Lasiopodomys Fuscus As an Important Intermediate Host for Echinococcus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arvicolinae and Outgroup Mitochondrial Genome Accession Numbers
Supplementary Materials: Table S1: Arvicolinae and outgroup mitochondrial genome accession numbers. Species Name Accession Number Lasiopodomys brandtii MN614478.1 Lasiopodomys mandarinus JX014233.1 Lasiopodomys gregalis MN199169.1 Microtus fortis fortis JF261174.1 Microtus fortis calamorum JF261175.1 Microtus kikuchii AF348082.1 Neodon irene NC016055.1 Neodon fuscus MG833880.1 Neodon sikimensis KU891252.1 Microtus rossiaemeridionalis DQ015676.1 Microtus levis NC008064.1 Microtus arvalis MG948434.1 Terricola subterraneus MN326850.1 Microtus agrestis MH152570.1 Microtus richardsoni MT225016.1 Microtus ochrogaster KT166982.1 Proedromys liangshanensis FJ463038.1 Arvicola amphibius MN122828.1 Myodes regulus NC016427.1 Myodes rufocanus KT725595.1 Myodes rutilus MK482363.1 Myodes glareolus KF918859.1 Eothenomys melanogaster KP997311.1 Eothenomys miletus KX014874.1 Eothenomys chinensis FJ483847.1 Eothenomys Inez KU200225.1 Ondatra zibethicus KU177045.1 Dicrostonyx hudsonius KX683880.1 Dicrostonyx groenlandicus KX712239.1 Dicrostonyx torquatus MN792940.1 Prometheomys schaposchnikowi NC049036.1 Cricetulus griseus DQ390542.2 Peromyscus polionotus KY707301.1 Sigmodon hispidus KY707311.1 Mus musculus V00711.1 Table S2: Sequenced Wildwood Trust water vole samples. Sample Sample Enclosure Local ID Sex No. Type No. 1 Tissue TB31 - - 2 Tissue WW46 - - 3 Tissue WW0304/34 - Male 4 Tissue WW34/39 - - 5 Hair Q88 - Male 6 Hair Q100 - Male 7 Hair R95 - Male 8 Hair R12 - Male 9 Hair R28 - Male 10 Hair Q100 - Male 11 Faecal R2 2228 Male 12 Faecal Q52 2245 Female 13 Faecal Q42 2218 Female 14 Faecal Q7 2264 Female 15 Faecal Q75a 2326 Female 16 Faecal R50 2232 Male 17 Faecal R51 2225 Male 18 Faecal Q58 2314 Male 19 Faecal Q100 2185 Female 20 Faecal R27 2445 Female Table S3: Additional water vole sequences from previous publications. -
Oxytocin and Vasopressin Immunoreactive Staining in the Brains of Brandt's Voles (Lasiopodomys Brandtii) and Greater Long-Ta
Neuroscience 169 (2010) 1235–1247 OXYTOCIN AND VASOPRESSIN IMMUNOREACTIVE STAINING IN THE BRAINS OF BRANDT’S VOLES (LASIOPODOMYS BRANDTII) AND GREATER LONG-TAILED HAMSTERS (TSCHERSKIA TRITON) L. XU,a Y. PAN,a K. A. YOUNG,b Z. WANGb neural mechanisms. Using a comparative approach, re- AND Z. ZHANGa* markable differences have been found in several types of aState Key Laboratory of Integrated Management of Pest Insects and social behaviors, and these differences, when grouped Rodents in Agriculture, Institute of Zoology, Chinese Academy of together, constitute general life strategies. Species that Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China follow a monogamous life strategy, for example, usually bDepartment of Psychology and Program in Neuroscience, Florida exhibit high levels of social affiliation among individuals, State University, Tallahassee, FL 32306, USA biparental care for their offspring, and selective aggression towards unfamiliar conspecifics (Kleiman, 1977; Dews- Abstract—Immunoreactive (ir) staining of the neuropeptides bury, 1987). In contrast, non-monogamous species tend to oxytocin (OT) and vasopressin (AVP) was performed in the be solitary, less affiliative, and more aggressive. Such brains of Brandt’s voles (Lasiopodomys brandtii) and greater species differences in behavior may reflect evolutionary long-tailed hamsters (Tscherskia triton)—two species that differ pressure and/or a specific adaptation to the environment. remarkably in social behaviors. Social Brandt’s voles had In addition, such differences may indicate potential under- higher densities of OT-ir cells in the medial preoptic area (MPOA) and medial amygdala (MeA) as well as higher densities lying species differences in the central nervous system. of AVP-ir cells in the lateral hypothalamus (LH) compared to Several elegant rodent models have been developed solitary greater long-tailed hamsters. -
2008 UPRISING in TIBET: CHRONOLOGY and ANALYSIS © 2008, Department of Information and International Relations, CTA First Edition, 1000 Copies ISBN: 978-93-80091-15-0
