Locomotor Biomechanics and Behaviour in the Ocellate River Stingray

Total Page:16

File Type:pdf, Size:1020Kb

Locomotor Biomechanics and Behaviour in the Ocellate River Stingray University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2020-04-22 Locomotor biomechanics and behaviour in the ocellate river stingray Seamone, Scott G. Seamone, S. G. (2020). Locomotor biomechanics and behaviour in the ocellate river stingray (Unpublished doctoral thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/111920 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Locomotor biomechanics and behaviour in the ocellate river stingray by Scott G. Seamone A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA APRIL, 2020 © Scott G. Seamone 2020 Abstract Stingrays are fishes that are dorsoventrally flattened in the same plane as the substrate, similar to a hydrofoil, with long thin tails that have an absent or reduced caudal fin, and anterior to the pelvic girdle the longitudinal body axis is relatively rigid. These characteristics would appear to constrain or preclude many of the locomotor behaviours that are employed by fishes that typically swim via undulations of the longitudinal body axis and caudal fin, and which tend to dominate descriptions of fish swimming in the literature. In contrast, stingrays exhibit a variety of locomotor behaviours powered via enlarged and flexible pectoral fins that wrap around the body and head (i.e. the pectoral disc), yet an in depth understanding of the biomechanical mechanisms that permit these behaviours has not been formed. Potamotrygon motoro, the ocellate river stingray, lives along the substrate in a benthic environment, and possesses an extremely rounded pectoral disc, from the dorsal view. It is used in these studies to represent the flattened shaped, low profile, and relatively rounded disc common to benthic stingrays, to better understand how these animals achieve different locomotor behaviours. The studies described in this thesis offer insight into how the shape of P. motoro is employed to accomplish behaviours exhibited by many benthic stingrays such as fast- start maneuverability, station holding and burying. Chapter 1 reviews our current and somewhat limited understanding of how shape impacts swimming behaviour in fishes that are flattened in the same plane as the substrate, described here as foil fishes, and explores relationships of shape and ecology observed in stingrays. Chapter 2 describes studies where video analysis was used to reveal that flexibility in the movements of the pectoral fins around the flattened and nearly symmetrical disc shape permits fast-start escape in all directions across the benthic plane with similar performance, regardless of initial orientation of the fish, which appears to challenge the conventional description of maneuverability typically used to evaluate fishes. Chapter 3 describes studies where recordings of changes of pressure beneath the pectoral disc, and video observations of movements of dye, are used to argue that stingrays can exercise movements of the body and fins to flush water from beneath the ventral surface to create and maintain a seal between the pectoral disc and benthos, to achieve suction pressures via a vacuum ii and possibly Stefan adhesion, that can resist an upwards displacing force to hold station along the benthos. Chapter 4 describes studies that used video analysis and particle image velocimetry to explain how rapid and vigorous movements of the body and fins in stingrays fluidize and suspend vortices of sediment below the ventral surface of the fins, which are then directed up and over onto the dorsal surface to cover the fish with sediment and effect burying, and that the fish appear to direct and control these vortices to modulate the extent and pattern of burying. Chapter 5 describes studies that used time-lapse photography and video analysis to reveal that in the presence of sediments that differ in grain size, stingrays mostly choose to inhabit and bury in finer grained sediments when threatened, and this appears to reflect these fishes being more effective at burying