From DNA Sequences to Living Systems

Total Page:16

File Type:pdf, Size:1020Kb

From DNA Sequences to Living Systems ISSN: 1050–6101, Issue number 47 Vol. 11, Nos. 3–4, July 2001 In This Issue From DNA Sequences to Living Systems In the News Genomes to Life, Microbial Cell Project—Complementary New DOE Programs Explore Critical Life Processes Genomes to Life ........................1 OASCR and GTL.......................1 he complete DNA sequences for organisms ranging from humans to mice Tand microbes are presenting an even greater scientific challenge—to under- DOE Microbial Cell Project ........2 stand how life’s component parts function together and are influenced by envi- Human Genome Draft ...............3 ronmental factors in creating and operating dynamic living systems. DOE, a Genomes: A Perspective...........5 key player in the genomics revolution, is poised to make important contributions to this next grand scientific quest through the Microbial Cell Project (MCP) Honor for DeLisi ........................5 and the proposed Genomes to Life (GTL) program. New NIH Institute.......................6 Structural Genomics ..................7 The MCP takes a whole-genome development of appropriate tools. The approach to understanding the func- two programs will formulate more Synchrotron Use........................7 tion and regulation of all genes for a high-throughput methodologies for Proteome Organisation..............7 single living system and the pathways simultaneously studying many compo- Breast Cancer Research ...........8 in which the protein products interact. nents of living systems. The MCP will play a leading role in The extraordinary applications of this Nuclear Medicine.....................13 GTL, DOE’s major new undertaking. Toxicogenomics Center...........14 holistic approach will help DOE fulfill The GTL will build on previous Office its broad missions in energy, environ- Kettering Prize .........................14 of Science research that includes the mental remediation, and protection of Zeta Phi Beta Conference .......15 Human Genome Program and the human health. [For more details on Microbial Genomes..................18 Microbial Genome Program initiated GTL, see color centerfold and http:// in 1994. The plan for GTL is to use DOEGenomesToLife.org; for informa- Sloan-DOE Fellowships...........21 DNA sequences from both microbes tion on MCP, see article, p. 2, and à See color centerfold about GTL and higher organisms, including http://microbialcellproject.org.] between pages 12 and 13. humans, to systematically tackle ques- tions about essential life pro- Comparative Genomics cesses conserved across species. OASCR Joins OBER Sushi Delicacy ...........................8 Advanced technological and computational resources tested in Genomes to Life Program Arabidopsis Sequence...............9 and modeled in the MCP will he DOE Office of Biological and Envi- AAAS Prize................................9 be used to identify and under- Tronmental Research (OBER) and Office Microbial Conference.................9 stand the underlying mecha- of Advanced Scientific Computing Research nisms that enable organisms Mouse and Resources.......10–12 (OASCR) have formed a strategic alliance to to function in diverse environ- meet the challenges of studying complex sys- Resources mental conditions. tems. OASCR fosters and supports funda- Next-Generation Computing....17 In a sense, the MCP is advance mental research in advanced scientific HGMIS Resources...................19 reconnaissance for GTL, and computing and computational sci- ence—applied mathematics, computer sci- Other Resources ...............19–23 the two programs are and will remain closely entwined. ence, and networking—and operates For Your Information supercomputer, networking, and related facil- Both GTL and the MCP con- ities. These tools enable researchers to ana- Event, Training Calendars 22–23 tribute toward the shifting of lyze, model, simulate, and predict complex biology to a more quantitative phenomena relevant to DOE’s biological mis- Funding Information.................23 science, involving the collection, Subscription, Requests............24 sions. The proposed Genomes to Life program integration, and dissemination fits readily into this portfolio.à Acronyms.................................24 of diverse data and the All issues of Human Genome News are online (www.ornl.gov/hgmis/publicat/hgn/hgn.html). 