2008 UPRISING IN TIBET CHRONOLOGY AND ANALYSIS CONTENTS (Full contents here) Foreword List of Abbreviations 2008 Tibet Uprising: A Chronology 2008 Tibet Uprising: An Analysis Introduction Facts and Figures State Response to the Protests Reaction of the International Community Reaction of the Chinese People Causes Behind 2008 Tibet Uprising: Flawed Tibet Policies? Political and Cultural Protests in Tibet: 1950-1996 Conclusion Appendices Maps Glossary of Counties in Tibet 2008 UPRISING IN TIBET CHRONOLOGY AND ANALYSIS UN, EU & Human Rights Desk Department of Information and International Relations Central Tibetan Administration Dharamsala - 176215, HP, INDIA 2010 2008 UPRISING IN TIBET: CHRONOLOGY AND ANALYSIS © 2008, Department of Information and International Relations, CTA First Edition, 1000 copies ISBN: 978-93-80091-15-0 Acknowledgements: Norzin Dolma Editorial Consultants Jane Perkins (Chronology section) JoAnn Dionne (Analysis section) Other Contributions (Chronology section) Gabrielle Lafitte, Rebecca Nowark, Kunsang Dorje, Tsomo, Dhela, Pela, Freeman, Josh, Jean Cover photo courtesy Agence France-Presse (AFP) Published by: UN, EU & Human Rights Desk Department of Information and International Relations (DIIR) Central Tibetan Administration (CTA) Gangchen Kyishong Dharamsala - 176215, HP, INDIA Phone: +91-1892-222457,222510 Fax: +91-1892-224957 Email: [email protected] Website: www.tibet.net; www.tibet.com Printed at: Narthang Press DIIR, CTA Gangchen Kyishong Dharamsala - 176215, HP, INDIA ... for those who lost their lives, for -
Sex Chromosome Translocations
RESEARCH ARTICLE Rapid Karyotype Evolution in Lasiopodomys Involved at Least Two Autosome ± Sex Chromosome Translocations Olga L. Gladkikh1☯, Svetlana A. Romanenko1,2☯*, Natalya A. Lemskaya1, Natalya A. Serdyukova1, Patricia C. M. O'Brien3, Julia M. Kovalskaya4, Antonina V. Smorkatcheva5, Feodor N. Golenishchev6, Polina L. Perelman1,2, Vladimir A. Trifonov1,2, Malcolm A. Ferguson-Smith3, Fengtang Yang7, Alexander S. Graphodatsky1,2 a11111 1 Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 2 Novosibirsk State University, Novosibirsk, Russia, 3 Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, 4 Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia, 5 Department of Vertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia, 6 Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia, 7 Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom ☯ These authors contributed equally to this work. OPEN ACCESS * [email protected] Citation: Gladkikh OL, Romanenko SA, Lemskaya NA, Serdyukova NA, O'Brien PCM, Kovalskaya JM, et al. (2016) Rapid Karyotype Evolution in Abstract Lasiopodomys Involved at Least Two Autosome ± Sex Chromosome Translocations. PLoS ONE 11 The generic status of Lasiopodomys and its division into subgenera Lasiopodomys (L. man- (12): e0167653. doi:10.1371/journal. pone.0167653 darinus, L. brandtii) and Stenocranius (L. gregalis, L. raddei) are not generally accepted because of contradictions between the morphological and molecular data. To obtain cyto- Editor: Igor V. Sharakhov, Virginia Tech, UNITED STATES genetic evidence for the Lasiopodomys genus and its subgenera and to test the autosome to sex chromosome translocation hypothesis of sex chromosome complex origin in L. -
Hystrx It. J. Mamm. (Ns) Supp. (2007) V European Congress of Mammalogy
Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy RODENTS AND LAGOMORPHS 51 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy 52 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy A COMPARATIVE GEOMETRIC MORPHOMETRIC ANALYSIS OF NON-GEOGRAPHIC VARIATION IN TWO SPECIES OF MURID RODENTS, AETHOMYS INEPTUS FROM SOUTH AFRICA AND ARVICANTHIS NILOTICUS FROM SUDAN EITIMAD H. ABDEL-RAHMAN 1, CHRISTIAN T. CHIMIMBA, PETER J. TAYLOR, GIANCARLO CONTRAFATTO, JENNIFER M. LAMB 1 Sudan Natural History Museum, Faculty of Science, University of Khartoum P. O. Box 321 Khartoum, Sudan Non-geographic morphometric variation particularly at the level of sexual dimorphism and age variation has been extensively documented in many organisms including rodents, and is useful for establishing