The Garrattmaker Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Royal Historical Society of Queensland Journal
1 ROYAL HISTORICAL SOCIETY OF QUEENSLAND JOURNAL Volume XIV, No.1 February 1990 Queensland v. The Commonwealth: The State's Objection to the Australian Standard Garratt Programme by Alan Whiting Presented at a meeting of the Society, 22 June, 1989 The entry of Japan into the Second World War brought massive traffic demands to the government railway system of Queensland (QGR). As a partial resolution to those demands the Commonwealth resolved to construct a number of locomotives for use on some of the narrow (3'6") gauge rail systems, including the QGR. That locomotive type became known as the Australian Standard Garratt (ASG), a name that even now, almost fifty years later evokes acrimonious memories in some circles. The ASG project ultimately cost Australia dearly, not only in the direct losses of millions of pounds of public funds but more importantly in the waste of thousands of tons of fabricated metal, and countless hours of added congestion to valuable workshop resources and, worse still, to overcrowded lines, which became so vital to the defence of Australia. The ASG's most outstanding feature was controversy and what this paper examines is not the public controversy that resulted after the locomotive had proved itself as an horrendous and indeed dangerous mechanical failure, but the bitter, relatively private dispute that raged between the Commonwealth and Queensland primarily before and during the construction of the machine. Essentially, that contest was over who, as between the Commonwealth and the State, had the right to determine how the QGR as the State's largest enterprise was to be managed, as it was Alan Whiting, BA, LLB, is a solicitor who has extensively researched the role of Queensland Railways during World War II and pubUshed Engine of Destruction. -
The Locomotives of the Great Northern Railway, 1847-1910
[OCOMOTIVES of tl^e 11 Ix. C^ jtA. I North ern I LWAY ]^ J tmmtmmmmimmam i ¥Bwm \ inm miiminuviNH i m <i m mnmm THE UNIVERSITY OF ILLINOIS LIBRARY ie\0 OAK ST. HDSF THE LOCOMOTIVES OF THE GREAT NORTHERN RAILWAY. ¥ < ^ .r^ : j tP f. Mr. H. A. IVATT, M.i.Mech.E. Locomotive Engineer, Great Northern Railway. The Locomotives of The Great Northern Railway^ 1847^1910^ BY GEO. FREDK. BIRD. NEW AND REVISED EDITION, With 8 Full-page Illustrations and 121 Illustrations in the Text by the Author. ^I-I^- Published by the Locomotive Publishing Co., Ltd. 3, Amen Corner, London, E.G. I 9 I o . PRINTED BY PERCY LUND, HUMPHRIES AND CO., LTD., BRADFORD AND LONDON, FOR THE LOCOMOTIVE PUBLISHING CO., LTD., 3, AMEN CORNER, LONDON, E.C. Ok- PREFACE. V — CL> T N presenting a history of the various types of locomo- I tives have been constructed for the j which Great Northern the is aware of ,^^ Railway, compiler many .^ deficiencies in the work. So far from this being a history ^ of the line, the following pages cannot claim to comprise 1 more than a somewhat brief of loco- 1 anything catalogue J motives, many of which have earned fame in the annals of L railway development. To have dealt with them as fully as ^^ might be is not in the power of the compiler, and equally ?. beyond the limits of space allowable in a publication of this 'S' character. The utmost that can be urged is that, principally ^owing to the disinterested assistance of many kind friends, 0--the writer has been enabled to produce what is, so far as he ^ is aware, the first approximately complete list of the ^locomotives built for the Great Northern Railway from 'Oits opening as a small branch line in Lincolnshire until ^. -
The Evolution of the Steam Locomotive, 1803 to 1898 (1899)
> g s J> ° "^ Q as : F7 lA-dh-**^) THE EVOLUTION OF THE STEAM LOCOMOTIVE (1803 to 1898.) BY Q. A. SEKON, Editor of the "Railway Magazine" and "Hallway Year Book, Author of "A History of the Great Western Railway," *•., 4*. SECOND EDITION (Enlarged). £on&on THE RAILWAY PUBLISHING CO., Ltd., 79 and 80, Temple Chambers, Temple Avenue, E.C. 1899. T3 in PKEFACE TO SECOND EDITION. When, ten days ago, the first copy of the " Evolution of the Steam Locomotive" was ready for sale, I did not expect to be called upon to write a preface for a new edition before 240 hours had expired. The author cannot but be gratified to know that the whole of the extremely large first edition was exhausted practically upon publication, and since many would-be readers are still unsupplied, the demand for another edition is pressing. Under these circumstances but slight modifications have been made in the original text, although additional particulars and illustrations have been inserted in the new edition. The new matter relates to the locomotives of the North Staffordshire, London., Tilbury, and Southend, Great Western, and London and North Western Railways. I sincerely thank the many correspondents who, in the few days that have elapsed since the publication: of the "Evolution of the , Steam Locomotive," have so readily assured me of - their hearty appreciation of the book. rj .;! G. A. SEKON. -! January, 1899. PREFACE TO FIRST EDITION. In connection with the marvellous growth of our railway system there is nothing of so paramount importance and interest as the evolution of the locomotive steam engine. -