2 Human Genome News 11(3–4) July 2001 In the News In addition to working with academic, DOE Microbial Cell Project nonprofit, and industrial partners, A Perspective by Daniel Drell DOE will take advantage of the sci- entific capabilities of its national ore than 50 scientists from such other disciplines laboratories. These capabilities Mcomplete as engineering; chemistry; physics; include high-throughput genomic microbial genome and the computer, imaging, and even DNA sequencing, microbial biochem- istry and array development and sequences have management sciences. been deciphered analyses; physiology; very high resolu- since the publica- Why Microbes? tion imaging; and structural biology. tion of the first in National user facilities such as 1995. These Microbes have evolved for 3.7 billion synchrotrons will play important sequences offer years and have colonized almost every roles, as will high-performance computing. scientists an Daniel Drell environment on earth. In the process, unprecedented DOE Human they have developed an astonishingly The MCP’s ultimate aim is to learn opportunity to Genome Program diverse collection of capabilities that enough about cellular functions so study cellular life in can be used to help DOE meet its chal- they can be manipulated knowledge- its simplest form lenges in toxic-waste cleanup, energy ably to enhance beneficial and sup- and to begin understanding how nature production, global climate change, and press unintended effects. MCP orchestrates the activities of living biotechnology. planners are well aware that it is systems. Additionally, their internal organiza- premature to explore manipulations This opportunity is at the root of DOE’s tion and complex regulatory systems or interventions. Given the complexity new Microbial Cell Project (MCP), allow microbial cells to adapt to a myr- of metabolic networks in even the begun in 2001 by the Office of Science’s iad of environments. They work as simplest cell, such actions would be offices of Biological and Environmental miniature chemistry laboratories, analogous to throwing the proverbial Research (OBER) and Basic Energy making unique products and carrying monkey wrench into a complex Sciences (OBES), allied with the Office out functions specific to their environ- machine; the outcomes most likely of Advanced Scientific Computing mental conditions. would not be useful and informative. Research (OASCR). OBER and OBES When greater knowledge is gained Understanding the complex function- contributed $12 million and OASCR about the parts, their interactions, ing of a single microbial cell ultimately $3 million through its Advanced the functional pathways to which will enable science to go far beyond Modeling and Simulation of Biological they belong, their partners in bio- just exploiting the beneficial capabilities Systems Program. chemistry, and their temporal and of microbes to meet DOE’s missions. spatial distribution within the cell, The challenges are great. Although the Much of the knowledge gained will these interventions—if and when complete list of life’s working parts for apply to cells in all living organisms. they merit exploratory research— sequenced genomes is now online, many The MCP thus represents a first step can be more precise and predictable. perform unknown functions. Addi- in moving from cataloguing molecular tionally, little is understood about how parts to constructing an integrative The MCP is as bold and major an and when the parts function together in view of life at the level of a whole undertaking as DOE’s Human living cells and respond to environmen- organism—microbe, plant, or animal. Genome Initiative was in 1987. tal changes. Gaining an understanding Much of the MCP’s research appeal of the complexities of systems-level Goals stems from the simple fact that this is where the science is leading. Like functioning also requires new ways of The MCP has four main goals: thinking and collaborations with fortunate children with their first Determine how microbial proteins Lego set who have seen the pictured combine into molecular machines item and know it can be built, we * Image Galleries that fulfill many of life’s important have opened the box and found the intracellular processes. pieces. The instructions are missing, High-quality, original graphics can be however, so we must complete the Characterize the internal cell environ- downloaded from the HGMIS Web site. construction through experimenta- ment and its effects on the proteins No permission is needed, but please let tion. Fortunately, we can build on HGMIS know where they were used. and protein machines that perform decades of intense biological Human Genome Project Information: functions relevant to DOE missions. research to make the job easier. www.ornl.gov/hgmis/graphics/ Characterize the intracellular dis- slides/images1.html tribution, quantities, and fluxes of The MCP makes its first grant awards Genomes to Life Program: the proteins and protein machines this summer. A list will be available via http://doegenomestolife.org/ inside a microbial cell. the Web (http://microbialcellproject. gallery/images1.html org/funding) and will be the subject Please cite the U.S. Department of Use high-end
Recommended publications
  • Expression and Prognostic Role of IKBKE and TBK1 in Stage I Non-Small Cell Lung Cancer