whether to analyse sexes separately or together and for selecting adult specimens to consider for subsequent data recording and analysis. However, such studies have largely been based on linear measurement-based traditional morphometric analyses that mainly focus on the partitioning of overall size- rather than shape-related morphological variation. Nevertheless, recent advances in unit-free, landmark/outline-based geometric morphometric analyses offer a new tool to assess shape-related morphological variation. In the present study, we used geometric morphometric analysis to comparatively evaluate non-geographic variation in two geographically disparate murid rodent species, Aethmoys ineptus from South Africa and Arvicanthis niloticus from Sudan , the results of which are also compared with previously published results based on traditional morphometric data. Our results show that while the results of the traditional morphometric analyses of both species were congruent, they were not sensitive enough to detect some signals of non-geographic morphological variation. -
Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country David S
University of New Mexico UNM Digital Repository Special Publications Museum of Southwestern Biology 12-5-2002 Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country David S. Tinnin Jonathan L. Dunnum Jorge Salazar-Bravo Nyamsuren Batsaikhan M. Scott urB t See next page for additional authors Follow this and additional works at: https://digitalrepository.unm.edu/msb_special_publications Recommended Citation Tinnin, David S.; Jonathan L. Dunnum; Jorge Salazar-Bravo; Nyamsuren Batsaikhan; M. Scott urB t; Scott L. Gardner; and Terry L. Yates. "Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country." (2002). https://digitalrepository.unm.edu/msb_special_publications/10 This Article is brought to you for free and open access by the Museum of Southwestern Biology at UNM Digital Repository. It has been accepted for inclusion in Special Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Authors David S. Tinnin, Jonathan L. Dunnum, Jorge Salazar-Bravo, Nyamsuren Batsaikhan, M. Scott urB t, Scott L. Gardner, and Terry L. Yates This article is available at UNM Digital Repository: https://digitalrepository.unm.edu/msb_special_publications/10 SPECIAL PUBLICATION THE MUSEUM OF SOUTHWESTERN BIOLOGY NUMBER 6, pp. 1-38 5 DECEMBER 2002 Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country David S. Tinnin, Jonathan L. Dunnum, Jorge Salazar-Bravo, Nyamsuren Batsaikhan, M. Scott Burt, Scott -
Research on Tibetan Teachers' Attitude Towards Inclusive Education
PALACKÝ UNIVERSITY OLOMOUC Faculty of Education Institute of Special Education Studies Postgradual study programme: 75-06-V 002 Special Education Research on Tibetan Teachers’ Attitude towards Inclusive Education By Yu ZHOU, ME.d PhD study programme - Special Education Studies Supervisor Prof. PhDr. PaedDr. Miloň Potměšil, Ph.D. Olomouc, Czech Republic 2015 Declaration of Originality I, Yu ZHOU (Student number 80032169) declare that this dissertation entitled “Research on Tibetan Teachers’ Attitude towards Inclusive Education” and submitted as partial requirement for Ph.D. study programme of Special Education is my original work and that all the sources in any form (e.g. ideas, figures, texts, tables, etc.) that I have used or quoted have been indicated and acknowledged in the text as well as in the list of reference. __________________ __________________ Signature Date I Acknowledgements It is incredible to image that, have I achieved a Dr Monograph? Yes, I really made it right now!—therefore, I became the first person to get a Ph.D in my family history so that is sufficient to make my family and me proud. At the moment, I‘d like to this paper for myself who turns 37 next month as a perfect birthday present. It stands to reason that, I made an ideal blend of major and personal interest under the guidance of my supervisor Prof. PhDr. PaedDr. Miloň Potměšil, Ph.D., that my research can be completed successfully. I still have a cherished hand drawing which concerns about the Lhasa of Tibet and the Danba by him whom painted it face to face in his office originally. -
