Fertilizer Potential of Struvite As Affected by Nitrogen Form In

Total Page:16

File Type:pdf, Size:1020Kb

Fertilizer Potential of Struvite As Affected by Nitrogen Form In sustainability Article Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere Andrea Danaé Gómez-Suárez 1,2,Cécile Nobile 1 , Michel-Pierre Faucon 1, Olivier Pourret 1 and David Houben 1,* 1 UniLaSalle, AGHYLE, 60026 Beauvais, France; [email protected] (A.D.G.-S.); [email protected] (C.N.); [email protected] (M.-P.F.); [email protected] (O.P.) 2 Facultad de Ciencias Químicas, Universidad La Salle, Mexico City 06140, Mexico * Correspondence: [email protected]; Tel.: +33-3-44-06-93-45 Received: 14 February 2020; Accepted: 10 March 2020; Published: 12 March 2020 Abstract: Struvite is increasingly considered a promising alternative to mined phosphorus (P) fertilizer. However, its solubility is very low under neutral to alkaline pH while it increases with acidification. Here, we investigated whether supplying ammonium to stimulate rhizosphere acidification might improve struvite solubility at the vicinity of roots and, ultimately, enhance P uptake by plants. Using a RHIZOtest design, we studied changes in soil pH, P availability and P uptake by ryegrass in the rhizosphere and bulk soil supplied with either ammonium or nitrate under three P treatments: no-P, triple super phosphate and struvite. We found that supplying ammonium decreased rhizosphere pH by more than three units, which in turn increased soluble P concentrations by three times compared with nitrate treatments. However, there was no difference between P treatments, which was attributed to the increase of soluble Al concentration in the rhizosphere, which subsequently controlled P availability by precipitating it under the form of variscite-like minerals (predicted using Visual MINTEQ). Moreover, although ammonium supply increased soluble P concentration, it did not improve P uptake by plants, likely due to the absence of P deficiency. Further studies, especially in low-P soils, are thus needed to elucidate the role of nitrogen form on P uptake in the presence of struvite. More generally, our results highlight the complexity of manipulating rhizosphere processes and stress the need to consider all the components of the soil-plant system. Keywords: phosphorus management; ammonium; nitrate; recycled phosphorus; RHIZOtest; acidification 1. Introduction Phosphorus (P) is a major nutrient limiting crop production of many agroecosystems [1]. Currently, P fertilization mainly relies on the use of chemical fertilizers which are derived from phosphate rocks [2]. However, this resource is finite and is located in only a few places on Earth [3]. Developing sustainable fertilization practices based on the reuse of P is thus crucial to achieve the high yields required to feed an ever-increasing human population [4,5]. In this context, it has been increasingly suggested to replace conventional fertilizer with P-rich materials originating from waste materials [6], especially to achieve United Nations Sustainable Development Goals [7]. Considerable interest in the P removal from effluent and recovery in the form of struvite (magnesium ammonium phosphate hexahydrate, MgNH PO 6H O) has arisen in recent years 4 4· 2 worldwide [8–10]. Struvite production has been considered a promising alternative to conventional P removal technologies (e.g., metal precipitation with Fe or Al salts) in which P precipitates are virtually impossible to recycle in an economical manner [11–13]. Once applied to soil, struvite may act as a Sustainability 2020, 12, 2212; doi:10.3390/su12062212 www.mdpi.com/journal/sustainability Sustainability 2020, 12, 2212 2 of 11 “slow-release fertilizer”, providing a longer-term source of P for crop growth than readily soluble forms of P whileSustainability preventing 2020, 12, Px FOR from PEER sorption REVIEW on soil constituents or loss by leaching or runoff [14,15].2 However, of 12 the use of struvite might also result in an insufficient supply of P to crops, especially at the early stage of growth,virtually if impossible the release to is recycle slower in thanan economical the plant manner requirements [11–13]. Once for P applied [15–17 ].to Struvitesoil, struvite solubility may is predominantlyact as a “slow-release controlled fertilizer”, by pH [9]. providing High pH a favorslonger-term the formation source of ofP for struvite crop growth crystals than (pH readily range of 7 soluble forms of P while preventing P from sorption on soil constituents or loss by leaching or runoff to 