Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country David S

Total Page:16

File Type:pdf, Size:1020Kb

Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country David S University of New Mexico UNM Digital Repository Special Publications Museum of Southwestern Biology 12-5-2002 Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country David S. Tinnin Jonathan L. Dunnum Jorge Salazar-Bravo Nyamsuren Batsaikhan M. Scott urB t See next page for additional authors Follow this and additional works at: https://digitalrepository.unm.edu/msb_special_publications Recommended Citation Tinnin, David S.; Jonathan L. Dunnum; Jorge Salazar-Bravo; Nyamsuren Batsaikhan; M. Scott urB t; Scott L. Gardner; and Terry L. Yates. "Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country." (2002). https://digitalrepository.unm.edu/msb_special_publications/10 This Article is brought to you for free and open access by the Museum of Southwestern Biology at UNM Digital Repository. It has been accepted for inclusion in Special Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Authors David S. Tinnin, Jonathan L. Dunnum, Jorge Salazar-Bravo, Nyamsuren Batsaikhan, M. Scott urB t, Scott L. Gardner, and Terry L. Yates This article is available at UNM Digital Repository: https://digitalrepository.unm.edu/msb_special_publications/10 SPECIAL PUBLICATION THE MUSEUM OF SOUTHWESTERN BIOLOGY NUMBER 6, pp. 1-38 5 DECEMBER 2002 Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country David S. Tinnin, Jonathan L. Dunnum, Jorge Salazar-Bravo, Nyamsuren Batsaikhan, M. Scott Burt, Scott L. Gardner and Terry L. Yates ii CONTENTS Abstract ...................................................................................................................... 1 futroduction ................................................................................................................. 1 Methods and Materials .............................................................................................. 2 Gazetteer of Localities & Syntopic Assemblages ...................................................... 3 Species Accounts Order Insectivora ............................................................................................... 10 Order Chiroptera ................................................................................................ 12 Order Carnivora ................................................................................................. 15 Order Artiodactyla ............................................................................................. 15 Order Rodentia .................................................................................................. 15 Order Lagomorpha ............................................................................................ 26 Conclusions ............................................................................................................. 28 Acknowledgments ................................................................................................... 30 Literature Cited ........................................................................................................ 31 Appendix:. Species List ............................................................................................ 34 LIST OF FIGURES AND TABLES Figure 1. Collecting localities in Mongolia .............................................................. 2 Figure 2. Gorkhi-Terelj National Park ..................................................................... 4 Figure 3. Gorkhi-Terelj National Park ..................................................................... 5 Figure 4. Gorkhi-Terelj National Park ..................................................................... 5 Figure 5. Ulaan Tsutgalan ......................................................................................... 7 Figure 6. Ulaan Tsutgalan ......................................................................................... 7 Figure 7. Khetsuugiin Ovor ...................................................................................... 8 Figure 8. Ulziyt Uul .................................................................................................. 9 Figure 9. Ulaan Nuur .............................................................................................. 10 iii LIST OF FIGURES AND TABLES (continued) Fig.10. West ofUlaan Nuur .................................................................................... 11 Fig. 11. Lasiopodomys brandtii burrow with run ................................................... 11 Fig. 12. Myospalax aspalax mounds at Elsen Tasarkhai ........................................ 26 Table 1. Measurements for Hemiechinus auritus ................................................... 11 Table 2. Measurements for Sorex ........................................................................... 12 Table 3. Measurements for Eptesicus gobiensis ..................................................... 13 Table 4. Measurements for Myotis ......................................................................... 14 Table 5. Measurements for Plecotus auritus .......................................................... 14 Table 6. Measurements for Vespertilio murinus ..................................................... 15 Table 7. Measurements for Spermophilus .............................................................. 16 Table 8. Measurements for Tamias sibiricus .......................................................... 17 Table 9. Measurements for Allactaga sibirica ........................................................ 17 Table 10. Measurements for Dipus sagitta ............................................................. 