undergoing extensive prosthodontic treatment frequently require provisionalization for several months or years. The ideal interim cement would retain the restoration for as long as needed and still allow for ease of removal. It would also avoid recurrent caries by preventing demineralization of tooth structure. This study aims to determine if adding sodium fluoride varnish to interim cement may assist in the retention of interim restorations. Materials and methods: stainless steel dies representing a crown preparation were fabricated. Provisional crowns were milled for the dies using CAD/CAM technology. Crowns were provisionally cemented onto the dies using TempBond NE and NexTemp provisional cements as well as a mixture of TempBond NE and Duraphat fluoride varnish. Samples were stored for 24h then tested or thermocycled for 2500 or 5000 cycles before being tested.
    [Show full text]
  • Drug Prescribing for Dentistry Dental Clinical Guidance
    Scottish Dental Clinical Effectiveness Programme SDcep Drug Prescribing For Dentistry Dental Clinical Guidance Second Edition August 2011 Scottish Dental Clinical Effectiveness Programme SDcep The Scottish Dental Clinical Effectiveness Programme (SDCEP) is an initiative of the National Dental Advisory Committee (NDAC) and is supported by the Scottish Government and NHS Education for Scotland. The programme aims to provide user-friendly, evidence-based guidance for the dental profession in Scotland. SDCEP guidance is designed to help the dental team provide improved care for patients by bringing together, in a structured manner, the best available information that is relevant to priority areas in dentistry, and presenting this information in a form that can interpreted easily and implemented. ‘Supporting the dental team to provide quality patient care’ Scottish Dental Clinical Effectiveness Programme SDcep Drug Prescribing For Dentistry Dental Clinical Guidance Second Edition August 2011 Drug Prescribing For Dentistry © Scottish Dental Clinical Effectiveness Programme SDCEP operates within NHS Education for Scotland. You may copy or reproduce the information in this document for use within NHS Scotland and for non-commercial educational purposes. Use of this document for commercial purpose is permitted only with written permission. ISBN 978 1 905829 13 2 First published 2008 Second edition published August 2011 Scottish Dental Clinical Effectiveness Programme Dundee Dental Education Centre, Frankland Building, Small’s Wynd, Dundee DD1
    [Show full text]
  • Sodium Fluoride Jtbaker.Pdf
    MSDS Number: S3722 * * * * * Effective Date: 03/14/11 * * * * * Supersedes: 09/23/09 SODIUM FLUORIDE 1. Product Identification Synonyms: Floridine; sodium monofluoride; disodium difluoride; natrium fluoride; Florocid CAS No.: 7681-49-4 Molecular Weight: 41.99 Chemical Formula: NaF Product Codes: J.T. Baker: 3687, 3688, 3689 Macron: 0467, 5309, 5325, 7636 2. Composition/Information on Ingredients Ingredient CAS No Percent Hazardous --------------------------------------- ------------ ------------ --------- Sodium Fluoride 7681-49-4 100% Yes 3. Hazards Identification Emergency Overview -------------------------- DANGER! MAY BE FATAL IF SWALLOWED OR INHALED. AFFECTS RESPIRATORY SYSTEM, HEART, SKELETON, CIRCULATORY SYSTEM, CENTRAL NERVOUS SYSTEM AND KIDNEYS. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. IRRITATION EFFECTS MAY BE DELAYED. SAF-T-DATA(tm) Ratings (Provided here for your convenience) ----------------------------------------------------------------------------------------------------------- Health Rating: 3 - Severe (Poison) Flammability Rating: 0 - None Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: Blue (Health) ----------------------------------------------------------------------------------------------------------- Potential Health Effects ---------------------------------- If inhaled or swallowed, this compound can cause fluoride poisoning. Early symptoms include nausea, vomiting, diarrhea, and weakness.
    [Show full text]
  • Sodium Fluoride-Induced Oxidative Stress and Histological Changes in Liver of Swiss Albino Mice and Amelioration by Ocimum Sanctum Linn
    Online - 2455-3891 Vol 11, Issue 9, 2018 Print - 0974-2441 Research Article SODIUM FLUORIDE-INDUCED OXIDATIVE STRESS AND HISTOLOGICAL CHANGES IN LIVER OF SWISS ALBINO MICE AND AMELIORATION BY OCIMUM SANCTUM LINN. BHAGWENDRA PRAKASH, SURESH KUMAR SABAL, RAJBALA VERMA, JOHN PJ, INDERPAL SONI* Department of Zoology, Environmental Toxicology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan, India. Email: [email protected]; [email protected] Received: 20 April 2018, Revised and Accepted: 19 May 2018 ABSTRACT Objective: The present study was designed to evaluate hepatotoxicity induced by sodium fluoride (NaF) in Swiss albino mice and amelioration by Ocimum sanctum Linn. Methods: Mice were divided into six groups, Group I received tap water, Group II received low dose of NaF (8 mg/L), Group III high dose of NaF (80 mg/L) in drinking water, Group IV tap water along with 250 mg/kg body weight/day leaf extract of O. sanctum Linn., Group V 8 mg/L NaF in drinking water and 250 mg/kg body weight leaf extract of O. sanctum Linn., and Group VI 80 mg/L NaF in drinking water along with leaf extract of O. sanctum Linn. 250 mg/kg body weight/day for 90 days. On the 91st day, the animals were autopsied and liver tissue samples were taken to assess histopathological changes and oxidative stress by estimating glutathione peroxidase, superoxide dismutase, and catalase. Results: A highly significant decrease in the activity of antioxidant enzymes occurred with the high dose (Group III). Hepatic histopathological architecture exhibited deformities, namely, ballooning, hypertrophy, hepatocellular necrosis, infiltration of mononuclear cells, deformed central vein, sinusoidal dilation, and binucleated cells.