    Cancer Management and Research Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Expression and prognostic role of IKBKE and TBK1 in stage I non-small cell lung cancer This article was published in the following Dove Press journal: Cancer Management and Research Xin Wang1,2 Background: The inhibitors of nuclear factor kappa-B kinase subunit epsilon (IKBKE) and Feifei Teng2 TANK-binding kinase 1 (TBK1) are important members of the nonclassical IKK family that Jie Lu3 share the kinase domain. They are important oncogenes for activation of several signaling Dianbin Mu4 pathways in several tumors. This study aims to explore the expression of IKBKE and TBK1 Jianbo Zhang4 and their prognostic role in stage I non-small cell lung cancer (NSCLC). Jinming Yu1,2 Patients and methods: A total of 142 surgically resected stage I NSCLC patients were enrolled and immunohistochemistry of IKBKE and TBK1 was performed. 1 Department of Oncology, Renmin Results: IKBKE and TBK1 were expressed in 121 (85.2%) and 114 (80.3%) of stage I Hospital of Wuhan University, Wuhan, fi Hubei 430060, People’s Republic of China; NSCLC patients respectively. IKBKE expression was signi cantly associated with TBK1 2Department of Radiation Oncology, expression (P=0.004). Furthermore, multivariate regression analyses showed there was a fi Shandong Cancer Hospital Af liated to significant relationship between patients with risk factors, the recurrence pattern of metas- Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong tasis and IKBKE+/TBK1+ co-expression (P=0.032 and P=0.022, respectively). In Kaplan– 250117, People’s Republic of China; Meier survival curve analyses, the IKBKE+/TBK1+ co-expression subgroup was signifi- 3Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong cantly associated with poor overall survival (P=0.014).
    [Show full text]
  • Workflows for Rapid Functional Annotation of Diverse
    insects Article Workflows for Rapid Functional Annotation of Diverse Arthropod Genomes Surya Saha 1,2 , Amanda M. Cooksey 2,3, Anna K. Childers 4 , Monica F. Poelchau 5 and Fiona M. McCarthy 2,* 1 Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA; [email protected] 2 School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA; [email protected] 3 CyVerse, BioScience Research Laboratories, University of Arizona, 1230 N. Cherry Ave., Tucson, AZ 85721, USA 4 Bee Research Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Ave., Beltsville, MD 20705, USA; [email protected] 5 National Agricultural Library, Agricultural Research Service, USDA, 10301 Baltimore Ave., Beltsville, MD 20705, USA; [email protected] * Correspondence: fi[email protected] Simple Summary: Genomic technologies are accumulating information about genes faster than ever before, and sequencing initiatives, such as the Earth BioGenome Project, i5k, and Ag100Pest Initiative, are expected to increase this rate of acquisition. However, if genomic sequencing is to be used for the improvement of human health, agriculture, and our understanding of biological systems, it is necessary to identify genes and understand how they contribute to biological outcomes. While there are several well-established workflows for assembling genomic sequences and identifying genes, understanding gene function is essential to create actionable knowledge. Moreover, this functional annotation process must be easily accessible and provide information at a genomic scale to keep up Citation: Saha, S.; Cooksey, A.M.; with new sequence data. We report a well-defined workflow for rapid functional annotation of whole Childers, A.K.; Poelchau, M.F.; proteomes to produce Gene Ontology and pathways information.
    [Show full text]
  • Molecular Basis of Tank-Binding Kinase 1 Activation by Transautophosphorylation
    Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation Xiaolei Maa,1, Elizabeth Helgasonb,1, Qui T. Phungc, Clifford L. Quanb, Rekha S. Iyera, Michelle W. Leec, Krista K. Bowmana, Melissa A. Starovasnika, and Erin C. Dueberb,2 Departments of aStructural Biology, bEarly Discovery Biochemistry, and cProtein Chemistry, Genentech, South San Francisco, CA 94080 Edited by Tony Hunter, Salk Institute for Biological Studies, La Jolla, CA, and approved April 25, 2012 (received for review December 30, 2011) Tank-binding kinase (TBK)1 plays a central role in innate immunity: it the C-terminal scaffolding/dimerization domain (SDD), a do- serves as an integrator of multiple signals induced by receptor- main arrangement that appears to be shared among the IKK mediated pathogen detection and as a modulator of IFN levels. family of kinases (3). Deletion or mutation of the ULD in TBK1 Efforts to better understand the biology of this key immunological or IKKε severely impairs kinase activation and substrate phos- factor have intensified recently as growing evidence implicates phorylation in cells (22, 23). Furthermore, the integrity of the aberrant TBK1 activity in a variety of autoimmune diseases and ULD in IKKβ is not only required for kinase activity (24) but was fi cancers. Nevertheless, key molecular details of TBK1 regulation and shown also to confer substrate speci city in conjunction with the β substrate selection remain unanswered. Here, structures of phos- adjacent SDD (25). Recent crystal structures of the IKK phorylated and unphosphorylated human TBK1 kinase and ubiq- homodimer demonstrate that the ULD and SDD form a joint, uitin-like domains, combined with biochemical studies, indicate three-way interface with the KD within each protomer of the a molecular mechanism of activation via transautophosphorylation.