11), whereas low pH favors its solubilization [18]. As a result, unlike the highly soluble commercial [14,15]. However, the use of struvite might also result in an insufficient supply of P to crops, especially P fertilizersat the early such stage as potassium of growth, if phosphate, the release is which slower are than bioavailable the plant requirements over a broad for pH P [15–17]. range, Struvite uptake of P fromsolubility struvite canis predominantly be low at neutral controlled to alkaline by pH pH [9]. [High19]. pH favors the formation of struvite crystals Rhizosphere(pH range of 7 processes to 11), whereas such aslow root-induced pH favors its changes solubilization in pH [18]. or redox As a result, potential unlike and the root highly exudate releasesoluble play acommercial key role in P nutrientfertilizers acquisition such as potassiu [20].m It phosphate, has long been which known are bioavailable that rhizosphere over a broad chemistry can bepH significantly range, uptake changed of P from according struvite can to be the low form at neutral of N takento alkaline up. AmmoniumpH [19]. (NH4+) supply may + decrease rhizosphereRhizosphere processes pH by promotingsuch as root-induced H release, changes whereas in pH nitrateor redox (NO potential3−) supply and root may exudate increase release play a key role in nutrient acquisition [20]. It has long been known that rhizosphere chemistry rhizosphere pH through releasing OH− [21], which can in turn affect the availability of sparingly can be significantly changed according to the form of N taken up. Ammonium (NH4+) supply may soluble P compounds [22]. For instance, supplying plants with NH4-N could increase the solubility decrease rhizosphere pH by promoting H+ release, whereas nitrate (NO3-) supply may increase of sparingly soluble P compounds such as apatite, resulting in higher P availability compared with rhizosphere pH through releasing OH− [21], which can in turn affect the availability of sparingly the supply of NO -N [23,24]. Since struvite solubility is strongly dependent on pH, such observation soluble P compounds3 [22]. For instance, supplying plants with NH4-N could increase the solubility raisesof the sparingly question soluble of whether P compounds manipulation such as apatite, of rhizosphere resulting in processeshigher P availability by stimulating compared rhizosphere with acidificationthe supply through of NO3-N NH [23,24].4-N supply Since struvite might besolubility an effective is strongly approach dependent to improve on pH, struvitesuch observation solubility at the vicinityraises the of roots.question On of the whether other hand, manipulation root-induced of rhizosphere acidification proc inesses the by rhizosphere stimulating of rhizosphere NH4-fed plants may increaseacidification the through concentration NH4-N supply of Al inmight solution be an [effective25], potentially approach resulting to improve in struvite toxicity solubility for plants at [26] and Pthe precipitation vicinity of roots. as variscite, On the AlPOother hand,2H O[root27-induced]. acidification in the rhizosphere of NH4-fed 4· 2 Inplants order may to increase optimize the concentration the use of more of Al in sustainable solution [25], P potentially sources, the resulting objective in toxicity of this for studyplants was therefore[26] and to gain P precipitation a better insight as variscite, on how AlPO the4.2H N2O form [27]. a ffects P availability in the presence of struvite. In order to optimize the use of more sustainable P sources, the objective of this study was We hypothesize that adding NH -N would acidify the rhizosphere, resulting in higher P uptake as therefore to gain a better insight4 on how the N form affects P availability in the presence of struvite. compared to the supply of NO -N. We hypothesize that adding3 NH4-N would acidify the rhizosphere, resulting in higher P uptake as compared to the supply of NO3-N. 2. Materials and Methods 2. Materials and Methods 2.1. Experimental Design The2.1. Experimental studied soil Design was sampled in Beauvais (Northern France; Figure1) and was classified as a Haplic LuvisolThe studied [28]. Asoil total was mass sampled of 100 in kgBeauvais was obtained (Northern by France; composite Figure sampling 1) and was (0–10 classified cm depth; as a five randomHaplic samplings) Luvisol [28]. in a A long-term total mass (> of20 100 years) kg was cropland obtained field by composite with an oilseed sampling rape–winter (0–10 cm depth; wheat–winter five barleyrandom rotation samplings) and organic in a andlong-term