18 Table 11. Measurements for Alticola semicanus .................................................... 19 Table 12. Measurements for Clethrionomys ................................... , ....................... 20 Table 13. Measurements for Lasiopodomys brandtii ............................................. 21 Table 14. Measurements for Microtus .................................................................... 21 Table 15. Measurements for Cricetulus ............................. :.................................... 22 Table 16. Measurements for Phodopus .................................................................. 23 Table 17. Measurements for Meriones ................................................................... 24 Table 18. Measurements for Apodemus pen insulae ............................................... 25 Table 19. Measurements for Mus musculus ............................................................ 25 Table 20. Measurements for Myospalax aspalax ................................................... 26 . Table 21. Measurements for Ochotona ................................................................... 27 Table 22. Mammalian diversity in Mongolia & equivalent areas of the U.S ......... 29 Contributions to the Mammalogy of Mongolia, with a Checklist of Species for the Country DAVID S. TINNIN, joNATHAN L. DuNNUM, jORGE SALAZAR-BRAVO, NYAMSUREN BATSAIKHAN, M. ScoTT BuRT, Scon L. GARDNER AND TERRY L. YATES Abstract We present accounts for 40 species of mammals collected from 15 localities in the Mon­ golian People's Republic. Accounts include taxonomic, morphometric, reproductive and eco­ logical information, as well as trap effort and success. In addition, we include a brief history of mammalogical work within Mongolia, a taxonomically updated species list for the coun­ try, and a list of institutions with holdings of Mongolian mammals. INTRODUCTION gional and continent-wide publications (for ex­ ample, Corbet 1978; Ognev 1966). Mallon (1985) The Mongolian People's Republic is a coun­ compiled a checklist with accompanying range try of great ecological and geographic diversity maps for 119 species of mammals, which repre­ 2 covering more than 1.5 million km • The com­ sents the only inclusive treatment of this fauna bination of mountain, steppe and desert habitat, available in English. Most recently, Reading et elevational variability, and extreme ranges in al. (1994) included 134 species of mammals in a temperature supports a unique faunal commu­ Dictionary ofthe Vertebrate Species ofMongo­ nity. Currently, more than 130 species of mam­ lia, however, no specimens examined or citations mals are recognized from Mongolia. Despite this are included. Rogovin and Shenbrot ( 1995) ana­ fact, Mongolia is grossly underrepresented in the lyzed the community ecology of desert-dwelling mammalian literature of the western world when species of rodents in the Gobi desert, which was compared to other regions of Asia. Research in included later in global comparative analyses (for all areas of mammalian biology in Mongolia is example, Kelt et al. 1996). needed to better understand the Eurasian fauna. Since the early 1990s Mongolia has solic­ Although some early 201h-century publica­ ited collaboration from western nations. To fur­ tions on the mammals of Mongolia were pub­ ther this type of collaboration, a joint project lishedinEnglish(Allen 1938;Hollister 1913),most between the National University of Mongolia mammalogical work published up to the 1990s (Ulaan Baatar) and the Museum of Southwest­ had a limited distribution within Mongolia or was em Biology of the University of New Mexico published in Russian with often limited avail­ (MSB, Albuquerque, NM, USA) brought to­ ability in the West. In the subsequent 70 years, gether personnel from both organizations in
Recommended publications
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • The Comparison of the Winter Diet of Long-Eared Owl Asio Otus in Two Communal Roosts in Lublin Region (Eastern Poland) According to Selected Weather Conditions
    ECOLOGIA BALKANICA 2014, Vol. 6, Issue 1 June 2014 pp. 103-108 The Comparison of the Winter Diet of Long-Eared Owl Asio otus in Two Communal Roosts in Lublin Region (Eastern Poland) According to Selected Weather Conditions Krzysztof Stasiak1*, Karolina Piekarska2, Bartłomiej Kusal3 1 - Department of Zoology, Animal Ecology and Wildlife Management, University of Life Sciences in Lublin, Akademicka 13 20-950 Lublin, POLAND 2 - Sierakowskiego 6A 24-100 Puławy, POLAND 3 - 15 PP Wilków 34/9 08-539 Dęblin, POLAND * Corresponding authors: [email protected] Abstract. The survey was conducted in two test areas in Wólka Kątna and Zemborzyce in Eastern Poland in winter 2012/2013. The winter diet of Long-eared Owl Asio otus in the test areas differed significantly. In Zemborzyce the Levins food niche breadth index and the Wiener-Shannon biodiversity index were strongly correlated with the average temperature and the snow depth, and not correlated with the precipitation. In Wólka Kątna no correlation was found. No correlation between the weather factors and the number of each prey species was found, except the Tundra Vole Microtus oeconomus in Zemborzyce, which occurrence in owls’ pellets was positively correlated with the temperature and negatively correlated with the snow depth. Seven factors describing the owls’ diet was chosen: average number of prey in one pellet, average number of prey per bird per day, share of Arvicolidae and Muridae in prey number and prey biomass, and the biomass of prey per bird per day. The share of Arvicolidae in biomass negatively correlated with the precipitation on the Zemborzyce test area and no other dependency between diet factors and weather conditions was found.