Spatial and Temporal Changes and Driving Factors of Desertification in the Source Region of the Yellow River, China
p-ISSN: 0972-6268 Nature Environment and Pollution Technology (Print copies up to 2016) Vol. 19 No. 4 pp. 1435-1442 2020 An International Quarterly Scientific Journal e-ISSN: 2395-3454 Original Research Paper Originalhttps://doi.org/10.46488/NEPT.2020.v19i04.009 Research Paper Open Access Journal Spatial and Temporal Changes and Driving Factors of Desertification in the Source Region of the Yellow River, China Q. G. Liu*† and Y. F. Huang** *Department of Tourism and Geography, Hefei University, Hefei 230601, China ** Department of Biology Food and Environment, Hefei University, Hefei 230601, China †Corresponding author: Q. G. Liu; [email protected] ABSTRACT Nat. Env. & Poll. Tech. Website: www.neptjournal.com The source region of the Yellow River, located in the north-eastern edge of the Qinghai-Tibet Plateau, is an important water conservation region and ecological barrier of the Yellow River. In this paper, based Received: 03-12-2019 Revised: 21-01-2020 on remote sensing technology, multi-period Landsat remote sensing images in the source region were Accepted: 01-03-2020 taken as the main information source. With the assistance of field investigation, we monitored the spatial and temporal changes of desertification in the source region from 2000 to 2019. The results Key Words: show that the area of desertification in the source region has accounted for 9.36% of the total area, of Yellow river which the light desertification land is the major portion. The desertification is mainly distributed between Desertification the southern margin of Madoi Valley basin and the northern margin of Heihe Valley basin, and is Spatial and temporal distributed on the river valleys, lakesides, ancient rivers and piedmont proluvial fan, showing the form changes of patches, sheets and belts. -
STORM in the GRASSLANDS Self-Immolations in Tibet and Chinese Policy
STORM IN THE GRASSLANDS Self-immolations in Tibet and Chinese policy A report by the International Campaign for Tibet Washington, DC l Amsterdam l Berlin l London l Brussels www.savetibet.org STORM IN THE GRASSLANDS Self-immolations in Tibet and Chinese policy A report by the International Campaign for Tibet Washington, DC l Amsterdam l Berlin l London l Brussels www.savetibet.org Mourning A poem by Tibetan blogger, Sengdor, published online in October, 2011 The sadness of living is more painful than death/[…] Look at the smoke rising from the monastery’s golden roof Look at the doors of each monk’s cell In every moment After a storm bursts on one grassland Another storm bursts on the other grassland Following the direction of the wind Dark shadows move accordingly “To burn oneself by fire is to prove that what one is saying is of the utmost importance.” Vietnamese Buddhist monk Thich Nhat Hanh, in a letter to Dr Martin Luther King, 1965 Cover details ‘Self-immolation’ – a painting by Tashi Norbu, Tibetan artist based in Amsterdam, by kind permission of the artist. The work expresses the dual hope that the self-immolators’ sacrifice will lead to their religious realization of ultimate reality, through burning away ignorance, and also ‘burn away’ the conventional reality of oppression. A Tibetan pilgrim with flowers. Troops are visible as Tibetan pilgrims gather at the Jokhang temple in Lhasa in September, 2012. At the Jokhang temple, one of Tibet’s holiest sites, Tibetan pilgrims face intense security, with a constant presence of troops and airport-style scanners now in operation. -
Evolution of Hemoglobin Genes in a Subterranean Rodent Species (Lasiopodomys Mandarinus)