mineral (> 20 fertilization years) cropland based field on soilwith tests, an oilseed crop requirementsrape–winter wheat– and timed to cropwinter uptake barley [5, 29rotation]. and organic and mineral fertilization based on soil tests, crop requirements and timed to crop uptake [5,29]. Figure 1. Location of the sampling site. Figure 1. Location of the sampling site. Sustainability 2020, 12, 2212 3 of 11 After sampling, the soil was air-dried, crushed and sieved at 2 mm for further use at the laboratory. Particle size analysis using the pipette method revealed that the soil was a silt loam (USDA classification) with 16% sand, 67% silt, and 17% clay. Organic C, total N, available concentrations as assessed using the acetate ammonium-ethylenediamine tetraacetic acid (AA-EDTA), pH and cation exchange capacity (CEC) are presented in Table1. Table 1. Soil characteristics. Organic C Total N CaAA-EDTA MgAA-EDTA KAA-EDTA PAA-EDTA CEC 1 1 1 1 pH 1 (%) (%) (mg kg− ) (mg kg− ) (mg kg− ) (mg kg− ) (cmolc kg− ) 1.54 0.18 3869 101 292 72 7.8 12.5 At the laboratory, the soil was amended with an appropriate amount of powder of struvite or 1 triple superphosphate (TSP) corresponding to 50 mg P kg− soil, as recommended by Bonvin et al.
Recommended publications
  • Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure Alex Y
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure Alex Y. Lin University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Chemical Engineering Commons, Environmental Engineering Commons, and the Environmental Sciences Commons Scholar Commons Citation Lin, Alex Y., "Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4359 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure by Alex Yuan-li Lin A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Civil and Environmental Engineering College of Engineering University of South Florida Co-Major Professor: Sarina Ergas, Ph.D. Co-Major Professor: Jeffrey Cunningham, Ph.D. Maya Trotz, Ph.D. Date of Approval: November 9, 2012 Keywords: struvite, wastewater, confined animal feeding operation (CAFO), fertilizer, synthetic Copyright © 2012, Alex Yuan-li Lin DEDICATION I dedicate this thesis to all those that have supported me along the way whether directly or indirectly. I would like to thank members of Intervarsity on the USF campus, members of Community Life Church, and my family for their support and encouragement in many ways.
    [Show full text]
  • DESCRIPTIVE HUMAN PATHOLOGICAL MINERALOGY 1179 but Still Occursregularly
    Amerkan Mincraloght, Volume 59, pages I177-1182, 1974 DescriptiveHuman Pathological Mineralogy Rrcneno I. Gmsox P.O. Box I O79, Dauis,C alilornia 95 6 I 6 Absfract Crystallographic, petrographic, and X-ray powder difiraction analysis of approximately 15,000 samples showed that the most common mineral constituents of human pathological concretions are calcium oxalates (whewellite and weddellite), calcium phosphates (apatite, brushite, and whitlockite), and magnesium phosphates (struvite and newberyite). Less are monetite, hannayite, calcite, aragonite, vaterite, halite, gypsum, and hexahydrite."o-rnon of the variables determining which minerals precipitate, the effects of different pH values on deposi- tional conditions are most apparent, and are shown by occurrences and relationships among many of the minerals studied. A pH-sensitive series has been identified among magnesium phosphatesin concretions. Introduction The study was carried out over a period of three The importanceof mineralogyin the field of medi- years.Composition was confirmedby X-ray powder cine lies in the applicationof mineralogicalmethods diffraction and polarizing microscopy;sequence was to study pathologicalmineral depositsin the human arrived at from considerationsof microscopic tex- body. Urology benefitsgreatly becauseconcretions tural and crystallographicrelationships. More than of mineral matter (calculi) are common in the 14,500samples were derivedfrom the urinary sys- urinary system.The value of mineralogicalanalysis tem of kidneys,ureters, bladder, and urethra; the of urinary material was first describedby prien and remaining samples are not statistically significant Frondel (1947). Mineralogistsmay be unawareof and arediscussed only briefly. the variability and nature of such compounds be- Calcium cause reports are usually published in medical Oxalates journals. This investigationreports the mineralogy Whewellite, CaCzOE.H2O,and weddellite, CaCz- and possiblepathological significanceof these min- O4'2H2O,are very uncommonin the mineralworld.