    [Show full text]
  • Selected Medicines Used in Iontophoresis
    pharmaceutics Review Selected Medicines Used in Iontophoresis Tomasz M. Karpi ´nski Department of Medical Microbiology, Pozna´nUniversity of Medical Sciences, Wieniawskiego 3, 61-712 Pozna´n,Poland; [email protected] or [email protected]; Tel.: +48-61-854-61-38 Received: 19 September 2018; Accepted: 24 October 2018; Published: 25 October 2018 Abstract: Iontophoresis is a non-invasive method of systemic and local drug delivery using an electric field. Iontophoresis enables diffusion of the selected drug via skin, mucosa, enamel, dentin, and other tissues. The amount of delivered therapeutic molecules is about 10–2000 times greater than conventional forms of delivery. Among other fields, this method is used in dentistry, ophthalmology, otorhinolaryngology, and dermatology. According to related literature, the most important drugs studied or administered by iontophoresis are: Local anesthetics, opioids, steroids, non-steroidal anti-inflammatory drugs, antibacterial drugs, antifungal drugs, antiviral drugs, anticancer drugs, fluorides, and vitamins. The present review covers current available data regarding the selected medicines used in iontophoresis. Furthermore, indications and conditions of iontophoresis application are reviewed. Keywords: iontophoresis; drug delivery; dentistry; ophthalmology; local anaesthetics; non-steroid anti-inflammatory drugs; antibiotics; anticancer drugs 1. Introduction Iontophoresis is a type of electrotherapy, during which a drug is introduced deep into the tissues as a means of systemic and local drug application [1]. It is based on the principle that in a given electric field, positively charged drug ions (cations) are repelled by a positive electrode (anode) and are directed to the cathode (Figure1). In turn, negative ions (anions, e.g., ketoprofen) being repelled by the negative electrode (cathode), follow the anode.
    [Show full text]
  • Prescription Drug Program Formulary Effective July 1, 2008
    PRESCRIPTION DRUG PROGRAM FORMULARY EFFECTIVE JULY 1, 2008 www.MyIBXTPA.com a b Dear Participant: In an effort to continue our commitment to provide you with comprehensive prescription drug coverage, a formulary feature is included in your prescription drug benefit. A formulary is a list of selected FDA-approved prescription medications reviewed by the Pharmacy and Therapeutics Committee. These prescription medications have been selected for their reported medical effectiveness, safety, and value, while providing you with the highest level of coverage under your prescription program. The following information serves as a guide when reviewing the list of formulary drugs on the following pages. • Bolded drug = Formulary generic available at lowest copay • Non-bolded drug = Formulary brand available at middle copay • Drug in parenthesis ( ) = Non-formulary brand drug available at the highest copay. It is displayed next to the equivalent formulary generic Drug that is available at the lowest copay. For example: amoxicillin is the formulary generic drug available at the lowest copay. (Amoxil) is the non-formulary brand available at the highest copay. In most cases when brand drugs have a generic equivalent, the generic version is formulary and the brand version is non-formulary. • Covered brand drugs not listed are non-formulary and are available at the highest copay. The above information is highlighted in a key box indicated on every other page of the formulary list. Our pharmacy benefits manager, FutureScripts®, continuously monitors effectiveness and safety of drugs and drug prescribing patterns. 1 Please note: Because prescription drug programs vary by group, the inclusion of a drug in this formulary does not imply coverage.
    [Show full text]
  • Influence of Eugenol-Based Materials and Cleaning Procedures Previously
    Lopes et al. Appl Adhes Sci (2016) 4:15 DOI 10.1186/s40563-016-0072-6 RESEARCH Open Access Influence of eugenol‑based materials and cleaning procedures previously to resin composite restoration on microleakage after 1‑year storage Murilo Baena Lopes1* , Klissia Romero Felizardo2, Renan Hideki Kaneshima1, Sandrine Berger Guiraldo1, Ricardo Danil Guiraldo1 and Alcides Gonini Júnior1 *Correspondence: [email protected] Abstract 1 School of Dentistry, The interference of eugenol on the adhesive systems and composite polymerization University of North Parana- UNOPAR, Rua Marselha, 183, could promote a higher marginal microleakage. This could be reduced by mechanical Londrina, PR 86041‑140, and chemical cleansing. The objective of this study was to evaluate the influence of the Brazil previous use of eugenol-based materials to a permanent restoration on the marginal Full list of author information is available at the end of the microleakage. The influence of mechanical cleansing associated with chemical cleans- article ing with chlorhexidine gel was also evaluated. Non-eugenol endodontic sealer and temporary material and mechanical cleansing was used as a control. Eighty bovine incisors were endodontic treated and divided into eight groups (n 10) according to the sealer, temporary material and removal method. The specimens= were temporarily restored and stored for 1 week at 37 °C and 100 % relative humidity, followed by defini- tive restoration and one-year storage at the same environment. The teeth were then sealed, immersed in silver nitrate at 50 % for 2 h and sectioned to have the microleak- age qualitatively and quantitatively visually analyzed under a stereomicroscope at 45 . The percentage data were submitted to an ANOVA and Tukey’s test, and the scores × were submitted to a Kruskal–Wallis and Dunn’s test at 5 % of the significance level.
