Identification and Validation of Germline Genetic Variants That Associate with Sorafenib Clinical Outcomes and Cytotoxicity

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Validation of Germline Genetic Variants That Associate with Sorafenib Clinical Outcomes and Cytotoxicity IDENTIFICATION AND VALIDATION OF GERMLINE GENETIC VARIANTS THAT ASSOCIATE WITH SORAFENIB CLINICAL OUTCOMES AND CYTOTOXICITY Daniel James Crona A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Eshelman School of Pharmacy (Pharmacotherapy and Experimental Therapeutics). Chapel Hill 2015 Approved by: Federico Innocenti William Kim Karen Mohlke John Valgus Timothy Wiltshire © 2015 Daniel James Crona ALL RIGHTS RESERVED ii ABSTRACT Daniel James Crona: Identification and validation of germline variations that associate with overall survival in metastatic renal cell carcinoma patients treated with sorafenib (Under the direction of Federico Innocenti ) Sorafenib is a potent inhibitor of multiple oncogenic, stromal and angiogenic receptor tyrosine kinases. Germline variants in VEGF-pathway genes and in sorafenib pharmacology genes might associate with prognosis and/or sorafenib efficacy in metastatic renal cell carcinoma (mRCC patients). A total of 295 mRCC patients from the phase III TARGET trial were genotyped using candidate germline variants from 56 candidate genes implicated in angiogenesis, sorafenib pharmacology and/or RCC prognosis/pathogenesis. Seven variants that significantly associated with overall survival (OS) in mRCC patients treated with sorafenib, and an additional two variants associated with OS in a combined analysis of both treatment arms. Statistical associations between genetic variants and outcomes in cancer studies should be supported with molecular mechanistic evidence of variant function to aid in biomarker validation. Variants identified in Aim 1 that significantly associated with OS were analyzed using in silico bioinformatic tools to prioritize in vitro validation assays. Cell viability assays validated one non-synonymous variant in FLT-4, and dual reporter gene luciferase assays validated two intronic VEGFA variants in three different cell lines. Novel pathways and targets of sorafenib activity remain to be identified. Primary mouse embryonic fibroblasts (MEFs) from 32 inbred strains were profiled for sorafenib iii cytotoxicity utilizing high content imaging and simultaneous evaluation of cell health parameters (cell viability, membrane permeability, mitochondrial membrane potential, and cytochrome C release). One quantitative locus (QTL) on chromosome 9, which reached genome-wide significance and significantly associated with cytochrome C release, was identified. A total of nine genes, expressed in MEF cells at mRNA level, were present in this QTL. A second QTL associated with cell viability was also identified. A total of 13 candidate genes, expressed in MEF cells at mRNA level, were present in this QTL. In the future, functional validation of candidate genes under these two identified QTLs, using knockdown and overexpression approaches, will be conducted in MEF and human cell lines. iv I would like to dedicate this work to my one and only true love: Dr. Lana Crona. Thank you for sticking by me through all of this, and for being my rock. I love you, my dear Nannybelle. Without you, I am nothing. v ACKNOWLEDGEMENTS Federico Innocenti, you were precisely what I needed in a mentor. You taught me self-reliance, critical thinking skills, and self-confidence. You helped me see the big picture of why I am here and why I want to continue as a clinical pharmacologist and pharmacogeneticist in oncology: to make impactful changes and advancements that better the lives of our patients. I truly value your hands-off mentoring approach and that you did not micro-manage my every move. I appreciate that, from the beginning, you treated me like you would a post-doctoral researcher and gave me the latitude to pursue new ideas and test new hypotheses. As a result, you engendered within me a sense of independence. I hope I met your high expectations for a first graduate student. Amy Etheridge, you have certainly been a great teacher and mentor to me as well. Thank you for helping me design and develop my assays, for making sure supplies were always available, for babysitting my cells, for providing me with sage career advice, for talking about biking and running, and for listening to all of my thoughts and concerns on so many different subjects. I literally could not have done this without you. My friend and colleague from “down under,” Dylan Glubb, I only have one thing to say to you: shot bro. I could not have asked for a better colleague, and role model when you moved here from Chicago. I appreciate all of your advice on pharmacogenetics, genetics, and molecular biology. Moreover, thank you for being a really great friend. And Eric Seiser, thank you so much for