Download File

Total Page:16

File Type:pdf, Size:1020Kb

Download File I 1111111111111111 11111 1111111111 111111111111111 11111 111111111111111 IIII IIII US008937151B2 c12) United States Patent (IO) Patent No.: US 8,937,151 B2 Chang et al. (45) Date of Patent: *Jan. 20, 2015 (54) GELATINASE INHIBITORS AND PRODRUGS (56) References Cited (75) Inventors: Mayland Chang, Granger, IN (US); U.S. PATENT DOCUMENTS Shahriar Mobashery, Granger, IN 2,965,651 A 12/1960 Kosmin et al. (US); Mijoon Lee, Mishawaka, IN (US) 4,797,218 A 1/1989 Steinberg et al. 5,288,722 A 2/ 1994 Kishimoto et al. (73) Assignee: University of Notre Dame du Lac, 5,981,763 A 1111999 Garapon et al. Notre Dame, IN (US) 6,703,415 B2 3/2004 Mobashery et al. 7,144,917 B2 12/2006 Mobashery et al. 7,928,127 B2 * 4/2011 Lee et al. ...................... 514/336 ( *) Notice: Subject to any disclaimer, the term ofthis 8,093,287 B2 1/2012 Lee et al. patent is extended or adjusted under 35 U.S.C. 154(b) by Odays. FOREIGN PATENT DOCUMENTS This patent is subject to a terminal dis­ WO WO 95/35275 Al 12/1995 claimer. WO WO 97/18231 Al 5/1997 WO WO 98/33788 Al 8/1998 (21) Appl. No.: 13/582,678 WO WO 2006/125208 Al 11/2006 WO WO 2006125208 Al * 11/2006 WO WO 2011/026107 Al 3/2011 (22) PCT Filed: Mar. 4, 2011 OTHER PUBLICATIONS (86) PCT No.: PCT/US2011/027282 Gooyit et al., "Selective water-soluble gelatinase inhibitor prodrugs," § 371 (c)(l), Journal of Medicinal Chemistry (2011) 54: 6676-6690. (2), ( 4) Date: Nov. 14, 2012 Ikejiri et al., "Potent mechanism-based inhibitors for matrix metal­ loproteinases," The Journal ofBiological Chemistry (2005) 280 (40): 33992-34002. (87) PCT Pub. No.: WO2011/109767 Lee et al., "A potent gelatinase inhibitor with anti-tumor-invasive PCT Pub. Date: Sep. 9, 2011 activity and its metabolic disposition," Chem Biol Drug Des (2009) 73: 189-202. Testero et al., "Sulfonate-containing thiiranes as selective gelatinase (65) Prior Publication Data inhibitors," ACS Medicinal Chemistry Letters (2011) 2: 177-181. International Search Report (Form PCT/ISA/210) for corresponding US 2013/0052184 Al Feb. 28, 2013 International Application No. PCT/US2011/027282 mailed Nov. 4, 2011. Written Opinion (Form PCT/ISA/237) for corresponding Interna­ Related U.S. Application Data tional Application No. PCT/US2011/027282 mailed Nov. 4, 2011. (60) Provisional application No. 61/310,607, filed on Mar. * cited by examiner 4, 2010. Primary Examiner - Marcela M Cordero Garcia (51) Int. Cl. Assistant Examiner - Kaipeen Yang A61K 38/00 (2006.01) (74) Attorney, Agent, or Firm - Haukaas Fish PLLC; C07K 2100 (2006.01) Michael H. Haukaas C07K 4100 (2006.01) C07K5/00 (2006.01) (57) ABSTRACT C07K 7100 (2006.01) The invention provides compounds, compositions, and meth­ C07K 14100 (2006.01) ods for the treatment ofdiseases, disorders, or conditions that C07K 16100 (2006.01) are modulated by matrix metalloproteinases (MMPs). The C07K 17100 (2006.01) disease, disorder, or condition can include, for example, C07D331/02 (2006.01) stroke, neurological disorders, or ophthalmological disor­ C07D 409112 (2006.01) ders. The treatment can include administering a compound or composition described herein, thereby providing a prodrug (52) U.S. Cl. compound that metabolizes to an active MMP inhibitor in CPC ............ C07D 331102 (2013.01); C07D 409112 vivo. The MMP inhibition can be selective inhibition, for (2013.01) example, selective inhibition of MMP-2, MMP-9, and/or USPC .......................................................... 530/300 MMP-14. Thus, the invention provides non-mutagenic pro­ (58) Field of Classification Search drug compounds ofthe formulas described herein that result CPC ..... A61K 38/00; A61K 31/38; A61K 38/005; in the inhibition of MMPs upon in vivo administration. A61K 31/195; A61K 31/336 See application file for complete search history. 16 Claims, No Drawings US 8,937,151 B2 1 2 GELATINASE INHIBITORS AND PRO DRUGS sulfur, and phosphorus, wherein the solubilizing group optionally includes one or more ester, amide, carboxylic acid, RELATED APPLICATIONS phosphate, carbonate, oxime, imine, carbamate, Mannich base (beta-amino ketone), or ether groups; This application is a National Stage Application of PCT/ 5 2 each R is independently H, hydroxy, (C 1 -C6)alkyl, (C 1 ­ US2011/027282, filed Mar. 4, 2011, which claims priority C6)alkoxy, (C 1 -C6)alkanoyl, (C 1-C6)alkanoyloxy, aryl, het­ under 35 U.S.C. §119(e) to U.S. Provisional Patent Applica­ eroaryl, carboxy, cyano, nitro, halo, trifluoromethyl, trifluo­ tion No. 61/310,607, filed Mar. 4, 2010, and which applica­ 2 2 2 2 2 romethoxy, SR , SO2 N(R ) 2 , NR R , or COOR ; wherein tions are incorporated herein by reference. A claim ofpriority 2 each R is independently H, (C 1 -C6)alkyl, (C 1 -C6)alkanoyl, to all, to the extent appropriate is made. 10 (CcC10)aroyl, aryl, aryl(C1 -C6)alkyl, heteroaryl, heteroaryl BACKGROUND OF THE INVENTION (C 1 -C6)alkyl, or optionally a nitrogen protecting group when R2 is covalently bonded to a nitrogen atom; and Evidence is accumulating that damage to neurons and apo­ each n is independently 0, 1, 2, 3, or 4; ptotic death of neurons play a role in the pathogenesis of 15 or a salt thereof; many conditions and disorders, including acute and chronic wherein the compound has an aqueous solubility ofat least neurologic disorders. These disorders range from acute about 5 mg/mL. stroke, head trauma, and epilepsy to more chronic conditions In some embodiments, the compound can have an aqueous such as Huntington's disease, Alzheimer's disease, HIV-as­ solubility ofat least about 2.5, at least about 5, at least about sociated dementia, multiple sclerosis, and glaucoma. A con­ 20 7.5, at least about 10, at least about 12.5, at least about 15, at tributing factor to several ofthese diseases is the activation of least about 20, at least about 25, at least about 30, or at least matrix metalloproteinases (MMPs) in the extracellular matrix. about 40 mg/mL. In some embodiments, the compound can MMPs constitute a family ofextracellular soluble or mem­ have an aqueous solubility ofat least 2, 4, 5, 10, 20, 25, or 30 brane-bound proteases that are prominently involved in mM. In yet other embodiments, the compound has an aque­ remodeling the extracellular matrix. MMP-9 in particular is 25 ous solubility of at least about 4000 times, or at least about significantly elevated in humans after stroke, which is the 5000 times that of SB-3CT, which has an aqueous solubility third leading cause ofdeath in the United States. It is also the ofabout 2.45 µg/mL. primary cause oflong-term disability. Acute ischemic stroke, The compounds ofthe invention can inhibit matrix metal­ the most common form of stroke, is caused by clotting in the