    [Show full text]
  • Genetically Engineered Plants: a Potential Solution to Climate Change
    Genetically Engineered Plants: A Potential Solution to Climate Change Dr Charles DeLisi GENETICALLY ENGINEERED PLANTS: A POTENTIAL SOLUTION TO CLIMATE CHANGE Climate change is already having devastating effects felt across the globe. Without adequate measures to counteract the human drivers behind climate change, these negative consequences are guaranteed to increase in severity in the coming decades. Esteemed biomedical scientist, Dr Charles DeLisi of Boston University, urges that a multi-disciplinary approach to mitigating climate change is vital. Using predictive modelling, he has demonstrated the potential power of genetically engineering plants to remove excess carbon dioxide from the atmosphere, thereby mitigating climate change. ‘During the post-industrial period, the planetary temperature has increased rapidly,’ explains Dr Charles DeLisi of Boston University. ‘Ice sheet melting has accelerated, ocean levels have risen with concomitant increases in coastal flooding, and extreme weather events have increased in frequency.’ Emissions Reductions: Not the Whole Solution Thus far, measures to tackle climate change have focused on reducing our emissions of carbon dioxide and other greenhouse gases. Over the last three The Climate Emergency These changes are driven by increasing decades, over 100 nations across the levels of atmospheric ‘greenhouse globe have signed multiple agreements Climate change is, arguably, the most gases’, such as carbon dioxide. Released to voluntarily limit their emissions, significant global threat that society as a by-product of fossil fuel combustion but these measures alone are proving faces. Even small perturbations and other human activities, the level ineffective at slowing climatic in the planet’s climatic system of carbon dioxide in the atmosphere disruption.
    [Show full text]
  • Downloaded As a CSV Dump file
    cells Article Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis Nicolas Buisine 1,† , Alexis Grimaldi 1,†, Vincent Jonchere 1,† , Muriel Rigolet 1, Corinne Blugeon 2 , Juliette Hamroune 2 and Laurent Marc Sachs 1,* 1 UMR7221 Molecular Physiology and Adaption, CNRS, Museum National d’Histoire Naturelle, 57 Rue Cuvier, CEDEX 05, 75231 Paris, France; [email protected] (N.B.); [email protected] (A.G.); [email protected] (V.J.); [email protected] (M.R.) 2 Genomics Core Facility, Département de Biologie, Institut de Biologie de l’ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; [email protected] (C.B.); [email protected] (J.H.) * Correspondence: [email protected] † Co-first authors, alphabetic order. Abstract: Background: Most work in endocrinology focus on the action of a single hormone, and very little on the cross-talks between two hormones. Here we characterize the nature of interactions between thyroid hormone and glucocorticoid signaling during Xenopus tropicalis metamorphosis. Methods: We used functional genomics to derive genome wide profiles of methylated DNA and measured changes of gene expression after hormonal treatments of a highly responsive tissue, tailfin. Clustering classified the data into four types of biological responses, and biological networks were Citation: Buisine, N.; Grimaldi, A.; modeled by system biology. Results: We found that gene expression is mostly regulated by either Jonchere, V.; Rigolet, M.; Blugeon, C.; T or CORT, or their additive effect when they both regulate the same genes. A small but non- Hamroune, J.; Sachs, L.M.