being a great resource since you joined the lab. I am so glad I can count on you for your expertise in bioinformatics, and biostatistics. I am so excited for you to get to start your life in Washington DC. I would also like to thank vi one of our collaborators from University of Chicago, Andrew Skol. You are an amazing statistician, and were integral to the analysis of the data and my overall learning in the early stages of my dissertation. I cannot thank you enough. I also would like to thank Carol Peña from Bayer for providing me access to the TARGET patient samples, as well as to thank Habibul Ahsan at the University of Chicago and Jason Luo from UNC for their assistance with the genotyping portion of my research. Tim Wiltshire, I sincerely could not have asked for a better Chair of my Dissertation Committee. You are so kind, intelligent, easy to talk with, and truly personify the words “mentor” and “teacher.” I would not be at UNC if not for you because, as you know, you literally convinced me to attend UNC while I was waiting in the lift line while snowboarding in Colorado. You were my first lab PI here, and I am so thankful that I will soon get the opportunity to be your collaborator and colleague. A million times thank you. I cannot say enough good things about two more members of the Wiltshire lab: Oscar Suzuki and Amber Frick. Oscar, you are simply amazing. I wish I knew half as much about genetics, bioinformatics, and molecular biology (you are also one heck of a swimmer). And Amber, you are no less amazing. You are so smart, so kind, are an incredible teacher, and wonderful at explaining difficult concepts (and you are also on heck of a baker). I am also very grateful to Rusty Thomas, Bethany Parks, Joe Trask, and all of the members of the Hamner Institute for collaborating with me on the MEF study. And, thank you very much to Tammy Havener for helping guide me on cell viability assays, and molecular biology. I learned so much from each and every one of you. Thank you for being integral to my learning. John Valgus, of all my mentors and Dissertation Committee members, I relate best to you because we are both pharmacists. I value every single one of our discussions on GU vii oncology topics, your advice on my different HOPS presentations, you advice on my dissertation, your explanations regarding supportive care topics, as well as how you’ve advised me extensively on career and on life. You have truly made this training experience unique and special for me. You are an oncology pharmacist of the highest quality, an insightful pharmacogenetics researcher, and have incredible perspective. You are everything I want to be as a clinician, as a clinical researcher and as a person. Thank you so very much for taking a chance on me. Billy Kim, I wanted to thank you for being such a great part of my Dissertation Committee and for being a mentor to me in clinic. I will always remember the first time you introduced me to one of your patients as “Dr. Crona.” That was such a validating moment for me. Thank you for challenging me to think deeply in my Dissertation Committee meetings, and for all of our discussions about science while in clinic. Thank you so much for your generosity. Giving me the Caki-1 cells REALLY helped me, and all of your lab members were so kind and giving of their time. You are clearly one of the most intelligent people I have ever met, and I really look forward to working together in the future, both in clinic and hopefully through lab collaborations. Karen Mohlke, I sincerely appreciate all of your contributions to my research as part of my Dissertation Committee. You are simply amazing when it comes to your knowledge of human genetics. I hope someday that I understand even a fraction of what you know. You and your lab members, most notably Tamara Roman, have been essential to the directions that I took in designing, implementing and analyzing my validation experiments. I also appreciate how you challenged me on difficult genetics and statistics issues during my Dissertation Committee meetings. You have definitely helped me grow as a researcher. I viii hope that you will continue to mentor me in the future. I value you and your expertise so very much. As part of my education, I have been lucky enough to engage in a longitudinal clinic experience. I have essentially served as the clinical pharmacist specialist in the outpatient GU oncology clinic of over four years. During that time, I have gotten to meet some really extraordinary individuals who have truly shaped me as a clinician and researcher. Matt Milowsky, I cannot adequately express just how much I gain from you as a mentor. You are a brilliant clinician, and an even better clinical researcher. Thank you for providing me with opportunities to collaborate with researchers at Memorial Sloan Kettering, and thank you for all you do for me (which I am sure is more than I know).