loproteinases. For example, the compounds can inhibit cerebral arteries leading to brain oxygen deprivation and 30 cerebral infarction. Gelatinases (e.g., MMP-2 and MMP-9) MMP-2 and have a K, of less than about 3 µM. In some are known to be involved in neuronal cell death, blood-brain embodiments, the compound inhibits MMP-9 and has a K, of barrier breakdown and hemorrhage. The only FDA-approved less than 20 µM. 1 drug for the treatment of ischemic stroke is tissue plasmino­ The variable group R -X- can be ortho, meta or para gen activator (tPA), a thrombolytic agent. The administration with respect to the phenoxy moiety ofFormulaA, however, in of tPA has to be within three hours of the onset of stroke, 35 many embodiments, R 1-X-is meta or para with respect to resulting in its applicability to less than 5% ofstroke patients the phenoxy moiety of Formula A. (CNS Neural Disord Drug Targets 2008, 7, 243-53). The use In some embodiments, X can be 0, NH or -S-NH-, n oftPA is also limited by serious side effects, which include can be 0, and R 1 can be: neurotoxicity and thrombolysis-associated hemorrhagic transformation, and the use of tPA is contraindicated for 40 patients with evidence ofhemorrhage or those who are taking 0 0 anti-coagulant medication. Blood from stroke patients receiv­ ing tPA treatment shows elevated levels ofMMP-9, and tPA (C1-C6)alkyl-....._,.~~; ~~ was shown to activate MMP-9. Additionally, recent reports L' l Y-(C1-C6)alkyl' l; indicate that tPA upregulates MMP-9 in the brain and con­ 45 tributes to matrix degradation and brain damage. 0 0 Accordingly, there is a need for new therapies for the treatment of stroke, and for treatments of stroke that have Y-(C,-Co)•">''- H,N~ fewer and/or less severe side effects than currently used thera­ J,J pies. There is also a need for new gelatinase inhibitors, such r;- Y-(C1-C6)alkyl ; as selective geleatinase inhibitors, that do not have the side 50 l; effects of known therapies such as tPa. NH2 0 SUMMARY Y-(C,-Co)•">'~~~ The invention provides a compound of Formula A: 55 (C1-C6)alkyl-Y; (A) 60 3 orR ; wherein wherein Xis O,-S-NH-, NRawhereinRa is Hor(C1-C4 )alkyl; 65 Lis 0, NH, -OCH2O-, or ----C(=O)O----CH2 O-; 1 R is a solubilizing group comprising 5-30 atoms, in addi­ each Y is independently -NH2 , ----CO2 H, -P(=O) tion to hydrogen, selected from carbon, oxygen, nitrogen, (OH)2 , -PO(=O)(OH)2 , Het, or a guanidine moiety; US 8,937,151 B2 3 4 Het is a 5 or 6 membered heterocyclic ring comprising 1, 2, (CcC10)aroyl, aryl, aryl(C1 -C6 )alkyl, heteroaryl, heteroaryl or 3 heteroatoms selected from 0, N, S, or P, wherein the ring (C 1 -C6 )alkyl, or optionally a nitrogen protecting group when optionally includes one or two sites of unsaturation and the covalently bonded to a nitrogen atom; and ring is optionally substituted with 1, 2, or 3 oxo, halo, nitro, or each n is independently 0, 1, 2, 3, or 4; methyl groups; and 5 or a salt thereof; and R3 is an amino acid or a linear or branched chain oftwo to 1 wherein the compound has an aqueous solubility ofat least five amino acids, linked to X or the carbonyl of R by a 5mM.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox Et Al