in finer sediments, such that the rate of coverage of the dorsal surface is faster for a given finbeat speed. Chapter 6 provides a summary of what has been revealed by these studies, conclusions and future directions. These studies advance our understanding of how a flattened and rounded disc shape in P. motoro might find success in a benthic environment, and might inspire engineers interested in fish for the design of underwater robotics. Keywords: biomechanics, video, locomotion, behaviour, stingray, particle image velocimetry iii Acknowledgements This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to DAS, and an NSERC Alexander Graham Bell and University of Calgary Killam Scholarship to SGS. Thank you to the support of my supervisor DAS, my committee members JEAB and JRP, the staff at UofC, my lab mates JR, TM and NT, and my family and friends APR, BJS, CAS, CBS, CDS, CKM, CMLU(TB), JDW, JNH, MSDS, MTA, MES, MS, NPFD, RWH, SAS and WRN. iv Table of contents Title page…………………………………………………………………………………………i Abstract……….…………………………….…………………………….……………………...ii Acknowledgements…………………………….………………………….…………………...iv List of figures and tables…….....……………….…………………………………………….vii Chapter 1: Swimming behaviours in stingrays and other foil-shaped fishes……………..1 - Abstract…………………………………………………………………………..1 - Introduction………………………………………………………………………2 - Shape and swimming in fish………………..………………………………….3 - Foil-shaped fishes ..…….……………………………………..………………..6 - The pectoral disc of stingrays ………………………………..………………17 - Thesis chapters………………………………...……….……..………………22 Chapter 2: Disc starts: the pectoral disc of the ocellate river stingray (Potamotrygon motoro) promotes omnidirectional fast starts across the substrate..…..……...…………25 - Abstract…………………………………………………………………………25 - Introduction …………………………………………………………………… 26 - Materials and methods…….………………………………………………….29 - Results………………………………………………………………………….36 - Discussion……………………………………………………………………...45 Chapter 3: The ocellate river stingray (Potamotrygon motoro) can generate suction to station hold along the substrate……………………………………………………………...56 - Abstract…………………………………………………………………………56 - Introduction……………………………………………………………………..57 - Materials and methods………………………………………………………..60 - Results………………………………………………………………………….64 - Discussion……………………………………………………………………...72 Chapter 4: The ocellate river stingray (Potamotrygon motoro) exploits vortices of sediment to bury into the substrate………………………………………………………….77 - Abstract…………………………………………………………………………77 v - Introduction……………………………………………………………………..78 - Materials and methods………………………………………………………..83 - Results………………………………………………………………………….89 - Discussion…………………………………………………………………….105 Chapter 5: Sediment selection by the ocellate river stingray (Potamotrygon motoro) is associated with constraints in burying……………………………………………………..114 - Abstract………………………………………………………………………..114 - Introduction……………………………………………………………………115 - Methods……………………………………………………………………….118 - Results………………………………………………………………………...124 - Discussion…………………………………………………………………….134 Chapter 6: A rounded disc-shaped foil can be an effective shape for a benthic environment…………………………………………………………………………………..139 - Summary……………….……………...…………………………..………….139 - Conclusions and future directions……………………………………..…...146 References……………………………………………………………………………………150 vi List of figures and tables Chapter 1: Swimming behaviours in stingrays and other foil-shaped fishes - Fig. 1. The ocellate river stingray (Potamotrygon motoro)………………..24 Chapter 2: Disc starts: the pectoral disc of the ocellate river stingray (Potamotrygon motoro) promotes omnidirectional fast starts across the substrate - Fig. 1. Disc starts: forwards, sideways and backwards escape…………..37 - Fig. 2. Body is not restricted to following the orientation of the head..…..39 - Fig. 3. Impacts of prod speed on translational performance…..……..…...42 - Fig. 4. Impacts of prod speed on yaw-rotational performance…………....46 Chapter 3: The ocellate river stingray (Potamotrygon motoro) can generate suction to station hold along the substrate - Fig. 1. Impacts of lifting force and duration of suction event on suction pressure……………..