Polyphyly, Paraphyly, Provinciality, and the Promise Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MAMMALS of OHIO F I E L D G U I D E DIVISION of WILDLIFE Below Are Some Helpful Symbols for Quick Comparisons and Identfication
MAMMALS OF OHIO f i e l d g u i d e DIVISION OF WILDLIFE Below are some helpful symbols for quick comparisons and identfication. They are located in the same place for each species throughout this publication. Definitions for About this Book the scientific terms used in this publication can be found at the end in the glossary. Activity Method of Feeding Diurnal • Most active during the day Carnivore • Feeds primarily on meat Nocturnal • Most active at night Herbivore • Feeds primarily on plants Crepuscular • Most active at dawn and dusk Insectivore • Feeds primarily on insects A word about diurnal and nocturnal classifications. Omnivore • Feeds on both plants and meat In nature, it is virtually impossible to apply hard and fast categories. There can be a large amount of overlap among species, and for individuals within species, in terms of daily and/or seasonal behavior habits. It is possible for the activity patterns of mammals to change due to variations in weather, food availability or human disturbances. The Raccoon designation of diurnal or nocturnal represent the description Gray or black in color with a pale most common activity patterns of each species. gray underneath. The black mask is rimmed on top and bottom with CARNIVORA white. The raccoon’s tail has four to six black or dark brown rings. habitat Raccoons live in wooded areas with Tracks & Skulls big trees and water close by. reproduction Many mammals can be elusive to sighting, leaving Raccoons mate from February through March in Ohio. Typically only one litter is produced each year, only a trail of clues that they were present. -
Taxonomic Status and Biogeography of the Southern Bog Lemming, Synaptomys Cooperi, on the Central Great Plains Author(S): Gregory M
American Society of Mammalogists Taxonomic Status and Biogeography of the Southern Bog Lemming, Synaptomys cooperi, on the Central Great Plains Author(s): Gregory M. Wilson and Jerry R. Choate Source: Journal of Mammalogy, Vol. 78, No. 2 (May, 1997), pp. 444-458 Published by: American Society of Mammalogists Stable URL: http://www.jstor.org/stable/1382897 . Accessed: 11/08/2011 18:26 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Mammalogists is collaborating with JSTOR to digitize, preserve and extend access to Journal of Mammalogy. http://www.jstor.org TAXONOMIC STATUS AND BIOGEOGRAPHY OF THE SOUTHERN BOG LEMMING, SYNAPTOMYS COOPERI, ON THE CENTRAL GREAT PLAINS GREGORY M. WILSON AND JERRY R. CHOATE Present address of GMW: Department of Zoology, 430 Life Sciences West, Oklahoma State University, Stillwater, OK 74078 Sternberg Museum of Natural History, Fort Hays State University, Hays, KS 67601 We assessed geographic and nongeographic variation among populations of the southern bog lemming (Synaptomys cooperi) in Arkansas, Iowa, Illinois, Kansas, Missouri, Nebraska, and South Dakota based on morphological data. Univariate and multivariate analyses of 15 cranial characters revealed no consistent sexual dimorphism. Geographic variation in cra- nial morphology of adults varied clinally, with individuals increasing in size from north to south and east to west. -
Likely to Have Habitat Within Iras That ALLOW Road
Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing -
Further Assessment of the Genus Neodon and the Description of a New Species from Nepal
RESEARCH ARTICLE Further assessment of the Genus Neodon and the description of a new species from Nepal 1³ 2 2 3 Nelish PradhanID , Ajay N. Sharma , Adarsh M. Sherchan , Saurav Chhetri , 4 1³ Paliza Shrestha , C. William KilpatrickID * 1 Department of Biology, University of Vermont, Burlington, Vermont, United States of America, 2 Center for Molecular Dynamics±Nepal, Kathmandu, Nepal, 3 Department of Biology, Trinity University, San Antonio, Texas, United States of America, 4 Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, United States of America a1111111111 ³ These authors are joint senior authors on this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Recent molecular systematic studies of arvicoline voles of the genera Neodon, Lasiopod- omys, Phaiomys, and Microtus from Central Asia suggest the inclusion of Phaiomys leu- OPEN ACCESS curus, Microtus clarkei, and Lasiopodomys fuscus into Neodon and moving Neodon juldaschi into Microtus (Blanfordimys). In addition, three new species of Neodon (N. linz- Citation: Pradhan N, Sharma AN, Sherchan AM, Chhetri S, Shrestha P, Kilpatrick CW (2019) Further hiensis, N. medogensis, and N. nyalamensis) have recently been described from Tibet. assessment of the Genus Neodon and the Analyses of concatenated mitochondrial (Cytb, COI) and nuclear (Ghr, Rbp3) genes recov- description of a new species from Nepal. PLoS ered Neodon as a well-supported monophyletic clade including all the recently described ONE 14(7): e0219157. https://doi.org/10.1371/ and relocated species. Kimura-2-parameter distance between Neodon from western Nepal journal.pone.0219157 compared to N. sikimensis (K2P = 13.1) and N. irene (K2P = 13.4) was equivalent to genetic Editor: Johan R. -