Recommended publications
  • Mouse Exph5 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Exph5 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Exph5 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Exph5 gene (NCBI Reference Sequence: NM_176846 ; Ensembl: ENSMUSG00000034584 ) is located on Mouse chromosome 9. 6 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 6 (Transcript: ENSMUST00000051014). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Exph5 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-93P8 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 2.04% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 35980 bp, and the size of intron 2 for 3'-loxP site insertion: 2349 bp. The size of effective cKO region: ~661 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 6 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Exph5 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • BTG2: a Rising Star of Tumor Suppressors (Review)
    INTERNATIONAL JOURNAL OF ONCOLOGY 46: 459-464, 2015 BTG2: A rising star of tumor suppressors (Review) BIjING MAO1, ZHIMIN ZHANG1,2 and GE WANG1 1Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Chongqing 400042; 2Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China Received September 22, 2014; Accepted November 3, 2014 DOI: 10.3892/ijo.2014.2765 Abstract. B-cell translocation gene 2 (BTG2), the first 1. Discovery of BTG2 in TOB/BTG gene family gene identified in the BTG/TOB gene family, is involved in many biological activities in cancer cells acting as a tumor The TOB/BTG genes belong to the anti-proliferative gene suppressor. The BTG2 expression is downregulated in many family that includes six different genes in vertebrates: TOB1, human cancers. It is an instantaneous early response gene and TOB2, BTG1 BTG2/TIS21/PC3, BTG3 and BTG4 (Fig. 1). plays important roles in cell differentiation, proliferation, DNA The conserved domain of BTG N-terminal contains two damage repair, and apoptosis in cancer cells. Moreover, BTG2 regions, named box A and box B, which show a high level of is regulated by many factors involving different signal path- homology to the other domains (1-5). Box A has a major effect ways. However, the regulatory mechanism of BTG2 is largely on cell proliferation, while box B plays a role in combination unknown. Recently, the relationship between microRNAs and with many target molecules. Compared with other family BTG2 has attracted much attention. MicroRNA-21 (miR-21) members, BTG1 and BTG2 have an additional region named has been found to regulate BTG2 gene during carcinogenesis.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Exophilin-5 Regulates Allergic Airway Inflammation by Controlling IL-33–Mediated Th2 Responses
    The Journal of Clinical Investigation RESEARCH ARTICLE Exophilin-5 regulates allergic airway inflammation by controlling IL-33–mediated Th2 responses Katsuhide Okunishi,1 Hao Wang,1 Maho Suzukawa,2,3 Ray Ishizaki,1 Eri Kobayashi,1 Miho Kihara,4 Takaya Abe,4,5 Jun-ichi Miyazaki,6 Masafumi Horie,7 Akira Saito,7 Hirohisa Saito,8 Susumu Nakae,9 and Tetsuro Izumi1 1Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan. 2National Hospital Organization Tokyo National Hospital, Tokyo, Japan. 3Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan. 4Laboratory for Animal Resource Development and 5Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. 6Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan. 7Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. 8Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan. 9Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. A common variant in the RAB27A gene in adults was recently found to be associated with the fractional exhaled nitric oxide level, a marker of eosinophilic airway inflammation. The small GTPase Rab27 is known to regulate intracellular vesicle traffic, although its role in allergic responses is unclear. We demonstrated that exophilin-5, a Rab27-binding protein, was predominantly expressed in both of the major IL-33 producers, lung epithelial cells, and the specialized IL-5 and IL-13 producers in the CD44hiCD62LloCXCR3lo pathogenic Th2 cell population in mice.
    [Show full text]
  • A Genome-Wide Association Study of Calf Birth Weight in Holstein Cattle Using Single Nucleotide Polymorphisms and Phenotypes Predicted from Auxiliary Traits
    J. Dairy Sci. 97 :3156–3172 http://dx.doi.org/ 10.3168/jds.2013-7409 © American Dairy Science Association®, 2014 . A genome-wide association study of calf birth weight in Holstein cattle using single nucleotide polymorphisms and phenotypes predicted from auxiliary traits J. B. Cole ,*1 B. Waurich ,† M. Wensch-Dorendorf ,† D. M. Bickhart ,* and H. H. Swalve † * Animal Improvement Programs Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350 † Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Theodor-Lieser-Str. 11, D-06120 Halle / Saale, Germany ABSTRACT derived from one population are useful for identifying genes and gene networks associated with phenotypes Previous research has found that a quantitative trait that are not directly measured in a second population. locus exists affecting calving and conformation traits This approach will identify only genes associated with on Bos taurus autosome 18 that may be related to the traits used to construct the birth weight predictor, increased calf birth weights, which are not routinely and not loci that affect only birth weight. recorded in the United States. Birth weight data from Key words: birth weight , quantitative trait loci , se- large, intensively managed dairies in eastern Germany lection index , single nucleotide polymorphism with management systems similar to those commonly found in the United States were used to develop a selec- INTRODUCTION tion index predictor for predicted transmitting ability (PTA) of birth weight. The predictor included body Many studies have reported on QTL affecting calving depth, rump width, sire calving ease, sire gestation traits in several populations of Holstein cattle (Kühn et al., 2003; Schnabel et al., 2005; Holmberg and Ander- length, sire stillbirth, stature, and strength.