……………………………………..65 - Fig. 2. Relationships of body thrust and finbeat motions……………….....66 - Fig. 3. Impacts of finbeat and body thrust number and frequency on suction pressure………………………………….…………..…... 67 - Fig. 4. Impacts of body thrust velocity and acceleration on suction pressure…………………………………………………....68 - Fig. 5. Lateral view of fins flushing dye from beneath the pectoral disc....70 - Fig. 6. Dorsal view of fins and branchial jets flushing dye from beneath the pectoral disc…………….……………..…..………71 Chapter 4: The ocellate river stingray (Potamotrygon motoro) exploits vortices of sediment to bury into the substrate - Fig. 1. Particle image velocimetry and anterior view of a burying event…90 - Fig. 2. Particle image velocimetry and dorsal view of a burying event…. 92 - Fig. 3. Sediment coverage
Recommended publications
  • 13914444D46c0aa91d02e31218
    2 Breeding of wild and some domestic animals at regional zoological institutions in 2013 3 РЫБЫ P I S C E S ВОББЕЛОНГООБРАЗНЫЕ ORECTOLOBIFORMES Сем. Азиатские кошачьи акулы (Бамбуковые акулы) – Hemiscyllidae Коричневополосая бамбуковая акула – Chiloscyllium punctatum Brownbanded bambooshark IUCN (NT) Sevastopol 20 ХВОСТОКОЛООБРАЗНЫЕ DASYATIFORMES Сем. Речные хвостоколы – Potamotrygonidae Глазчатый хвостокол (Моторо) – Potamotrygon motoro IUCN (DD) Ocellate river stingray Sevastopol - ? КАРПООБРАЗНЫЕ CYPRINIFORMES Сем. Цитариновые – Citharinidae Серебристый дистиход – Distichodusaffinis (noboli) Silver distichodus Novosibirsk 40 Сем. Пираньевые – Serrasalmidae Серебристый метиннис – Metynnis argenteus Silver dollar Yaroslavl 10 Обыкновенный метиннис – Metynnis schreitmuelleri (hypsauchen) Plainsilver dollar Nikolaev 4; Novosibirsk 100; Kharkov 20 Пятнистый метиннис – Metynnis maculatus Spotted metynnis Novosibirsk 50 Пиранья Наттерера – Serrasalmus nattereri Red piranha Novosibirsk 80; Kharkov 30 4 Сем. Харацидовые – Characidae Красноплавничный афиохаракс – Aphyocharax anisitsi (rubripinnis) Bloodfin tetra Киев 5; Perm 10 Парагвайский афиохаракс – Aphyocharax paraquayensis Whitespot tetra Perm 11 Рубиновый афиохаракс Рэтбина – Aphyocharax rathbuni Redflank bloodfin Perm 10 Эквадорская тетра – Astyanax sp. Tetra Perm 17 Слепая рыбка – Astyanax fasciatus mexicanus (Anoptichthys jordani) Mexican tetra Kharkov 10 Рублик-монетка – Ctenobrycon spilurus (+ С. spilurusvar. albino) Silver tetra Kharkov 20 Тернеция (Траурная тетра) – Gymnocorymbus
    [Show full text]
  • Fish Species and for Eggs and Larvae of Larger Fish
    BATIQUITOS LAGOON FOUNDATION F I S H Fishes of the Lagoon There were only a few species of fish in Batiquitos Lagoon (just five!) BATIQUITOS LAGOON FOUNDATION before it was opened to the ocean and tides at the end of 1996. High temperatures in the summer, low oxygen levels, and wide ranges of ANCHOVY salinity did not allow the ecosystem to flourish. Since the restoration of tidal action to the lagoon, the fish populations have significantly increased in numbers and diversity and more than sixty-five species have been found. Lagoons serve as breeding and nursery areas for a wide array of coastal fish, provide habitat and food for resident species TOPSMELT and serve as feeding areas for seasonal species. Different areas of the lagoon environment provide specific habitat needs. These include tidal creeks, sandy bottoms, emergent vegetation, submergent vegetation, nearshore shallows, open water, saline pools and brackish/freshwater areas. These habitats are defined by water YELLOWFIN GOBY characteristics including salinity, water temperature, water velocity and water depth. The lagoon bottom varies with the type of substrate such as rock, cobble, gravel, sand, clay, mud and silt. Tidal creeks and channels provide refuges for small fish species and for eggs and larvae of larger fish. Species in tidal creeks include ROUND STINGRAY gobies and topsmelt. Sandy bottoms provide important habitat for bottom-dwelling fish species such as rays, sharks and flatfish. The sandy areas provide important refuges for crustaceans, which are prey to many fish species within the lagoon. The burrows of ghost shrimp are utilized by the arrow goby.