    [Show full text]
  • Mechanisms of IKBKE Activation in Cancer Sridevi Challa University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 1-29-2017 Mechanisms of IKBKE Activation in Cancer Sridevi Challa University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Biochemistry Commons, Biology Commons, and the Cell Biology Commons Scholar Commons Citation Challa, Sridevi, "Mechanisms of IKBKE Activation in Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6617 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Mechanisms of IKBKE Activation in Cancer by Sridevi Challa A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Cell Biology, Microbiology, and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: Mokenge P. Malafa, M.D. Gary Reuther, Ph.D. Eric Lau, Ph.D. Domenico Coppola, M.D. Date of Approval: January 12, 2017 Keywords: EGFR, Olaparib, resistance Copyright © 2017, Sridevi Challa DEDICATION This dissertation is dedicated to my kind and courageous mother. ACKNOWLEDGMENTS I would like to acknowledge Dr. Cheng for trusting me with completion of the projects. I would like to thank him for giving me the freedom to explore any aspect of research and always willing to provide the necessary resources and guidance for my projects. I want to also acknowledge Ted and the Cheng lab personnel for their support.
    [Show full text]
  • Supp Material.Pdf
    Supplemental Material STRESS-INDUCED H3S28 PHOSPHORYLATION MODULATES LOCAL HISTONE ACETYLATION LEVELS Anna Sawicka, Dominik Hartl, Malgorzata Goiser, Oliver Pusch, Roman R Stocsits, Ido M Tamir, Karl Mechtler, Christian Seiser Supplemental Methods Supplemental Figure Legends Supplemental Tables (SUPPL. TABLES 1-2, 4-5) Supplemental Tables (SUPPL. TABLES 3, 6-9, provided as txt files) References Supplemental Figures (SUPPL. FIGURES 1-21) Supplemental Methods Histone peptides used for the pull-down assay and mass spectrometry analysis: H3unmodified (3-20): H2N-TKQTARKSTGGKAPRKQLC-CONH2 H3S10phK14ac (3-20): H2N-TKQTARKS(ph)TGGK(Ac)APRKQLC -CONH2 H3unmodified (19-36): H2N-QLATKAARKSAPATGGVKKC-CONH2 H3S28ph (19-36): H2N-QLATKAARKS(ph)APATGGVKKC-CONH2 Histone peptide pull-down assay For histone peptide pull down assays, 0.1 mg of synthetic peptides (peptide sequences are given above), corresponding to amino acids 3-20 and 19-36 of histone H3 (numbered from N-terminus of histone H3) with a C-terminal cysteine added were coupled to 40 µl (bed volume) of SulfoLink Coupling Resin (Thermo Scientific) according to the manufacturerʼs instructions. Peptide-coupled resin was incubated overnight at 4oC on a roller with 500 µg of nuclear extract (isolated from proliferating HeLa cells treated with 188.5 nM Anisomycin for 1 hour) diluted to 0.5 µg/µl in the binding buffer (20 mM Tris-HCl pH 8.0, 135 mM NaCl, 0.5% NP40, 10% glycerol). The beads were washed 3 times 20 mM Tris-HCl pH 8.0, 135 mM NaCl, 0.5% NP40, 10% glycerol, followed by two washes with 200 mM NaCl, 50 mM Tris-HCl pH 8.0, 0.1 % SDS, 0.1% NP40, 0.5% sodium deoxycholate.
    [Show full text]
  • Bioinformatics
    Bioinformatics 1 ioinformatics is a hybrid science that links biological data with techniques for information storage, distribution, and analysis to support multiple areas of scientific Bresearch, including biomedicine. Bioinformatics is fed by high-throughput data- generating experiments, including genomic sequence determinations and measurements of gene expression patterns. Database projects curate and annotate the data and then distribute it via the World Wide Web. Mining these data leads to scientific discoveries and to the identification of new clinical applications. In the field of medicine in particular, a number of important applications for bioinformatics have been discovered. For example, it is used to identify correlations between gene sequences and diseases, to predict protein structures from amino acid sequences, to aid in the design of novel drugs, and to tailor treatments to individual patients based on their DNA sequences (pharmacogenomics). “[Helix]”, ill. under ‘’Bioinformatics’’, S [&] T: Dependable Solutions, www.stcorp.nl/step/bioinformatics 120431 Bibliotheca Alexandrina Updated by Ghada Sami 1 The goal of bioinformatics is the extension of experimental data by predictions. A fundamental goal of computational biology is the prediction of protein structure from an amino acid sequence. The spontaneous folding of proteins shows that this should be possible. Progress in the development of methods to predict protein folding is measured by biennial Critical Assessment of Structure Prediction (CASP) programs, which involve blind tests of structure prediction methods. Bioinformatics is also used to predict interactions between proteins, given individual structures of the partners. This is known as the “docking problem.” Protein-protein complexes show good complementarity in surface shape and polarity and are stabilized largely by weak interactions, such as burial of hydrophobic surface, hydrogen bonds, and van der Waals forces.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Boston University Graduate Program in Bioinformatics Handbook 2012