    [Show full text]
  • $5 Generic Medication Program Formulary
    $5 Generic Medication Program Formulary Anti-Infectives Quantity Anti-Infectives (continued) Quantity Amoxicillin 125mg Chewable Tablet 20 Penicillin VK 250mg Tablet 28 Amoxicillin 125mg/5ml Suspension (80ml) 80 Penicillin VK 250mg/5ml Suspension (100ml) 100 Amoxicillin 125mg/5ml Suspension (100ml) 100 Penicillin VK 250mg/5ml Suspension (200ml) 200 Amoxicillin 125mg/5ml Suspension (150ml) 150 Penicillin VK 500mg Tablet 28 Amoxicillin 200mg/5ml Suspension (50ml) 50 Tetracycline 250mg Capsule 60 Amoxicillin 200mg/5ml Suspension (75ml) 75 Tetracycline 500mg Capsule 60 Amoxicillin 200mg/5ml Suspension (100ml) 100 Trimethoprim and SMZ 200mg-40mg Syrup 120 Amoxicillin 250mg Capsule 30 Trimethoprim and SMZ 400mg-80mg Tablet 28 Amoxicillin 250mg/5ml Suspension (80ml) 80 Trimethoprim and SMZ DS 800mg-160mg Tablet 20 Amoxicillin 250mg/5ml Suspension (100ml) 100 Amoxicillin 250mg/5ml Suspension (150ml) 150 Cold / Flu Quantity Amoxicillin 500mg Capsule 30 Benzonatate 100mg Capsule 21 Ampicillin 250mg Capsule 28 Benzonatate 200mg Capsule 14 Ampicillin 500mg Capsule 28 Ceron Syrup 180 Cephalexin 250mg Capsule 28 Ceron-DM Syrup 180 Ciprofloxacin 250mg Tablet 20 Cyproheptadine 4mg Tablet 30 Ciprofloxacin 500mg Tablet 20 De-chlor DM Syrup 180 Clindamycin 150mg Capsule 28 Dex PC Syrup 120 Doxycycline Hyclate 50mg Capsule 30 Diphenhydramine 50mg Capsule 90 Doxycycline Hyclate 100mg Capsule 20 Dyphylline-GG 100mg-100mg/15ml Elixir 120 Doxycycline Hyclate 100mg Tablet 20 Gani-Tuss-DM 100mg-10mg/5ml Syrup 180 Fluconazole 50mg Tablet 14 Guaifenesin DM 100-10mg/5ml
    [Show full text]
  • 2. Relevance to Public Health
    FLUORIDES, HYDROGEN FLUORIDE, AND FLUORINE 15 2. RELEVANCE TO PUBLIC HEALTH 2.1 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO FLUORIDES, HYDROGEN FLUORIDE, AND FLUORINE IN THE UNITED STATES Fluorine is the most electronegative and reactive of all elements; fluoride is the ionic form of fluorine. Fluorine and anhydrous hydrogen fluoride are naturally occurring gases that have a variety of industrial uses including the production of fluorine-containing chemicals, pharmaceuticals, high octane gasoline, and fluorescent light bulbs; aqueous hydrofluoric acid is a liquid used for stainless steel pickling, glass etching, and metal coatings. The general population is typically exposed to very low levels of gaseous fluoride (primarily as hydrogen fluoride); in the United States and Canada, the levels ranged from 0.01 to 1.65 µg/m3. Populations living near industrial sources of hydrogen fluoride, including coal burning facilities, may be exposed to higher levels of hydrogen fluoride in the air. Additionally, vegetables and fruits grown near these sources may contain higher levels of fluoride, particularly from fluoride- containing dust settling on the plants. Fluoride salts, generically referred to as fluorides, are naturally occurring components of rocks and soil. One of the more commonly used fluoride salt is sodium fluoride; its principal use is for the prevention of dental caries. Sodium fluoride and other fluoride compounds, such as fluorosilicic acid and sodium hexafluorisilicate, are used in the fluoridation of public water. Sodium monofluorophosphate and stanneous fluoride are commonly used in dentifrices such as toothpaste. The general population can be exposed to fluoride through the consumption of fluoridated drinking water, food, and dentifrices.
    [Show full text]