    [Show full text]
  • Third International Symposium on Mangroves As Fish Habitat Abstracts*
    Bull Mar Sci. 96(3):539–560. 2020 abstracts https://doi.org/10.5343/bms.2019.0047 Third International Symposium on Mangroves as Fish Habitat Abstracts* COMMUNITY COMPOSITION AND DIVERSITY OF PHYTOPLANKTON IN RELATION TO ENVIRONMENTAL VARIABLES AND SEASONALITY IN A TROPICAL MANGROVE ESTUARY, MALAYSIA by ABU HENA MK, Saifullah ASM, Idris MH, Rajaee AH, Rahman MM.—Phytoplankton are the base of the aquatic food chain from which energy is transferred to higher organisms. The community and abundance of phytoplankton in a tropical mangrove estuary were examined in Sarawak, Malaysia. Monthly-collected data from January 2013 to December 2013 was pooled into seasons to examine the influence of seasonality. The estuary was relatively species-rich and a total of 102 species under 43 genera were recorded, comprising 6 species of Cyanophyceae, 4 species of Chlorophyceae, 63 species of Bacillariophyceae, and 29 species of Dinophyceae. The mean abundance (cells L−1) of phytoplankton was found in the following order: Bacillariophyceae > Dinophyceae > Cyanophyceae > Chlorophyceae. Mean abundance of phytoplankton ranged from 5694 to 88,890 cells L−1 over the study period, with a higher value in the dry season. Species recorded from the estuary were dominated by Pleurosigma normanii, Coscinodiscus sp., Coscinodiscus centralis, Coscinodiscus granii, Dinophysis caudata, Ceratium carriense, Ceratium fusus, and Ceratium lineatum. Abundance of phytoplankton was positively influenced by chlorophyll a (R = 0.69), ammonium (R = 0.64), and silica (R = 0.64). Significant differences (ANOSIM and NMDS) were observed in the species community structure between the intermediate and wet season. The species assemblages were positively correlated with surface water temperature, salinity, pH, ammonium, and nitrate in the intermediate and dry season toward larger species composition in the respective seasons, whereas silica influenced species assemblage in the wet season.
    [Show full text]
  • Stingray Injuries
    Stingray Injuries FINDLAY E. RUSSELL, M.D. inflicted by stingrays are com¬ the integumentary sheath surrounding the INJURIESmon in several areas of the coastal waters spine is ruptured and the venom escapes into of North America (1-4). Approximately 750 the victim's tissues. In withdrawing the spine, people a year along our coasts are stung by the integumentary sheath may be torn free and these elasmobranchs. The largest number of remain in the wound. stings are reported from southern California, Unlike the injuries inflicted by many venom¬ the Gulf of California, the Gulf of Mexico, and ous animals, wounds produced by the stingray the south Atlantic coast (5). may be large and severely lacerated, requiring Of 1,097 stingray injuries reported over a 5- extensive debridement and surgical closure. A year period in the United States (5, tf), 232 sting no wider than 5 mm. may produce a were seen by a physician at some time during wound 3.5 cm. long (#), and larger stings may the course of the recovery of the victim. Sixty- produce wounds 7 inches long (7). Occasion¬ two patients were hospitalized; the majority of ally, the sting itself may be broken off in the these required surgical closure of their wounds wound. or treatment for secondary infection, or both. The sting, or caudal spine, is a bilaterally ser¬ At least 10 of the 62 victims were hospitalized rated dentinal structure located on the dorsal for treatment for overexuberant first aid care. surface of the animal's tail. The sharp serra¬ Only eight patients were hospitalized for the tions are curved cephalically and as such are treatment of the systemic effects produced by responsible for the lacerating effects as the sting the venom.