    US 20070254315A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox et al. (43) Pub. Date: Nov. 1, 2007 (54) SCREENING FOR NEUROTOXIC AMINO (60) Provisional application No. 60/494.686, filed on Aug. ACID ASSOCATED WITH NEUROLOGICAL 12, 2003. DSORDERS Publication Classification (75) Inventors: Paul A. Cox, Provo, UT (US); Sandra A. Banack, Fullerton, CA (US); Susan (51) Int. Cl. J. Murch, Cambridge (CA) GOIN 33/566 (2006.01) GOIN 33/567 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 435/721 PILLSBURY WINTHROP SHAW PITTMAN LLP (57) ABSTRACT ATTENTION: DOCKETING DEPARTMENT Methods for screening for neurological disorders are dis P.O BOX 105OO closed. Specifically, methods are disclosed for screening for McLean, VA 22102 (US) neurological disorders in a Subject by analyzing a tissue sample obtained from the subject for the presence of (73) Assignee: THE INSTITUTE FOR ETHNO elevated levels of neurotoxic amino acids or neurotoxic MEDICINE, Provo, UT derivatives thereof associated with neurological disorders. In particular, methods are disclosed for diagnosing a neu (21) Appl. No.: 11/760,668 rological disorder in a subject, or predicting the likelihood of developing a neurological disorder in a Subject, by deter (22) Filed: Jun. 8, 2007 mining the levels of B-N-methylamino-L-alanine (BMAA) Related U.S. Application Data in a tissue sample obtained from the subject. Methods for screening for environmental factors associated with neuro (63) Continuation of application No. 10/731,411, filed on logical disorders are disclosed. Methods for inhibiting, treat Dec. 8, 2003, now Pat. No. 7,256,002.
    [Show full text]
  • Holoprosencephaly and Strabismus
    Holoprosencephaly and Strabismus Pavlina Kemp, MD, Grant Casey, Susannah Longmuir, MD June 11, 2012 Chief complaint Eye crossing History of Present Illness The patient is a 15 month-old female at presentation to the eye clinic, with history of severe hydrocephalus at birth. She was also diagnosed with alobar holoprosencephaly at birth with seizures. She was originally referred for eye crossing. We present her remarkable clinical course. Past Medical History: • Hydrocephalus s/p ventriculoperitoneal shunting • Holoprosencephaly (alobar type) • Seizure disorder Past Surgical History: • Ventriculoperitoneal shunt placement, 2004 • Ventriculoperitoneal shunt revision, 1/2005 • Ventriculoperitoneal shunt revision, 6/2005 Family History: No known family history of holoprosencephaly, amblyopia or strabismus. Social History: Patient lives at home with parents and two sisters. Medications: None Exam and Clinical Course: Age: 15 months Visual Acuity: Central, unsteady and maintained OD and central, unsteady and maintained OS Teller acuity testing: • Without correction OU: 20/800 Pupils: Equally round and briskly reactive, no relative afferent pupillary defect. Stereo Vision: Unable to test Motility and Strabismus: • Large variable esotropia • Bilateral elevation and abduction deficits • Intermittent horizontal nystagmus Cycloplegic Refraction: • OD: +4.00 • OS: +6.00 External Exam: Notable for large head circumference Slit Lamp Exam: Normal anterior segment exam OU without evidence of cataracts or other media opacities. Normal appearing optic nerves and normal dilated fundus examination. No sign of optic nerve hypoplasia in either eye. Figure 1: Axial and saggital MRI illustrating the enlargement of ventricles secondary to hydrocephalus. At this point, after discussion with her family, surgery for strabismus was deferred and correction of her hyperopia was attempted.