Controlled Animals
Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3. -
Ecological Niche Evolution and Its Relation To
514 G. Shenbrot Сборник трудов Зоологического музея МГУ им. М.В. Ломоносова Archives of Zoological Museum of Lomonosov Moscow State University Том / Vol. 54 Cтр. / Pр. 514–540 ECOLOGICAL NICHE EVOLUTION AND ITS RELATION TO PHYLOGENY AND GEOGRAPHY: A CASE STUDY OF ARVICOLINE VOLES (RODENTIA: ARVICOLINI) Georgy Shenbrot Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev; [email protected] Relations between ecological niches, genetic distances and geographic ranges were analyzed by pair-wise comparisons of 43 species and 38 intra- specifi c phylogenetic lineages of arvicoline voles (genera Alexandromys, Chi onomys, Lasiopodomys, Microtus). The level of niche divergence was found to be positively correlated with the level of genetic divergence and negatively correlated with the level of differences in position of geographic ranges of species and intraspecifi c forms. Frequency of different types of niche evolution (divergence, convergence, equivalence) was found to depend on genetic and geographic relations of compared forms. Among the latter with allopatric distribution, divergence was less frequent and convergence more frequent between intra-specifi c genetic lineages than between either clo sely-related or distant species. Among the forms with parapatric dis- tri bution, frequency of divergence gradually increased and frequencies of both convergence and equivalence gradually decreased from intra-specifi c genetic lineages via closely related to distant species. Among species with allopatric distribution, frequencies of niche divergence, con vergence and equivalence in closely related and distant species were si milar. The results obtained allowed suggesting that the main direction of the niche evolution was their divergence that gradually increased with ti me since population split. -
The Paleontology Synthesis Project and Establishing a Framework for Managing National Park Service Paleontological Resource Archives and Data
Lucas, S.G. and Sullivan, R.M., eds., 2018, Fossil Record 6. New Mexico Museum of Natural History and Science Bulletin 79. 589 THE PALEONTOLOGY SYNTHESIS PROJECT AND ESTABLISHING A FRAMEWORK FOR MANAGING NATIONAL PARK SERVICE PALEONTOLOGICAL RESOURCE ARCHIVES AND DATA VINCENT L. SANTUCCI1, JUSTIN S. TWEET2 and TIMOTHY B. CONNORS3 1National Park Service, Geologic Resources Division, 1849 “C” Street, NW, Washington, D.C. 20240, [email protected]; 2National Park Service, 9149 79th Street S., Cottage Grove, MN 55016, [email protected]; 3National Park Service, Geologic Resources Division, 12795 W. Alameda Parkway, Lakewood, CO 80225, [email protected] Abstract—The National Park Service Paleontology Program maintains an extensive collection of digital and hard copy documents, publications, photographs and other archives associated with the paleontological resources documented in 268 parks. The organization and preservation of the NPS paleontology archives has been the focus of intensive data management activities by a small and dedicated team of NPS staff. The data preservation strategy complemented the NPS servicewide inventories for paleontological resources. The first phase of the data management, referred to as the NPS Paleontology Synthesis Project, compiled servicewide paleontological resource data pertaining to geologic time, taxonomy, museum repositories, holotype fossil specimens, and numerous other topics. In 2015, the second phase of data management was implemented with the creation and organization of a multi-faceted digital data system known as the NPS Paleontology Archives and NPS Paleontology Library. Two components of the NPS Paleontology Archives were designed for the preservation of both park specific and servicewide paleontological resource archives and data. A third component, the NPS Paleontology Library, is a repository for electronic copies of geology and paleontology publications, reports, and other media. -
GROWTH and DEVELOPMENT RATES of Microtus Pinetorum UNDER DIFFERENT PHOTOPERIODS