    [Show full text]
  • Arvicolinae and Outgroup Mitochondrial Genome Accession Numbers
    Supplementary Materials: Table S1: Arvicolinae and outgroup mitochondrial genome accession numbers. Species Name Accession Number Lasiopodomys brandtii MN614478.1 Lasiopodomys mandarinus JX014233.1 Lasiopodomys gregalis MN199169.1 Microtus fortis fortis JF261174.1 Microtus fortis calamorum JF261175.1 Microtus kikuchii AF348082.1 Neodon irene NC016055.1 Neodon fuscus MG833880.1 Neodon sikimensis KU891252.1 Microtus rossiaemeridionalis DQ015676.1 Microtus levis NC008064.1 Microtus arvalis MG948434.1 Terricola subterraneus MN326850.1 Microtus agrestis MH152570.1 Microtus richardsoni MT225016.1 Microtus ochrogaster KT166982.1 Proedromys liangshanensis FJ463038.1 Arvicola amphibius MN122828.1 Myodes regulus NC016427.1 Myodes rufocanus KT725595.1 Myodes rutilus MK482363.1 Myodes glareolus KF918859.1 Eothenomys melanogaster KP997311.1 Eothenomys miletus KX014874.1 Eothenomys chinensis FJ483847.1 Eothenomys Inez KU200225.1 Ondatra zibethicus KU177045.1 Dicrostonyx hudsonius KX683880.1 Dicrostonyx groenlandicus KX712239.1 Dicrostonyx torquatus MN792940.1 Prometheomys schaposchnikowi NC049036.1 Cricetulus griseus DQ390542.2 Peromyscus polionotus KY707301.1 Sigmodon hispidus KY707311.1 Mus musculus V00711.1 Table S2: Sequenced Wildwood Trust water vole samples. Sample Sample Enclosure Local ID Sex No. Type No. 1 Tissue TB31 - - 2 Tissue WW46 - - 3 Tissue WW0304/34 - Male 4 Tissue WW34/39 - - 5 Hair Q88 - Male 6 Hair Q100 - Male 7 Hair R95 - Male 8 Hair R12 - Male 9 Hair R28 - Male 10 Hair Q100 - Male 11 Faecal R2 2228 Male 12 Faecal Q52 2245 Female 13 Faecal Q42 2218 Female 14 Faecal Q7 2264 Female 15 Faecal Q75a 2326 Female 16 Faecal R50 2232 Male 17 Faecal R51 2225 Male 18 Faecal Q58 2314 Male 19 Faecal Q100 2185 Female 20 Faecal R27 2445 Female Table S3: Additional water vole sequences from previous publications.
    [Show full text]
  • Morphological Disparity Among Rock Voles of the Genus <I>Alticola</I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2012 Morphological Disparity among Rock Voles of the Genus Alticola from Mongolia, Kazakhstan and Russia (Rodentia, Cricetidae) V. N. Bolshakov Russian Academy of Sciences, [email protected] I. A. Vasilyeva Russian Aacdemy of Sciences A. G. Vasilyev Russian Academy of Sciences Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Environmental Sciences Commons, Nature and Society Relations Commons, and the Other Animal Sciences Commons Bolshakov, V. N.; Vasilyeva, I. A.; and Vasilyev, A. G., "Morphological Disparity among Rock Voles of the Genus Alticola from Mongolia, Kazakhstan and Russia (Rodentia, Cricetidae)" (2012). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 13. http://digitalcommons.unl.edu/biolmongol/13 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Copyright 2012, Martin-Luther-Universität Halle Wittenberg, Halle (Saale). Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2012 (12): 105 –115 Morphological disparity among Rock voles of the genus Alticola from Mongolia, Kazakhstan and Russia (Rodentia, Cricetidae) V.N. Bolshakov, I.A.