The Unauthorised History of ASTER LOCOMOTIVES THAT CHANGED the LIVE STEAM SCENE
The Unauthorised History of ASTER LOCOMOTIVES THAT CHANGED THE LIVE STEAM SCENE fredlub |SNCF231E | 8 februari 2021 1 Content 1 Content ................................................................................................................................ 2 2 Introduction ........................................................................................................................ 5 3 1975 - 1985 .......................................................................................................................... 6 Southern Railway Schools Class .................................................................................................................... 6 JNR 8550 .......................................................................................................................................................... 7 V&T RR Reno ................................................................................................................................................. 8 Old Faithful ...................................................................................................................................................... 9 Shay Class B ..................................................................................................................................................... 9 JNR C12 ......................................................................................................................................................... 10 PLM 231A ..................................................................................................................................................... -
Railway Locomotive and Rollingstock Drawings
Railway locomotive and rollingstock drawings Research Guide to Railway locomotive and rollingstock drawings records at Queensland State Archives Research Guide to Railway Locomotive and Rollingstock Drawings Records This research guide provides an overview of the drawings produced by or for the Chief Mechanical Engineer’s Branch (or Locomotive Branch) of the Railway Department. The drawings are available on microfilm at Queensland State Archives (QSA). These railway drawings trace the development of Queensland railway locomotive and rollingstock from 1864. Most of the drawings consist of general arrangement and working drawings for the construction of rollingstock. The QSA references for these records are in the Queensland State Archives’ catalogue. Note: QSA does not hold all drawings proposed for or adopted by Queensland Rail (QR). Queensland Rail Heritage Collection The Queensland Rail Heritage Collection consists of 72 series of records transferred to Queensland State Archives from the Workshops Rail Museum, Ipswich, in 2019. The QRHS spans the years 1864 to 2007. All the records are open. These holdings give us a glimpse into Queensland’s past with railway brass bands, railway refreshment rooms and clock repair registers. There are many treasures in the plans, drawings, photographs and audio-visual material. A search of our catalogue using the keywords - Queensland Rail Heritage Collection - will find all the series of records including hyperlinks to descriptions. Interested researchers are welcome to visit Queensland State Archives to request and view the records. Each series has a Queensland Rail/Queensland Museum catalogue number. A list in numerical order by catalogue numbers is in the Research Guide to railway records at Queensland State Archives. -
Derailment of a Passenger Train Near Clogwyn Y Gwin South Foot Crossing, Welsh Highland Railway, 10 June 2018 Important Safety Message
Derailment of a passenger train near Clogwyn y Gwin South foot crossing, Welsh Highland Railway, 10 June 2018 Important Safety Message This derailment demonstrates the importance of heritage railways ensuring that specific and appropriate inspections and checks are built into the vehicle maintenance and overhaul regimes to monitor the integrity of all safety critical components which could cause derailment in the event of failure, and also to ensure that such components are reassembled correctly after overhaul. This is of particular importance on narrow gauge lines and railways that operate in mountainous areas. Summary of the accident At approximately 12:15 hrs on 10 June 2018, a passenger train, travelling from Porthmadog to Caernarfon on the Welsh Highland Railway, became derailed close to Clogwyn y Gwin South footpath crossing. The crossing is approximately 0.75 miles (1.2 km) north of Rhyd Ddu station. The train was travelling at around the maximum permitted speed at this location of 10 mph (16 km/h). The leading wheelset of the locomotive derailed on a right-hand curve. The driver immediately applied the train’s brake and the train came to a stop in a distance of about 30 metres. The train was hauled by a ‘Garratt’ steam locomotive, number 143, and comprised nine coaches. There were 74 passengers and 7 members of staff on board the train. Rail Accident Investigation Branch Safety digest 06/2018: Clogwyn y Gwin Locomotive 143 at Rhyd Ddu station travelling in same direction (right to left of photograph) as at the time of derailment No injuries were reported amongst the passengers or crew. -