    [Show full text]
  • Checklist of Philippine Chondrichthyes
    CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 Checklist of Philippine chondrichthyes. Bibliography. ISBN 1 876996 95 1. 1. Chondrichthyes - Philippines. 2. Sharks - Philippines. 3. Stingrays - Philippines. I. Compagno, Leonard Joseph Victor. II. CSIRO. Marine Laboratories. (Series : Report (CSIRO. Marine Laboratories) ; 243). 597.309599 1 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V.1, Last, P.R.2, Stevens, J.D.2, and Alava, M.N.R.3 1 Shark Research Center, South African Museum, Iziko–Museums of Cape Town, PO Box 61, Cape Town, 8000, South Africa 2 CSIRO Marine Research, GPO Box 1538, Hobart, Tasmania, 7001, Australia 3 Species Conservation Program, WWF-Phils., Teachers Village, Central Diliman, Quezon City 1101, Philippines (former address) ABSTRACT Since the first publication on Philippines fishes in 1706, naturalists and ichthyologists have attempted to define and describe the diversity of this rich and biogeographically important fauna. The emphasis has been on fishes generally but these studies have also contributed greatly to our knowledge of chondrichthyans in the region, as well as across the broader Indo–West Pacific. An annotated checklist of cartilaginous fishes of the Philippines is compiled based on historical information and new data. A Taiwanese deepwater trawl survey off Luzon in 1995 produced specimens of 15 species including 12 new records for the Philippines and a few species new to science.
    [Show full text]
  • Malaysia National Plan of Action for the Conservation and Management of Shark (Plan2)
    MALAYSIA NATIONAL PLAN OF ACTION FOR THE CONSERVATION AND MANAGEMENT OF SHARK (PLAN2) DEPARTMENT OF FISHERIES MINISTRY OF AGRICULTURE AND AGRO-BASED INDUSTRY MALAYSIA 2014 First Printing, 2014 Copyright Department of Fisheries Malaysia, 2014 All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, including photocopy, recording, or any information storage and retrieval system, without prior permission in writing from the Department of Fisheries Malaysia. Published in Malaysia by Department of Fisheries Malaysia Ministry of Agriculture and Agro-based Industry Malaysia, Level 1-6, Wisma Tani Lot 4G2, Precinct 4, 62628 Putrajaya Malaysia Telephone No. : 603 88704000 Fax No. : 603 88891233 E-mail : [email protected] Website : http://dof.gov.my Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN 978-983-9819-99-1 This publication should be cited as follows: Department of Fisheries Malaysia, 2014. Malaysia National Plan of Action for the Conservation and Management of Shark (Plan 2), Ministry of Agriculture and Agro- based Industry Malaysia, Putrajaya, Malaysia. 50pp SUMMARY Malaysia has been very supportive of the International Plan of Action for Sharks (IPOA-SHARKS) developed by FAO that is to be implemented voluntarily by countries concerned. This led to the development of Malaysia’s own National Plan of Action for the Conservation and Management of Shark or NPOA-Shark (Plan 1) in 2006. The successful development of Malaysia’s second National Plan of Action for the Conservation and Management of Shark (Plan 2) is a manifestation of her renewed commitment to the continuous improvement of shark conservation and management measures in Malaysia.