    [Show full text]
  • Cycles and Synchrony in the Collared Lemming (Dicrostonyx Groenlandicus) in Arctic North America
    Oecologia (2001) 126:216–224 DOI 10.1007/s004420000516 Martin Predavec · Charles J. Krebs · Kjell Danell Rob Hyndman Cycles and synchrony in the Collared Lemming (Dicrostonyx groenlandicus) in Arctic North America Received: 11 January 2000 / Accepted: 21 August 2000 / Published online: 19 October 2000 © Springer-Verlag 2000 Abstract Lemming populations are generally character- Introduction ised by their cyclic nature, yet empirical data to support this are lacking for most species, largely because of the Lemmings are generally known for their multiannual time and expense necessary to collect long-term popula- density fluctuations known as cycles. Occurring in a tion data. In this study we use the relative frequency of number of different species, these cycles are thought to yearly willow scarring by lemmings as an index of lem- have a fairly regular periodicity between 3 and 5 years, ming abundance, allowing us to plot population changes although the amplitude of the fluctuations can vary dra- over a 34-year period. Scars were collected from 18 sites matically. The collared lemming, Dicrostonyx groen- in Arctic North America separated by 2–1,647 km to in- landicus, is no exception, with earlier studies suggesting vestigate local synchrony among separate populations. that this species shows a strong cyclic nature in its popu- Over the period studied, populations at all 18 sites lation fluctuations (e.g. Chitty 1950; Shelford 1943). showed large fluctuations but there was no regular peri- However, later studies have shown separate populations odicity to the patterns of population change. Over all to be cyclic (Mallory et al. 1981; Pitelka and Batzli possible combinations of pairs of sites, only sites that 1993) or with little or no population fluctuations (Krebs were geographically connected and close (<6 km) et al.
    [Show full text]
  • Oxytocin and Vasopressin Immunoreactive Staining in the Brains of Brandt's Voles (Lasiopodomys Brandtii) and Greater Long-Ta
    Neuroscience 169 (2010) 1235–1247 OXYTOCIN AND VASOPRESSIN IMMUNOREACTIVE STAINING IN THE BRAINS OF BRANDT’S VOLES (LASIOPODOMYS BRANDTII) AND GREATER LONG-TAILED HAMSTERS (TSCHERSKIA TRITON) L. XU,a Y. PAN,a K. A. YOUNG,b Z. WANGb neural mechanisms. Using a comparative approach, re- AND Z. ZHANGa* markable differences have been found in several types of aState Key Laboratory of Integrated Management of Pest Insects and social behaviors, and these differences, when grouped Rodents in Agriculture, Institute of Zoology, Chinese Academy of together, constitute general life strategies. Species that Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China follow a monogamous life strategy, for example, usually bDepartment of Psychology and Program in Neuroscience, Florida exhibit high levels of social affiliation among individuals, State University, Tallahassee, FL 32306, USA biparental care for their offspring, and selective aggression towards unfamiliar conspecifics (Kleiman, 1977; Dews- Abstract—Immunoreactive (ir) staining of the neuropeptides bury, 1987). In contrast, non-monogamous species tend to oxytocin (OT) and vasopressin (AVP) was performed in the be solitary, less affiliative, and more aggressive. Such brains of Brandt’s voles (Lasiopodomys brandtii) and greater species differences in behavior may reflect evolutionary long-tailed hamsters (Tscherskia triton)—two species that differ pressure and/or a specific adaptation to the environment. remarkably in social behaviors. Social Brandt’s voles had In addition, such differences may indicate potential under- higher densities of OT-ir cells in the medial preoptic area (MPOA) and medial amygdala (MeA) as well as higher densities lying species differences in the central nervous system. of AVP-ir cells in the lateral hypothalamus (LH) compared to Several elegant rodent models have been developed solitary greater long-tailed hamsters.
    [Show full text]
  • Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale.