    [Show full text]
  • PDF Download
    Review Xatzipsalti Maria et al. Congenital Hypopituitarism: Various Genes, … Horm Metab Res 2018; 00: 00–00 Congenital Hypopituitarism: Various Genes, Various Phenotypes Authors Maria Xatzipsalti1, 2, Antonis Voutetakis1, Lela Stamoyannou2, George P. Chrousos1, Christina Kanaka-Gantenbein1 Affiliations ABSTRacT 1 Division of Endocrinology, Diabetes and Metabolism, The ontogenesis and development of the pituitary gland is a First Department of Pediatrics, Medical School, National highly complex process that depends on a cascade of transcrip- and Kapodistrian University of Athens, “Aghia Sofia” tion factors and signaling molecules. Spontaneous mutations Children's Hospital, Athens, Greece and transgenic murine models have demonstrated a role for 2 First Department of Pediatrics, “Aglaia Kyriakou” many of these factors, including HESX1, PROP1, PIT1, LHX3, Children's Hospital, Athens, Greece LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, SHH, GLI2, and FGF8 in the etiology of congenital hypopituitarism. Genetic muta- Key words tions in any of these factors can lead to congenital hypopitui- pituitary, combined pituitary hormone deficiency, congenital tarism, which is characterized by the deficiency in one or more hypopituitarism, transcription factors, syndromic hypopitui- pituitary hormones. The phenotype can be highly variable, tarism, non-syndromic hypopituitarism consisting of isolated hypopituitarism or more complex disor- ders. The same phenotype can be attributed to different gene received 27.03.2018 mutations; while a given gene mutation can
    [Show full text]
  • Engineering Region-Specific Brain Organoids from Human Stem Cells to Study Neural Development and Disease
    CHAPTER TWELVE Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease Fadi Jacoba,b,c, Jordan G. Schnolla, Hongjun Songa,d,e,f, and Guo-li Minga,d,e,g,* aDepartment of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States bThe Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States cMedical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States dDepartment of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States eInstitute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States fThe Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States gDepartment of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States *Corresponding author: e-mail address: [email protected] Contents 1. Introduction 478 1.1 Fundamentals of mammalian brain development 479 1.2 Human-specific features 482 1.3 Comparison of in vitro human cell models 482 2. Generation of region-specific brain organoids from human stem cells 484 2.1 Unguided differentiation: Cerebral organoids 484 2.2 Guided differentiation: Region-specific brain organoids 489 3. Advancements in cellular complexity of brain organoids 496 3.1 Fusion of region-specific brain organoids 497 3.2 Enhancing glial cell production and maturation 499 3.3 Reconstitution of resident immune cells and vasculature 500 3.4 Technical modifications for long-term culture 501 3.5 In vivo orthotopic xenotransplantation 503 4.
    [Show full text]
  • Prenatal Diagnosis of Congenital Fetal Malformations Medically Terminated: a Retrospective Analysis
    DOI - 10.21276/obgyn.2021.8.1.13 ISSN Print – 2454-2334; ISSN Online – 2454-2342 RESEARCH ARTICLE Prenatal diagnosis of congenital fetal malformations medically terminated: a retrospective analysis Papa Dasari, Pratima Aggrawal Corresponding author: Dr. Papa Dasari, Professor, Department of Obstetrics and Gynaecology, JIPMER, Puducherry, India; Email: [email protected] Distributed under Attribution-Non Commercial – Share Alike 4.0 International (CC BY-NC-SA 4.0) ABSTRACT Objectives: The primary objective of this study is to find out demographic and clinical profile of women with congenital malformation who underwent MTP and secondary objective is to find out types of congenital malformations, risk factors and method of termination of pregnancy. Methods: This retrospective cohort involved women with congenital malformations who underwent medical termination (MTP) over a 3 year period (July 2016 to June 2019) in a tertiary care facility. Data was analysed with respect to gestational age and spectrum of malformations and results were expressed as frequencies and proportions. Results: Of the 640 women underwent MTP, 245 were for congenital fetal malformations (38.2%). The mean age was 25 years, 95% belonged to low socioeconomic status and from rural background and were Hindus. The most common system affected was CNS (55.5%) followed by renal. The most common lethal anomalies were anencepahaly and hydrocephalous. Majority were diagnosed between 16 to 20 weeks and only 3 % were diagnosed in first trimester. Risk factors were third and second degree consanguinity (27%), diabetes in pregnancy (28%) and non consumption of folic acid preconceptionally (92%). Conclusion: The most common anomalies are largely preventable as they involved CNS and 40% were anencephaly.