San Jac Trip to the Texas State Railroad
Vol . 41 N o. 4 The official MoNThly PublicaTioN of The SaN JaciNTo Model RailRoad club , i Nc .aPRil 2010 April Meeting The next meeting will be on April 6th, 2010. At Bayland Park Community Center. The Meeting starts at 7:00 pm. Program - The Railroads of Longleaf Louisiana by Everett Luck San Jac Trip to the Texas State Railroad A Ride on the Texas State Railroad Mark Couvillion We started our trip on a comfortable morning that promised a day of rain. The bus arrived on time and we only had to stop once to pick up a few stragglers. The route to Palestine seemed to be intended to get our train juices flowing, as we followed many back roads that seemed to parallel railroad tracks. We never saw a train, or even a single car in a siding or spur, on the entire trip. The weather deteriorated as we got closer to Palestine, with the most rain falling just as the bus stopped at the depot! The temperature had dropped noticeably, but the 33 deter - mined souls on the bus made a run for the depot. We quickly learned that our train would be pulled by #7, a 1947 Alco RS-2 in Black Widow Livery. Something was amiss with the steam engine scheduled to pull our train. Oh well, a first-generation Alco diesel is almost a steam en - gine, and in that paint scheme! The passengers huddled in the depot, trying to find a warm spot, as the station and all of the facilities are de - signed for warm-weather excursions. -
Rigging Terms
Appendices 209 Appendix (i) Personal safety equipment and first aid Riggers often have to wear helmets, gloves, eye protection, face masks and respirators and steel capped boots to protect themselves from injury. It is the responsibility of your employer to provide the necessary protective equipment. It is the responsibility of riggers to wear and use the equipment properly and where and when necessary. Safety helmets Safety helmets with chin straps must be worn wherever there is a risk of objects falling from above and on any work site where the hard hat sign is displayed. Helmets should comply with AS 1801 Industrial safety helmets. Gloves Riggers should wear close fitting pigskin gloves to protect hands from: • heat and abrasion • molten metal • sharp edges. Special purpose gloves may be required for protection against chemicals including acids, alkalis, solvents, fats and oils. Eye protection Wear eye protection that conforms to AS 1337 Eye protectors for industrial applications if you are likely to be exposed to: • physical damage caused by – flying particles, dust, molten metal • chemical damage caused by – toxic liquids, gases and vapours dusts • radiation damage caused by – sunlight, visible light, infra red, laser. Respiratory protection Riggers should wear a face mask that conforms to AS 1716 Respiratory protective devices if you are likely to be exposed to: • toxic gases and vapours • irritating dusts, such as silica. Inhalation of some chemical vapours and gases can cause death or a wide range of unpleasant symptoms including narcosis and headaches. Common dusts such as silica can cause lung disease later in life and is found wherever there is excavation, ie building sites, road works, tunnelling and mining. -
Mechanical Track Deterioration Due Tolateral Geometry Irregularities
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING IN SOLID AND STRUCTURAL MECHANICS Mechanical track deterioration due to lateral geometry irregularities KALLE KARTTUNEN Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2012 Mechanical track deterioration due to lateral geometry irregularities KALLE KARTTUNEN c KALLE KARTTUNEN, 2012 Thesis for the degree of Licentiate of Engineering 2013:02 ISSN 1652-8565 Department of Applied Mechanics Chalmers University of Technology SE-412 96 G¨oteborg Sweden Telephone: +46 (0)31-772 1000 Cover: Predicted response of the outer wheel on the leading axle of a freight wagon with Y25- bogies negotiating a 438 metre radius curve. The solid line indicates predicted RCF damage (scale on the left axis) and the dotted line lateral position of wheel/rail contact point (scale on the right axis). Grey areas indicate predicted RCF (positive on the left vertical axis) or wear (negative) according to a wear number based criterion. Chalmers Reproservice G¨oteborg, Sweden 2012 Mechanical track deterioration due to lateral geometry irregularities Thesis for the degree of Licentiate of Engineering in Solid and Structural Mechanics KALLE KARTTUNEN Department of Applied Mechanics Chalmers University of Technology Abstract This thesis deals with how a degraded track geometry influences further degradation of the geometry and the formation of rolling contact fatigue (RCF) and wear of rails. The overall objective is optimisation of railway maintenance. For this, further understanding and quantification of the deterioration of track components are needed. Dynamic multibody simulations have been performed featuring different wagons, and a track with different curve radii and different levels of track geometry degradation. -
Eksploatacja I Niezawodnosc – Maintenance and Reliability