    [Show full text]
  • Trna GENES AFFECT MULTIPLE ASPECTS of LOCAL CHROMOSOME BEHAVIOR
    tRNA GENES AFFECT MULTIPLE ASPECTS OF LOCAL CHROMOSOME BEHAVIOR by Matthew J Pratt-Hyatt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2008 Doctoral Committee: Professor David R. Engelke, Chair Professor Robert S. Fuller Associate Professor Mats E. Ljungman Associate Professor Thomas E. Wilson Assistant Professor Daniel A. Bochar © Matthew J. Pratt-Hyatt All rights reserved 2008 . To my loving family Who’ve helped me so much ii Acknowledgements I would first like to thank my mentor, David Engelke. His help has been imperative to the development of my scientific reasoning, writing, and public speaking. He has been incredibly supportive at each phase of my graduate career here at the University of Michigan. Second, I would like to thank the past and present members of the Engelke lab. I would especially like to thank Paul Good, May Tsoi, Glenn Wozniak, Kevin Kapadia, and Becky Haeusler for all of their help. For this dissertation I would like to thank the following people for their assistance. For Chapter II, I would like to thank Kevin Kapadia and Paul Good for technical assistance. I would also like to thank David Engelke and Tom Wilson for help with critical thinking and writing. For Chapter III, I would like to thank David Engelke and Rebecca Haeusler for their major writing contribution. I would also like to acknowledge that Rebecca Haeusler did the majority of the work that led to figures 1-3 in that chapter. For Chapter IV, I would like to thank Anita Hopper, David Engelke and Rebecca Haeusler for their writing contributions.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis on C-Reactive Protein Among Ghanaians Suggests Molecular Links to the Emerging Risk of Cardiovascular Diseases ✉ Felix P
    www.nature.com/npjgenmed ARTICLE OPEN Genome-wide DNA methylation analysis on C-reactive protein among Ghanaians suggests molecular links to the emerging risk of cardiovascular diseases ✉ Felix P. Chilunga 1 , Peter Henneman2, Andrea Venema2, Karlijn A. C. Meeks 3, Ana Requena-Méndez4,5, Erik Beune1, Frank P. Mockenhaupt6, Liam Smeeth7, Silver Bahendeka8, Ina Danquah9, Kerstin Klipstein-Grobusch10,11, Adebowale Adeyemo 3, Marcel M.A.M Mannens2 and Charles Agyemang1 Molecular mechanisms at the intersection of inflammation and cardiovascular diseases (CVD) among Africans are still unknown. We performed an epigenome-wide association study to identify loci associated with serum C-reactive protein (marker of inflammation) among Ghanaians and further assessed whether differentially methylated positions (DMPs) were linked to CVD in previous reports, or to estimated CVD risk in the same population. We used the Illumina Infinium® HumanMethylation450 BeadChip to obtain DNAm profiles of blood samples in 589 Ghanaians from the RODAM study (without acute infections, not taking anti-inflammatory medications, CRP levels < 40 mg/L). We then used linear models to identify DMPs associated with CRP concentrations. Post-hoc, we evaluated associations of identified DMPs with elevated CVD risk estimated via ASCVD risk score. We also performed subset analyses at CRP levels ≤10 mg/L and replication analyses on candidate probes. Finally, we assessed for biological relevance of our findings in public databases. We subsequently identified 14 novel DMPs associated with CRP. In post-hoc evaluations, we found 1234567890():,; that DMPs in PC, BTG4 and PADI1 showed trends of associations with estimated CVD risk, we identified a separate DMP in MORC2 that was associated with CRP levels ≤10 mg/L, and we successfully replicated 65 (24%) of previously reported DMPs.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
    Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Mechanisms of U6 small nuclear RNA gene expression in Drosophila melanogaster Permalink https://escholarship.org/uc/item/89r1v4c0 Author Verma, Neha Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO SAN DIEGO STATE UNIVERSITY Mechanisms of U6 small nuclear RNA gene expression in Drosophila melanogaster A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Neha Verma Committee in Charge: University of California, San Diego Professor Randolph Y. Hampton Professor Katherine A. Jones San Diego State University Professor William E. Stumph, Chair Professor Sanford I. Bernstein Professor Terrence Frey 2017 The Dissertation of Neha Verma is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ _________________________________________________________________ Chair University of California, San Diego San Diego State University 2017 iii DEDICATION This dissertation is dedicated to my parents, my husband, my in-laws, the rest of my family and my loving friends for their
    [Show full text]