    1 Boston University Graduate Program in Bioinformatics Handbook 2012-2013 http://www.bu.edu/bioinformatics Department of Biochemistry (School of Medicine) Department of Biology (College of Arts and Sciences) Biomedical Engineering Department (College of Engineering) Department of Biostatistics (School of Public Health) Department of Chemistry (College of Arts and Sciences) Department of Computational Biomedicine (School of Medicine) Department of Computer Science (College of Arts and Sciences) Electrical and Computer Engineering Department (College of Engineering) Genetics and Genomics Department (School of Medicine) Department of Mathematics and Statistics (College of Arts and Sciences) Department of Medicine (School of Medicine) Department of Microbiology (School of Medicine) Department of Mechanical Engineering (College of Engineering) Molecular and Cell Biology (Goldman School of Dental Health) Department of Neurology (School of Medicine) Periodontology & Oral Biology (Goldman School of Dental Health) Department of Physics (College of Arts and Sciences) Pulmonary Medicine (School of Medicine) Systems Engineering Division (College of Engineering) Center for Computational Science Center for Advanced Biotechnology Center for Advanced Genomic Technology Last Updated: 10/11/12 2 Bioinformatics Faculty and Staff Faculty Director Thomas Tullius Director of Bioinformatics Associate Directors Gary Benson* Associate Director of IGERT Scott Mohr Administrative Director, Director of Graduate Studies Department of Biochemistry (BUSM) Joseph Zaia Professor Associate Director, Center for Biomedical Mass Spectrometry Department of Biology (CAS) Cynthia Bradham Assistant Professor Geoffrey M. Cooper Professor, Associate Dean of the Faculty, Natural Sciences John Finnerty Associate Professor Ulla Hansen Professor Edward Loechler Professor Kimberly McCall Associate Professor # Daniel Segre* Associate Professor Dean Tolan Professor David Waxman Professor Department of Biomedical Engineering (ENG) Charles Cantor* Professor, Director of Center for Advanced Biotechnology James J.
    [Show full text]
  • Molecular Biology, Cell Biology & Biochemistry (MCBB) Graduate
    2016-2017 Molecular Biology, Cell Biology & Biochemistry (MCBB) Graduate Program Guide Table of Contents MCBB Graduate Program Administration.................................................................................................................................... 5 Participating Staff by Department.................................................................................................................................................. 6 Participating Faculty by Department............................................................................................................................................ 7 Facilities.................................................................................................................................................................................................... 10 MCBB Program Requirements.......................................................................................................................................................... 12 • Seminars................................................................................................................................................................................... 12 • Ph.D. Course Requirements............................................................................................................................................... 13 • M.A. Course Requirements...............................................................................................................................................
    [Show full text]
  • Human Genome Project
    Human Genome Project The Human Genome Project (HGP) was an international scientific research project with the goal of determining the sequence of nucleotide base pairs that make up human DNA, and of identifying and mapping all of the genes of the human genome from both a physical and a functional standpoint.[1] It remains the world's largest collaborative biological project.[2] After the idea was picked up in 1984 by the US government when the planning started, the project formally launched in 1990 and was declared complete in 2003[3]. Funding came from the US government through the National Institutes of Health (NIH) as well as numerous other groups from around the world. A parallel project was conducted outside government by the Celera Corporation, or Celera Genomics, which was formally launched in 1998. Most of the government-sponsored sequencing was performed in twenty universities and research centers in the United States, the United Kingdom, Japan, France, Logo HGP; Vitruvian Man, Leonardo Germany, Spain and China.[4] da Vinci The Human Genome Project originally aimed to map the nucleotides contained in a human haploid reference genome (more than three billion). The "genome" of any given individual is unique; mapping the "human genome" involved sequencing a small number of individuals and then assembling these together to get a complete sequence for each chromosome. Therefore, the finished human genome is a mosaic, not representing any one individual. Contents Human Genome Project History State of completion Applications and proposed
    [Show full text]