    [Show full text]
  • Colpocephaly in Newborn: Case Report and Literature Review
    Submitted on: 05/14/2017 Approved on: 09/05/2017 CASE REPORT Colpocephaly in newborn: case report and literature review Rafael Pimentel Saldanha1, José Alfredo Lacerda de Jesus2, Bruna Mathias Silva1, Wesley Flávio de Lima Junior3 Keywords: Abstract infant, newborn, Colpocephaly is a rare cephalic disorder caused by an abnormal development of the central nervous system. It is neonatology, characterized by a disproportionate enlargement of the occipital horns of the lateral ventricles and other potential brain lateral ventricles, malformations. Here we report the case of a preterm neonate who underwent cranial ultrasonography examinations brain, that showed bilateral periventricular hyperechogenicity and colpocephaly. The information about the described case was agenesis of corpus obtained through medical record review, photographic documentation of the tests performed on the newborn, and a callosum. review of the current literature. This case report and the collected references seek to clarify the features of colpocephaly and provide an adequate understanding of its diagnostic, therapeutic, and prognostic aspects. 1 MD Pediatric resident. Hospital Universitario de Brasilia. Universidade de Brasilia. Brasilia, DF. Brazil. 2 MD, PhD. Adjunct Professor on Childhood and Adolescent Medicine. Universidade de Brasilia. Brasilia, DF. Brazil. 3 Medical student. Universidade de Brasilia. Brasilia, DF. Brazil. Correspondence to: Rafael Pimentel Saldanha. Universidade de Brasília (UnB). SQN 211, Bloco H, Apto 211. Asa Norte. Brasília - DF. Brazil. Zip Code: 70863-080. E-mail: [email protected] Residência Pediátrica 2017;7(3):110-113. DOI: 10.25060/residpediatr-2017.v7n3-06 110 INTRODUCTION showed bilateral periventricular hyperechogenicity and left- side colpocephaly. Later, on the 43rd postnatal day (or the Colpocephaly is a rare anatomic finding of the brain.
    [Show full text]
  • A Case of Iniencephaly in a 36 Week-Old Human Female Fetus
    ORIGINAL ARTICLE Eur. J. Anat. 17 (4): 209-219 (2013) A case of iniencephaly in a 36 week-old human female fetus Ernest F. Talarico, Jr.,1 and Theodore M. Hiemstra2 1Anatomy & Cell Biology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA 2Department of Biological Sciences, Purdue University Calumet, Hammond, Indiana, USA SUMMARY ment of a NTD and useful information for clini- The purpose of this investigation was to charac- cians to distinguish iniencephaly from similar de- terize iniencephaly, a neural tube defect (NTD), fects. in a 36-38 week-old human female fetus. Inien- cephaly is a fatal, anatomic anomaly that lacks Key words: Human fetus – Iniencephaly – a direct etiology. However, multiple factors (i.e., Esophageal atresia – Renal atresia – Spina bifida medications, teratogens, nutrient deficiency, etc.) suggest a shared causation. Clinically, it is im- portant to differentiate iniencephaly from other NTDs and conditions that can be treated such Abbreviations: anterior (A); bronchi (B); carina as nuchal tumor, Klippel-Feil syndrome (KFS) (C); computed tomography (CT); esophagus (E); and Sprengel’s deformity, etc. The fetus was foot or inferior (F); left (L); magnetic resonance evaluated by physical examination, gross meas- imaging (MRI); methylenetetrahydrofolate re- urement, observation and dissection. To examine ductase (MTHFR); coronal (COR); axial (AX); the defects associated with iniencephaly, digital sagittal (SAG); multi-planar reformatting (MPR); radiologic image acquisition was done using full neural tube defect (NTD); posterior (P); right (R); -body x-ray films, and high-resolution CT Scans three-dimensional (3D); trachea (T); weighted and MRI Scans. Image analysis, multi-planar (Wtd); Klippel-Feil Syndrome (KFS); intrauterine reformatting, and 3D-reconstruction were done growth retardation (IUGR) on radiographic series.