    [Show full text]
  • Introduction to the Southern Blue Ridge Ecoregional Conservation Plan
    SOUTHERN BLUE RIDGE ECOREGIONAL CONSERVATION PLAN Summary and Implementation Document March 2000 THE NATURE CONSERVANCY and the SOUTHERN APPALACHIAN FOREST COALITION Southern Blue Ridge Ecoregional Conservation Plan Summary and Implementation Document Citation: The Nature Conservancy and Southern Appalachian Forest Coalition. 2000. Southern Blue Ridge Ecoregional Conservation Plan: Summary and Implementation Document. The Nature Conservancy: Durham, North Carolina. This document was produced in partnership by the following three conservation organizations: The Nature Conservancy is a nonprofit conservation organization with the mission to preserve plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Southern Appalachian Forest Coalition is a nonprofit organization that works to preserve, protect, and pass on the irreplaceable heritage of the region’s National Forests and mountain landscapes. The Association for Biodiversity Information is an organization dedicated to providing information for protecting the diversity of life on Earth. ABI is an independent nonprofit organization created in collaboration with the Network of Natural Heritage Programs and Conservation Data Centers and The Nature Conservancy, and is a leading source of reliable information on species and ecosystems for use in conservation and land use planning. Photocredits: Robert D. Sutter, The Nature Conservancy EXECUTIVE SUMMARY This first iteration of an ecoregional plan for the Southern Blue Ridge is a compendium of hypotheses on how to conserve species nearest extinction, rare and common natural communities and the rich and diverse biodiversity in the ecoregion. The plan identifies a portfolio of sites that is a vision for conservation action, enabling practitioners to set priorities among sites and develop site-specific and multi-site conservation strategies.
    [Show full text]
  • Small Mammal Fauna in Europe During the Second Half of the Middle Pleistocene
    FOSSIL IMPRINT • vol. 73 • 2017 • no. 1–2 • pp. 48–66 (formerly ACTA MUSEI NATIONALIS PRAGAE, Series B – Historia Naturalis) SMALL MAMMAL FAUNA IN EUROPE DURING THE SECOND HALF OF THE MIDDLE PLEISTOCENE ANASTASIA K. MARKOVA1,*, ANDREY YU. PUZACHENKO1 1 Institute of Geography, Russian Academy of Sciences, Staromonetnyi per. 29, 109017 Moscow, Russia; e-mail: [email protected], [email protected]. * corresponding author Markova, A. K., Puzachenko, A. Yu. (2017): Small mammal fauna in Europe during the second half of the Middle Pleistocene. – Fossil Imprint, 73(1-2): 48–66, Praha. ISSN 2533-4050 (print), ISSN 2533-4069 (on-line). Abstract: Evolutionary changes in European small mammals during the second half of the Middle Pleistocene, from the Likhvin (Holsteinian, Hoxnian) Interglacial (MIS 11) to the beginning of the Mikulino (Eemian) Interglacial (MIS 5e), that is between 424 ka BP and 130 ka BP were traced. Trends in evolutionary change were documented, and East European and West European faunas were compared. An integrated analysis of available theriological, geological, and geochronological data for the second half of the Middle Pleistocene in Europe has shown marked changes in the small mammal fauna throughout the period under consideration and provided information on the climate and environments at different time intervals. Changes traceable in the Arvicolinae phyletic lines made a correlation between the West European and East European mammal localities possible. The biostratigraphic scheme of the second half of the Middle Pleistocene has been developed and maps of small mammal localities compiled. Key words: small mammals, second half of the Middle Pleistocene, Europe, taxonomy, evolution, stratigraphy, correlation Received: January 20, 2017 | Accepted: April 18, 2017 | Issued: August 15, 2017 Introduction faunas and their evolutionary changes will be discussed.
    [Show full text]
  • Lasiopodomys Fuscus As an Important Intermediate Host for Echinococcus
    Cai et al. Infectious Diseases of Poverty (2018) 7:27 https://doi.org/10.1186/s40249-018-0409-4 RESEARCH ARTICLE Open Access Lasiopodomys fuscus as an important intermediate host for Echinococcus multilocularis: isolation and phylogenetic identification of the parasite Qi-Gang Cai1,2†, Xiu-Min Han3†, Yong-Hai Yang4, Xue-Yong Zhang2, Li-Qing Ma2, Panagiotis Karanis2 and Yong-Hao Hu1* Abstract Background: Echinococcus multilocularis causes alveolar echinococcosis (AE) and is widely prevalent in Qinghai Province, China, where a number of different species have been identified as hosts. However, limited information is available on the Qinghai vole (Lasiopodomys fuscus), which is hyper endemic to Qinghai Province and may represent a potential intermediate host of E. multilocularis.Thus,L. fuscus could contribute to the endemicity of AE in the area. Methods: Fifty Qinghai voles were captured from Jigzhi County in Qinghai Province for the clinical identification of E. multilocularis infection via anatomical examination. Hydatid fluid was collected from vesicles of the livers in suspected voles and subjected to a microscopic examination and PCR assay based on the barcoding gene of cox 1.PCR-amplified segments were sequenced for a phylogenetic analysis. E. multilocularis-infected Qinghai voles were morphologically identified and subjected to a phylogenetic analysis to confirm their identities. Results: Seventeen of the 50 Qinghai voles had E. multilocularis-infection-like vesicles in their livers. Eleven out of the 17 Qinghai voles presented E. multilocularis infection, which was detected by PCR and sequencing. The phylogenetic analysis showed that all 11 positive samples belonged to the E. multilocularis Asian genotype. A morphological identification and phylogenetic analysis of the E.