    [Show full text]
  • 1 Raman Spectroscopy of Newberyite, Hannayite and Struvite. Ray L. Frost
    Raman spectroscopy of newberyite, hannayite and struvite. Ray L. Frost• a, Matt L. Weier a, Wayde N. Martens, a Dermot A. Henry b, and Stuart J. Mills b,c a Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. b Geosciences, Museum Victoria, PO Box 666E, Melbourne, Victoria 3001, Australia. c CSIRO Minerals, Box 312, Clayton South, Victoria 3169, Australia. This is the authors’ version of a paper that was later published as: Frost, Ray, Weier, Matt , Martens, Wayde, Henry, Dermot & Mills, Stuart (2005) Raman spectroscopy of newberyite, hannayite and struvite. Spectrochimica Acta 62(1):pp. 181-188. Copyright 2005 Elsevier Abstract The phosphate minerals hannayite, newberyite and struvite have been studied by Raman spectroscopy using a thermal stage. Hannayite and newberyite are -1 characterised by an intense band at around 980 cm assigned to the ν1 symmetric stretching vibration of the HPO4 units. In contrast the symmetric stretching mode is -1 observed at 942 cm for struvite. The Raman spectra are characterised by multiple ν3 antisymmetric stretching bands and ν2 and ν4 bending modes indicating strong distortion of the HPO4 and PO4 units. Hannayite and newberyite are defined by bands -1 at 3382 and 3350 cm attributed to HOPO3 vibrations and hannayite and struvite by + bands at 2990, 2973 and 2874 assigned to NH4 bands. Raman spectroscopy has proven most useful for the analysis of these ‘cave’ minerals where complex paragenetic relationships exist between the minerals. Keywords: hannayite, newberryite, struvite, phosphate, Raman spectroscopy Introduction Interest in struvite formation also comes from the formation in urinary tracts and kidneys [1-6].
    [Show full text]
  • Bladder Stones in Dogs & Cats By: Dr
    Navarro Small Animal Clinic 5009 Country Club Dr. Victoria, TX 77904 361-573-2491 www.navarrosmallanimalclinic.com Bladder Stones in Dogs & Cats By: Dr. Shana Bohac Dogs, like people, can develop a variety of bladder stones. These stones are rock-like structures that are formed by minerals. Some stones form in alkaline urine, whereas others form when the urine is more acidic. Bladder stones are very common in dogs, particularly small breed dogs. The most common signs that a dog or cat has bladder stones include blood in the urine, and straining to urinate. Blood is seen due to the stones bouncing around and hitting the bladder wall. This can irritate and damage the tissue and can cause cystitis (inflammation of the bladder). Straining to urinate occurs because of the inflammation and irritation of the bladder walls or urethra or muscle spasms. The stone itself can actually obstruct the flow of urine if it blocks the urethra. Small stones can get stuck in the urethra and cause a complete obstruction. This can be life threatening if the obstruction is not relieved since the bladder can rupture as more urine is produced with nowhere to go. Bladder stones form because of changes in the urine pH. Normal dog urine is slightly acidic and contains waste products such as dissolved minerals and enzymes such as urease. Urease breaks down excess ammonia in urine. An overload of ammonia in urine can cause bladder inflammation and thickening known as cystitis. There are a variety of stones that can form in the bladder, some that form in acidic urine, while others form in alkaline urine.