    [Show full text]
  • December Issue 4, P
    VOLUME 45 NUMBER 4 DECEMBER 2013 KMJ KUWAIT MEDICAL JOURNAL The Official Journal of The Kuwait Medical Association EDITORIAL Diabetes, Antidiabetic Drugs, and Cancer: Separating Background Risk from Iatrogenesis 283 Intekhab Ahmed, Samuel Dagogo-Jack REVIEW ARTICLE Metabolic Acidosis in the Critically Ill and Continuous Renal Replacement Therapy – A Review 286 Prashant G Kedlaya ORIGINAL ARTICLES Association between Patients’ Sociodemographic Characteristics and Their Satisfaction with Primary Health Care Services in Turkey 291 Davut Baltaci, Recep Eroz, Handan Ankarali, Ozgur Erdem, Ahmet Celer, Yasemin Korkut Antenatal Ultrasound Diagnosis of Fetal Anomalies at a University Hospital 300 Naglaa Mostafa Elsayed, Sondos Abuzenadah Electrophysiologic Effects of Statins in Patients with Ischemic Cardiomyopathy and Ventricular Tachyarrhythmia 307 Aleks Degirmencioglu, Gultekin Karakus, Ali Buturak, Nazmiye Cakmak, Ilke Sipahi, Ahmet Akyol Variant Analysis of the Sirtuin (SIRT1) Gene in Multiple Sclerosis 313 Tuba Gokdogan Edgunlu, Sevim Karakas Celik, Ufuk Emre, Aysun Eroglu Unal, Ahmet Dursun Acquired Multiple Clotting Factor Inhibitors in Children 319 Adekunle Adekile, Asmaa Farag Azab, Rajaa Marouf, Sundus Al-Sharida, Hanan Al-Abboh Predictors of Quality of Life in Renal Transplant Recipients 324 Rizna Abdul Cader, Rozita Mohd, Halim Abdul Gafor, Rafidah Mamat, Norhayati Arrifin CASE REPORTS Extraperitoneal Presentation of Pseudomyxoma Peritonei as a Pleural Effusion: A Case Report 329 Mohamad Abdulrahman Tayeb, Ersan Al-Zamel Colobronchial
    [Show full text]
  • Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions
    molecules Review Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions April L. Darling 1,2,* ID and Vladimir N. Uversky 1,3,* ID 1 Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA 2 James A. Haley Veteran’s Hospital, Tampa, FL 33612, USA 3 Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia * Correspondence: [email protected] (A.L.D.); [email protected] (V.N.U.); Tel.: +1-813-396-9249 (A.L.D.); +1-813-974-5816 (V.N.U.) Received: 8 November 2017; Accepted: 21 November 2017; Published: 24 November 2017 Abstract: Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure.
    [Show full text]
  • A Review on Craniofacial Anomalies Bhaskaran Sathyapriya1, Chandrakala B 2, Misbahsubhani G3, Angel V.C3govindarajan Sumathy*
    European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 10, 2020 A Review on Craniofacial Anomalies Bhaskaran Sathyapriya1, Chandrakala B 2, MisbahSubhani G3, Angel V.C3Govindarajan Sumathy* 1. Professor, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. 2. Senior Lecturer, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. 3. Graduate student, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research * Professor and Head, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. Abstract: Craniofacial anomalies (CFA) are a diverse group of deformities in the growth of the head and facial bones. Anomaly is a medical term meaning "irregularity" or "different from normal." These abnormalities are present at birth (congenital) and there are numerous variations. Some craniofacial anomalies are associated with anomalies elsewhere in the body, which can be serious. Cranio facial malformations include a variety of anomalies, including cleft lip with or without cleft palate, craniosynostosis, hemangioma, vascular malformation, and hemifacialmicrosomia. Congenital craniofacial abnormalities frequently require ophthalmic evaluation and surgical management. The term craniofacial anomalies include all congenital deformities of cranium and face. More specifically it refers to the deformities of the head that interfere with physical and mental well-being of an individual. It mainly deals with the understanding when, where and how the genes are expressed with specific pattern of morphogenesis. Keywords: Craniofacial anomalies, Cleft lip, Cleft palate, Craniosynostosis, Hemangioma, Vascular malformation. Introduction: A craniofacial malformation is an anomaly of embryonic development that results in a serious impairment of the normal anatomy of skull, jaws and adjacent soft tissues.