    [Show full text]
  • A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations
    A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS June 30 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria. L.D. Palomares, Rainer Froese, Brittany Derrick, Simon-Luc Nöel, Gordon Tsui Jessika Woroniak Daniel Pauly A report prepared by the Sea Around Us for OCEANA June 30, 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria L.D. Palomares1, Rainer Froese2, Brittany Derrick1, Simon-Luc Nöel1, Gordon Tsui1, Jessika Woroniak1 and Daniel Pauly1 CITE AS: Palomares MLD, Froese R, Derrick B, Nöel S-L, Tsui G, Woroniak J, Pauly D (2018) A preliminary global assessment of the status of exploited marine fish and invertebrate populations. A report prepared by the Sea Around Us for OCEANA. The University of British Columbia, Vancouver, p. 64. 1 Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver BC V6T1Z4 Canada 2 Helmholtz Centre for Ocean Research GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany TABLE OF CONTENTS Executive Summary 1 Introduction 2 Material and Methods 3 − Reconstructed catches vs official catches 3 − Marine Ecoregions vs EEZs 3 − The CMSY method 5 Results and Discussion 7 − Stock summaries reports 9 − Problematic stocks and sources of bias 14 − Stocks in the countries where OCEANA operates 22 − Stock assessments on the Sea Around Us website 31 − The next steps 32 Acknowledgements 33 References 34 Appendices I. List of marine ecoregions by EEZ 37 II. Summaries of number of stock by region and 49 by continent III.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Report on the Status of Mediterranean Chondrichthyan Species
    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre For Specially Protected Areas REPORT ON THE STATUS OF MEDITERRANEAN CHONDRICHTHYAN SPECIES D. CEBRIAN © L. MASTRAGOSTINO © R. DUPUY DE LA GRANDRIVE © Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2007 United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 –1080 Tunis CEDEX E-mail : [email protected] Citation: UNEP-MAP RAC/SPA, 2007. Report on the status of Mediterranean chondrichthyan species. By Melendez, M.J. & D. Macias, IEO. Ed. RAC/SPA, Tunis. 241pp The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by : Mª José Melendez (Degree in Marine Sciences) & A. David Macías (PhD. in Biological Sciences). IEO. (Instituto Español de Oceanografía). Sede Central Spanish Ministry of Education and Science Avda. de Brasil, 31 Madrid Spain [email protected] 2 INDEX 1. INTRODUCTION 3 2. CONSERVATION AND PROTECTION 3 3. HUMAN IMPACTS ON SHARKS 8 3.1 Over-fishing 8 3.2 Shark Finning 8 3.3 By-catch 8 3.4 Pollution 8 3.5 Habitat Loss and Degradation 9 4. CONSERVATION PRIORITIES FOR MEDITERRANEAN SHARKS 9 REFERENCES 10 ANNEX I. LIST OF CHONDRICHTHYAN OF THE MEDITERRANEAN SEA 11 1 1.
    [Show full text]
  • Diversity and Risk Patterns of Freshwater Megafauna: a Global Perspective
    Diversity and risk patterns of freshwater megafauna: A global perspective Inaugural-Dissertation to obtain the academic degree Doctor of Philosophy (Ph.D.) in River Science Submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin By FENGZHI HE 2019 This thesis work was conducted between October 2015 and April 2019, under the supervision of Dr. Sonja C. Jähnig (Leibniz-Institute of Freshwater Ecology and Inland Fisheries), Jun.-Prof. Dr. Christiane Zarfl (Eberhard Karls Universität Tübingen), Dr. Alex Henshaw (Queen Mary University of London) and Prof. Dr. Klement Tockner (Freie Universität Berlin and Leibniz-Institute of Freshwater Ecology and Inland Fisheries). The work was carried out at Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Germany, Freie Universität Berlin, Germany and Queen Mary University of London, UK. 1st Reviewer: Dr. Sonja C. Jähnig 2nd Reviewer: Prof. Dr. Klement Tockner Date of defense: 27.06. 2019 The SMART Joint Doctorate Programme Research for this thesis was conducted with the support of the Erasmus Mundus Programme, within the framework of the Erasmus Mundus Joint Doctorate (EMJD) SMART (Science for MAnagement of Rivers and their Tidal systems). EMJDs aim to foster cooperation between higher education institutions and academic staff in Europe and third countries with a view to creating centres of excellence and providing a highly skilled 21st century workforce enabled to lead social, cultural and economic developments. All EMJDs involve mandatory mobility between the universities in the consortia and lead to the award of recognised joint, double or multiple degrees. The SMART programme represents a collaboration among the University of Trento, Queen Mary University of London and Freie Universität Berlin.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]