Eksploatacja i Niezawodnosc – Maintenance and Reliability Volume 23 (2021), Issue 1 journal homepage: http://www.ein.org.pl Article citation info: Konowrocki R, Kalinowski D, Szolc T, Marczewski A. Identification of safety hazards and operating conditions of the low-floor tram with independently rotating wheels with various drive control algorithms. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (1): 21–33, http://dx.doi.org/10.17531/ein.2021.1.3. Identification of safety hazards and operating conditions of the Indexed by: low-floor tram with independently rotating wheels with various drive control algorithms Robert Konowrockia,*, Dariusz Kalinowskia,b, Tomasz Szolca, Artur Marczewskib aInstitute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5b, 02-106 Warsaw, Poland bPESA Bydgoszcz SA, ul. Zygmunta Augusta 11, 85-082 Bydgoszcz, Poland Highlights Abstract • Bogies with independently rotating wheels in- The aim of the article is to develop a method for the analysis of tram dynamics related to crease travel comfort. safety during operation. To achieve this, a mathematical model of the vehicle represented by a multibody simulation MBS system is used. Models of tram with a classic and innova- • System of independently rotating wheels (IRW) tive drive, based on a system of independently rotating wheels on crank axles are analyzed. reducing the value of wheel-rail forces. A new configuration of an innovative drive control of the considered vehicle with the use • Higher efficiency of tram drive control through of braking of independent wheels is proposed. A new geometry of test track is presented. additional braking. During numerical investigation the values of ‘Y’ leading forces of tram wheels with the con- • New geometry of simulational test track for light sidered innovative drive proved to be lower than in the corresponding vehicle with standard rail vehicles (LRVs). -
On the Influence of Rail Vehicle Parameters on the Derailment Process and Its Consequences
DAN BRABIE on the Derailment Parameters Vehicle On the Influence of Rail and its Consequences Process TRITA AVE 2005:17 ISSN 1651-7660 ISBN 91-7283-806-X On the Influence of Rail Vehicle Parameters on the Derailment Process and its Consequences DAN BRABIE Licentiate Thesis in Railway Technology KTH 2005 KTH Stockholm, Sweden 2005 www.kth.se On the Influence of Rail Vehicle Parameters on the Derailment Process and its Consequences by Dan Brabie Licentiate Thesis TRITA AVE 2005:17 ISSN 1651-7660 ISBN 91-7283-806-X Postal Address Visiting address Telephone E-mail Royal Institute of Technology Teknikringen 8 +46 8 790 84 76 [email protected] Aeronautical and Vehicle Engineering Stockholm Fax Railway Technology +46 8 790 76 29 SE-100 44 Stockholm . Contents Contents.............................................................................................................................i Preface and acknowledgements.................................................................................... iii Abstract ............................................................................................................................v 1 Introduction.................................................................................................................1 1.1 Background information......................................................................................1 1.2 Previous research.................................................................................................1 1.3 Scope, structure and contribution of this thesis...................................................3 -
Locomotive Engine Driving
.UMWr '• .;.'.«.• .•.^•>.riiMfe|il^^^SHfr^ Pi 1 •iri^ p Eli I ^' . •-'• -*L - ,'5't.-- > / A* ,' Ss.^> ' rX t.*V **: '-^- ', i.4:. 4. •* 'j.jsefe' A v\ (aj o X \\ ."'eS' ^. ^>; .-'--^^ Loiid0n:Crost7-Iidfekwoo<i&C? ZSratioDers HaHCoiirt. LOCOMOTIVE ENGINE DRIVING A PRACTICAL MANUAL FOR ENGINEERS IN CHARGE OF LOCOMOTIVE ENGINES By MICHAEL EEYKOLDS MEMBER OF THE SOCIETY OF EXOIXEERS, FOUMERLY LOCOMOTIVE INSPECTOR LONDON, BRIGHTON, AND SODTH COAST RAILWAY EIGHTH EDITION COMPRISING, BESIDES OTHER ADDITIONAL MATTER A KEY TO THE LOCOMOTIVE ENGINE SSEith nttmcrotts lUustratimts gpiol];u. LONDON CROSBY LOCKWOOD AND SON 7, STATIONERS' HALL COURT, LTJDGATE HILL 1888 \_All rights reserved'] 1 J :i TO THE ENGINEMEN AND FIREMEN OF LOCOMOTIVE ENGINES THEOUGHOUT THE UNITED KINGDOM THIS WOEK IS AS A TRIBUTE OF EEGARD AND RESPECT BY THEIR SERVANT THE AUTHOB rrxv^^ PEEFACE. I AM ambitious to extend and improve the social condition of locomotive drivers by placing within their reach a standard test of capacity that will be unaffected by local or temporary prejudices, fancies, fashions, or accidental connections. It appears to me that our enginemen of to-day will be to those of the next century what " Puffing Billy " in 1825 is to the " Monarch of Speed " in 1877. I hold a very strong opinion that our enginemen may be stripped of old habits and customs by self-help and self-reliance, and developed into a high state of efficiency. In carrying out such a measure of progress, difficulties, no doubt, which usually attend the work of reformation, will crop up ; and many disappointments await the pioneer. The engine is ahead of the engineman—all the hard scheming, comparatively speaking, is done ; but the engineman remains where he was in George Stephenson's time, and his stationary condi- tion jars with his surroundings.