    [Show full text]
  • Sex Chromosome Translocations
    RESEARCH ARTICLE Rapid Karyotype Evolution in Lasiopodomys Involved at Least Two Autosome ± Sex Chromosome Translocations Olga L. Gladkikh1☯, Svetlana A. Romanenko1,2☯*, Natalya A. Lemskaya1, Natalya A. Serdyukova1, Patricia C. M. O'Brien3, Julia M. Kovalskaya4, Antonina V. Smorkatcheva5, Feodor N. Golenishchev6, Polina L. Perelman1,2, Vladimir A. Trifonov1,2, Malcolm A. Ferguson-Smith3, Fengtang Yang7, Alexander S. Graphodatsky1,2 a11111 1 Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 2 Novosibirsk State University, Novosibirsk, Russia, 3 Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, 4 Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia, 5 Department of Vertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia, 6 Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia, 7 Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom ☯ These authors contributed equally to this work. OPEN ACCESS * [email protected] Citation: Gladkikh OL, Romanenko SA, Lemskaya NA, Serdyukova NA, O'Brien PCM, Kovalskaya JM, et al. (2016) Rapid Karyotype Evolution in Abstract Lasiopodomys Involved at Least Two Autosome ± Sex Chromosome Translocations. PLoS ONE 11 The generic status of Lasiopodomys and its division into subgenera Lasiopodomys (L. man- (12): e0167653. doi:10.1371/journal. pone.0167653 darinus, L. brandtii) and Stenocranius (L. gregalis, L. raddei) are not generally accepted because of contradictions between the morphological and molecular data. To obtain cyto- Editor: Igor V. Sharakhov, Virginia Tech, UNITED STATES genetic evidence for the Lasiopodomys genus and its subgenera and to test the autosome to sex chromosome translocation hypothesis of sex chromosome complex origin in L.
    [Show full text]
  • Rapid Chromosomal Evolution in Enigmatic Mammal with XX in Both Sexes, the Alay Mole Vole Ellobius Alaicus Vorontsov Et Al., 1969 (Mammalia, Rodentia)
    COMPARATIVE A peer-reviewed open-access journal CompCytogen 13(2):Rapid 147–177 chromosomal (2019) evolution in enigmatic mammal with XX in both sexes... 147 doi: 10.3897/CompCytogen.v13i2.34224 DATA PAPER Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobius alaicus Vorontsov et al., 1969 (Mammalia, Rodentia) Irina Bakloushinskaya1, Elena A. Lyapunova1, Abdusattor S. Saidov2, Svetlana A. Romanenko3,4, Patricia C.M. O’Brien5, Natalia A. Serdyukova3, Malcolm A. Ferguson-Smith5, Sergey Matveevsky6, Alexey S. Bogdanov1 1 Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia 2 Pavlovsky Institu- te of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe, Tajikistan 3 Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, Russia 4 Novosibirsk State University, Novosibirsk, Russia 5 Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Me- dicine, University of Cambridge, Cambridge, UK 6 Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia Corresponding author: Irina Bakloushinskaya ([email protected]) Academic editor: V. Lukhtanov | Received 1 March 2019 | Accepted 28 May 2019 | Published 20 June 2019 http://zoobank.org/4D72CDB3-20F3-4E24-96A9-72673C248856 Citation: Bakloushinskaya I, Lyapunova EA, Saidov AS, Romanenko SA, O’Brien PCM, Serdyukova NA, Ferguson- Smith MA, Matveevsky S, Bogdanov AS (2019) Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobius alaicus Vorontsov et al., 1969 (Mammalia, Rodentia). Comparative Cytogenetics 13(2): 147–177. https://doi.org/10.3897/CompCytogen.v13i2.34224 Abstract Evolutionary history and taxonomic position for cryptic species may be clarified by using molecular and cy- togenetic methods.
    [Show full text]