    [Show full text]
  • Current Insights Into the Mechanisms and Management of Infection Stones
    Current insights into the mechanisms and management of infection stones Authors: Erika J. Espinosa-Ortiz, Brian H. Eisner, Dirk Lange, and Robin Gerlach The final publication is available at Springer via https://dx.doi.org/10.1038/s41585-018-0120-z. Espinosa-Ortiz, Erika J., Brian H. Eisner, Dirk Lange, and Robin Gerlach, “Current insights into the mechanisms and management of infection stones,” Nature Reviews Urology, November 2018, 16: 35-53. doi: 10.1038/s41585-018-0120-z. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Current insights into the mechanisms and management of infection stones Erika J. Espinosa-Ortiz1,2, Brian H. Eisner3, Dirk Lange4* and Robin Gerlach 1,2* Abstract | Infection stones are complex aggregates of crystals amalgamated in an organic matrix that are strictly associated with urinary tract infections. The management of patients who form infection stones is challenging owing to the complexity of the calculi and high recurrence rates. The formation of infection stones is a multifactorial process that can be driven by urine chemistry , the urine microenvironment, the presence of modulator substances in urine, associations with bacteria, and the development of biofilms. Despite decades of investigation, the mechanisms of infection stone formation are still poorly understood. A mechanistic understanding of the formation and growth of infection stones — including the role of organics in the stone matrix, microorganisms, and biofilms in stone formation and their effect on stone characteristics — and the medical implications of these insights might be crucial for the development of improved treatments. Tools and approaches used in various disciplines (for example, engineering, chemistry , mineralogy , and microbiology) can be applied to further understand the microorganism–mineral interactions that lead to infection stone formation.
    [Show full text]
  • Struvite Urolithiasis in Dogs
    Glendale Animal Hospital 623-934-7243 www.familyvet.com Struvite Urolithiasis in Dogs (Struvite Stones in the Urinary Tract of Dogs) Basics OVERVIEW • ”Urolithiasis” is the medical term for the presence of stones (known as “uroliths”) in the urinary tract • The most common minerals found in the stones (uroliths) are used to name the particular stone; in this type of stone, struvite makes up the composition of the stone, and thus the name “struvite urolithiasis”; struvite is magnesium ammonium phosphate • The urinary tract consists of the kidneys, the ureters (the tubes running from the kidneys to the bladder), the urinary bladder (that collects urine and stores it until the pet urinates), and the urethra (the tube from the bladder to the outside, through which urine flows out of the body) • Struvite urolithiasis is the formation of crystalline stones (uroliths) composed of magnesium ammonium phosphate, or struvite, in the urinary tract GENETICS • The high incidence of struvite stones (uroliths) in some breeds of dogs (such as the miniature schnauzer) suggests a familial (runs in certain families or lines of animals) tendency; it is hypothesized that susceptible miniature schnauzers inherit some abnormality of local host defenses of the urinary tract that increases their likelihood to develop urinary tract infection (UTI) • Sterile struvite uroliths were found in a family of English cocker spaniels SIGNALMENT/DESCRIPTION OF PET Species • Dogs Breed Predilections • Miniature schnauzer, shih tzu, bichon frise, miniature poodle, cocker spaniel,
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • Tavistockite and Bialite Discredited
    MINERALOGICAL MAGAZINE, MARCH 1969, VOL. 37, NO. 285 Tavistockite and bialite discredited P. G. EMBREY AND E. E. FEJER Department of Mineralogy, British Museum (Natural History) SUMMARY. Specimens of tavistockite fall into two groups: true tavistockite from the George and Charlotte mine, Tavistock, Devon, and wavellite from the Stenna Gwyn mine, St. Austell, Cornwall. Both were sold as tavistockite by the discoverer, Richard TaIling. Tavistockite proper is a fluorapatite, as shown by optical and X-ray examination, and the alumina and water in the original analysis are certainly derived from kaolinite with which the apatite is intimately associated. The published optical properties attributed to tavistockite were determined by E. S. Larsen on Stenna Gwyn material, and are those of wavellite. Re-examination of a portion of Buttgenbach's type bialite, which he related to tavistockite on optical grounds, shows it to be wavellite. TAVISTOCKITE has been a doubtful species from the time it was first described in 1865 by A. H. Church! as 'Hydrated Calcium-aluminic Phosphate (?)'. Its apparent validity has been established by successive appearances in all the standard works on systematic mineralogy, starting with J. D. Dana's renaming as tavistockite in 1868.2 The present study is perhaps as much historical as mineralogical, since Church's original material cannot be traced and other specimens present a confused picture both in naming and in locality. We have studied seventeen specimens (see table) that are or have at one time been labelled tavistockite, and find that they fall into two distinct groups that may readily be characterized by the mineral assemblages present.