    [Show full text]
  • Neonatal Agenesis of Corpus Callosum in a Pregnant Lady with Multiple Endocrine Neoplasia Type I
    Journal of Gynecology and Women’s Health ISSN 2474-7602 Case Report J Gynecol Women’s Health Volume 12 Issue 1 - September 2018 Copyright © All rights are reserved by Dabbour S DOI: 10.19080/JGWH.2018.12.555827 Neonatal Agenesis of Corpus Callosum in a Pregnant Lady with Multiple Endocrine Neoplasia Type I Dabbour S1*, Aref A2 and Rengert E1 1Princess Alexandra Hospital, United Kingdom 2The Fetal Medicine Unit, University College Hospital London, UK Submission: August 27, 2018; Published: September 19, 2018 *Corresponding author: Sheriff Dabbour, Princess Alexandra Hospital, Hamstel Rd, Harlow CM20 1QX; UK, Email: Abstract baby with agenesis of the corpus callosum (ACC), colpocephaly and some dysmorphic facial features. (MEN Type I) is a rare inherited disorder causedThis by is tumor the first of the reported neuroendocrinal case of a pregnant tissue and woman may be diagnosed associated with with Multiple some clinical Endocrine symptoms. Neoplasia The type main 1 aim (MEN of managementType I) who deliveredis to assess a hemispheres.and manage potential Agenesis complications of corpus callosum that might (ACC) happen may beto theassociated mother withand her early baby seizures, [1,2]. The eye corpus abnormalities, callosum hydrocephalus, (CC) is the flat bundle developmental of white delaymatter and commissural other abnormalities. fibers beneath Colpocephaly the cerebral is a cortexcephalic spanning disorder part involving of the thelongitudinal disproportionate fissure and enlargement connecting of the the left occipital and right horns cerebral of the lateral ventricles and is usually diagnosed by cranial ultrasonography early after birth. We report a case of a 35-year-old multigravida with fetala confirmed growth restriction.diagnosis of The MEN neonate Type wasI prior born to inconception.
    [Show full text]
  • Vol4 No.2.Pdf
    CASE REPORT Iniencephaly Apertus - A Rare Neural Tube Defect Abstract Iniencephaly is a rare congenital malformation of the CNS, affecting the nape of the neck, occipital bone and cervical vertebrae. Sometimes it is associated with encephalocoele and in such cases it is called as iniencephaly apertus. Gaddam Vijaya We are reporting a case of iniencephaly apertus seen in our institution. It is caused by Lakshmi defective closure of the neural tube at multiple sites. Closure of neural tube requires adequate formation of paraxial mesoderm in the early Anju George embryonic stage. Primary paraxial mesodermal insufficiency results in different types of neural tube defects. Rincy Thomas Key words: Iniencephaly apertus, Neural tube defect, Multisite closure of neural tube, Paraxial mesodermal insufficiency. Introduction one, and then referred to our hospital. On Iniencephaly is a rare congenital admission, she was in labour and underwent malformation of the CNS, occurring prior to abortion. The expelled products of conception closure of cephalic neural fold. The defect were studied in detail. lies in the mid-cervical and occipital regions1. On examination, the conceptus was of male It was first described by Saint Hilare in 1836. sex and was small for age. It presented gross Lewis, in 1897 classified it into iniencephaly dysmorphic features with a disproportionately clausus (no encephalocoele) and large head, which was retroflexed on the iniencephaly apertus (encephalocoele is cervical spine (Fig. 1). Neck was absent. The present)2. skin of the face was connected directly to The malformation affects three regions, anterior chest wall. Similarly, the posterior namely, the nape of the neck (inion means scalp was directly connected to skin of the nape of the neck), the occipital bone and the back of the thoracic region.
    [Show full text]