biology Article Evolution of Hemoglobin Genes in a Subterranean Rodent Species (Lasiopodomys mandarinus) 1,2, 2, 2 2 2 2, Hong Sun y, Kaihong Ye y, Denghui Liu , Dan Pan , Shiming Gu and Zhenlong Wang * 1 School of Physical Education (Main campus), Zhengzhou University, Zhengzhou 450000, China; [email protected] 2 School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; [email protected] (K.Y.); [email protected] (D.L.); [email protected] (D.P.); [email protected] (S.G.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 24 April 2020; Accepted: 18 May 2020; Published: 20 May 2020 Abstract: The Mandarin vole (Lasiopodomys mandarinus), a typical subterranean rodent, has undergone hematological adaptations to tolerate the hypoxic/hypercapnic underground environment. Hemoglobin (Hb) genes encode respiratory proteins functioning principally in oxygen binding and transport to various tissues and organs. To investigate the evolution of α- and β-hemoglobin (Hb) in subterranean rodent species, we sequenced Hb genes of the Mandarin vole and the related aboveground Brandt’s vole (L. brandtii). Sequencing showed that in both voles, α-globin was encoded by a cluster of five functional genes in the following linkage order: HBZ, HBA-T1, HBQ-T1, HBA-T2, and HBQ-T2; among these, HBQ-T2 is a pseudogene in both voles. The β-globin gene cluster in both voles also included five functional genes in the following linkage order: HBE, HBE/HBG, HBG, HBB-T1, and HBB-T2. Phylogenetic analysis revealed that the Mandarin vole underwent convergent evolution with its related aboveground species (Brandt’s vole) but not with other subterranean rodent species. -
Review of Risk Factors for Human Echinococcosis Prevalence on the Qinghai-Tibet Plateau, China: a Prospective for Control Options
Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options. Qian Wang, Yan Huang, Liang Huang, Wenjie Yu, Wei He, Bo Zhong, Wei Li, Xiangman Zeng, Dominique A Vuitton, Patrick Giraudoux, et al. To cite this version: Qian Wang, Yan Huang, Liang Huang, Wenjie Yu, Wei He, et al.. Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options.. Infect Dis Poverty, 2014, 3 (1), pp.3. 10.1186/2049-9957-3-3. hal-00943685 HAL Id: hal-00943685 https://hal.archives-ouvertes.fr/hal-00943685 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Wang et al. Infectious Diseases of Poverty 2014, 3:3 http://www.idpjournal.com/content/3/1/3 SCOPING REVIEW Open Access Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options Qian Wang1*, Yan Huang1, Liang Huang1, Wenjie Yu1, Wei He1, Bo Zhong1*, Wei Li2*, Xiangman Zeng3, Dominique A Vuitton4, Patrick Giraudoux5, Philip S Craig6 and Weiping Wu3* Abstract Objective: Echinococcosis is a major parasitic zoonosis of public health importance in western China. -
A Global-Scale Evaluation of Mammalian Exposure and Vulnerability to Anthropogenic Climate Change
A Global-Scale Evaluation of Mammalian Exposure and Vulnerability to Anthropogenic Climate Change Tanya L. Graham A Thesis in The Department of Geography, Planning and Environment Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (Geography, Urban and Environmental Studies) at Concordia University Montreal, Quebec, Canada March 2018 © Tanya L. Graham, 2018 Abstract A Global-Scale Evaluation of Mammalian Exposure and Vulnerability to Anthropogenic Climate Change Tanya L. Graham There is considerable evidence demonstrating that anthropogenic climate change is impacting species living in the wild. The vulnerability of a given species to such change may be understood as a combination of the magnitude of climate change to which the species is exposed, the sensitivity of the species to changes in climate, and the capacity of the species to adapt to climatic change. I used species distributions and estimates of expected changes in local temperatures per teratonne of carbon emissions to assess the exposure of terrestrial mammal species to human-induced climate change. I evaluated species vulnerability to climate change by combining expected local temperature changes with species conservation status, using the latter as a proxy for species sensitivity and adaptive capacity to climate change. I also performed a global-scale analysis to identify hotspots of mammalian vulnerability to climate change using expected temperature changes, species richness and average species threat level for each km2 across the globe. The average expected change in local annual average temperature for terrestrial mammal species is 1.85 oC/TtC. Highest temperature changes are expected for species living in high northern latitudes, while smaller changes are expected for species living in tropical locations.