    [Show full text]
  • Canine and Feline Urolithiasis Updates and Challenges India F
    Canine and Feline Urolithiasis Updates and Challenges India F. Lane, DVM, MS, EdD, DACVIM Elizabeth M. Lennon, DVM, PhD, DACVIM The University of Tennessee College of Veterinary Medicine Urolithiasis - General Urolithiasis is common in both dogs and cats. Urolithiasis likely results from a constellation of predisposing factors that ultimately results in precipitation of excretory metabolites in the urine. These precipitates form crystals which can eventually aggregate into stones. The most common uroliths in dogs include struvite (magnesium ammonium phosphate), calcium oxalate, cystine, urate, and silica. The most common feline uroliths include feline calcium oxalate and struvite. In addition to being comprised solely of one type, uroliths can also be composed of multiple stone types, which is referred to as a compound stone. For example, the core of a urolith could be formed of calcium oxalate with a struvite urolith shell. The majority of uroliths are present in the urinary bladder at diagnosis (84%). Other sites include the urethra (7%), the kidney (3%), and less than 1% are present in the ureters, although that number has been increasing in recent years. Urine pH has a significant determining factor on the presence of uroliths. Certain uroliths form in acidic urine, while others form in more basic urine. Calcium oxalate, purine, cystine, silica, and calcium phosphate uroliths form in acidic urine, while infection-induced struvite stones form in basic urine. It is important to recognize that crystalluria (presence of microcrystals in the urine that are observed on urine sediment examination) is not abnormal. Normal individuals can have crystals present in their urine and this does not mean that this animal will form stones.
    [Show full text]
  • Alphabetical List
    LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst
    [Show full text]
  • Bibliography and Index
    Bulletin No. 203. Series G, Miscellaneous, 23 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES .1). YVALCOTT, DIRECTOR BIBLIOGRAPHY AND INDEX FOR T I-I E Y E A. R 1 9 O 1 BY FRED BOUGHTON "WEEKS WASHINGTON - GOVERNMENT PRINTING OFFICE 1902 CONTENTS, Page. Letter of transmittal....................................................... 5 Introduction ......... 4 ................................................... 7 List of publications examined ............................................. 9 Bibliography ............................................................ 13 Addenda to bibliographies for previous years............................... 95 Classified key to the index ...........'.......... ............................ 97 Index ..................................................................... 103 LETTER OF TRANSM1TTAL. DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGICAL SURVEY, Washington, D. 0., July % SIR: I have the honor to transmit herewith the manuscript of a Bibliography and Index of North American Geology, Paleontology, Petrology, and Mineralogy for the Year 1901, and to request that it be published as a Bulletin of the Survey. Yours respectfully, F. B. WEEKS. Hon. CHARLES D. WALCOTT, director United State* Geological Survey. BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1901. By FRED BOUGHTON WEEKS. INTRODUCTION. The preparation and arrangement of the material of the Bibliog­ raphy and Index for 1901 is similar to that adopted for the previous publications.(Bulletins Nos. 130, 135, 146, 149, 156, 162, 172, 188, and 189). Several papers that should have been entered in the pre­ vious bulletins are here recorded, and the date of publication is given with each entry. Bibliography. The bibliography consists of full titles of separate papers, arranged alphabetically by authors' names, an abbreviated reference to the publication in which the paper is printed, and a brief description of the contents, each paper being numbered for index reference.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]