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center Eastern Pine and Meadow Vole Symposia for March 1981 GROWTH AND DEVELOPMENT RATES OF Microtus pinetorum UNDER DIFFERENT PHOTOPERIODS T. L. Derting Virginia Polytechnic Institute and State University, Blacksburg, VA J. A. Cransford Virginia Polytechnic Institute and State University, Blacksburg, VA Follow this and additional works at: https://digitalcommons.unl.edu/voles Part of the Environmental Health and Protection Commons Derting, T. L. and Cransford, J. A., "GROWTH AND DEVELOPMENT RATES OF Microtus pinetorum UNDER DIFFERENT PHOTOPERIODS" (1981). Eastern Pine and Meadow Vole Symposia. 77. https://digitalcommons.unl.edu/voles/77 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eastern Pine and Meadow Vole Symposia by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. GROWTH AND DEVELOPMENT RATES OF MICROTUS PINETOELM UNDER DIFFERENT PHOTOPERIODS T. L. Derting and J. A. Cranford Biology Department Virginia Polytechnic Institute & State University Blacksburg, VA 24061 Photoperiod and nutrition are important variables affecting reproductive activity and growth in many rodents. Field and laboratory studies indicate that long photoperiod (spring-summer) cause increased growth while short photoperiods (fall-winter) inhibit these processes. In the montane vole (Microtus montanus) recently weaned animals gain weight at a much lower rate under short photo- periods or in total darkness than under long photoperiods (Vaughan et al., 1973; Peterborg, 1978). Adult M. montanus had more off- spring and larger mean litter sizes under LD 18:6 than LD 6:18 (Pinter & Negus, 1965). -
Arvicolinae and Outgroup Mitochondrial Genome Accession Numbers
Supplementary Materials: Table S1: Arvicolinae and outgroup mitochondrial genome accession numbers. Species Name Accession Number Lasiopodomys brandtii MN614478.1 Lasiopodomys mandarinus JX014233.1 Lasiopodomys gregalis MN199169.1 Microtus fortis fortis JF261174.1 Microtus fortis calamorum JF261175.1 Microtus kikuchii AF348082.1 Neodon irene NC016055.1 Neodon fuscus MG833880.1 Neodon sikimensis KU891252.1 Microtus rossiaemeridionalis DQ015676.1 Microtus levis NC008064.1 Microtus arvalis MG948434.1 Terricola subterraneus MN326850.1 Microtus agrestis MH152570.1 Microtus richardsoni MT225016.1 Microtus ochrogaster KT166982.1 Proedromys liangshanensis FJ463038.1 Arvicola amphibius MN122828.1 Myodes regulus NC016427.1 Myodes rufocanus KT725595.1 Myodes rutilus MK482363.1 Myodes glareolus KF918859.1 Eothenomys melanogaster KP997311.1 Eothenomys miletus KX014874.1 Eothenomys chinensis FJ483847.1 Eothenomys Inez KU200225.1 Ondatra zibethicus KU177045.1 Dicrostonyx hudsonius KX683880.1 Dicrostonyx groenlandicus KX712239.1 Dicrostonyx torquatus MN792940.1 Prometheomys schaposchnikowi NC049036.1 Cricetulus griseus DQ390542.2 Peromyscus polionotus KY707301.1 Sigmodon hispidus KY707311.1 Mus musculus V00711.1 Table S2: Sequenced Wildwood Trust water vole samples. Sample Sample Enclosure Local ID Sex No. Type No. 1 Tissue TB31 - - 2 Tissue WW46 - - 3 Tissue WW0304/34 - Male 4 Tissue WW34/39 - - 5 Hair Q88 - Male 6 Hair Q100 - Male 7 Hair R95 - Male 8 Hair R12 - Male 9 Hair R28 - Male 10 Hair Q100 - Male 11 Faecal R2 2228 Male 12 Faecal Q52 2245 Female 13 Faecal Q42 2218 Female 14 Faecal Q7 2264 Female 15 Faecal Q75a 2326 Female 16 Faecal R50 2232 Male 17 Faecal R51 2225 Male 18 Faecal Q58 2314 Male 19 Faecal Q100 2185 Female 20 Faecal R27 2445 Female Table S3: Additional water vole sequences from previous publications. -
Southern Bog Lemming, Synaptomys Cooperi,Andthe Mammals: Their Natural History, Classification, and Meadow Vole, Microtus Pennsylvanicus,Invirginia
Synaptomys cooperi (Baird, 1858) SBLE W. Mark Ford and Joshua Laerm CONTENT AND TAXONOMIC COMMENTS There are eight subspecies of the southern bog lem- ming (Synaptomys cooperi) recognized, four of which occur in the South: S. c. gossii, S. c. helaletes, S. c. kentucki, and S. c. stonei (Wetzel 1955, Barbour 1956, Hall 1981, Linzey 1983, Long 1987). However, Whitaker and Hamilton (1998) indicate that S. c. gossii, S. c. kentucki, and S. c. stonei could be referable to S. c. cooperi.The literature was reviewed by Linzey (1983). DISTINGUISHING CHARACTERISTICS The southern bog lemming is a robust, short-tailed vole with a broad head, small ears, and small eyes. Its measurements are: total length, 119–154 mm; tail, 13–25 mm; hind foot, 16–24 mm; ear, 8–14 mm; weight, 20–50 g. The dental formula for this species is: I 1/1, C 0/0, P 0/0, M 3/3 = 16 (Figure 1). The pel- age is bright chestnut to dark grizzled brown dor- sally, grading into silver grayish white ventrally, with gray to brown feet and tail. The southern bog lemming readily is distinguished from other voles by its short tail (usually less than hind foot length), pres- ence of a shallow longitudinal groove along upper incisors, and deep reentrant angles on molars. See keys for details. CONSERVATION STATUS The southern bog lemming has a global rank of Secure (NatureServe 2007). It is listed as Secure in Virginia and Apparently Secure in Kentucky and Tennessee. It is listed as Vulnerable in North Carolina, Imperiled in Arkansas, and Critically Imperiled in Georgia. -
Effectiveness of Lure in Capturing Northern Bog Lemmings on Trail Cameras Keely Benson [email protected]
University of Montana ScholarWorks at University of Montana Undergraduate Theses and Professional Papers 2019 Effectiveness of Lure in Capturing Northern Bog Lemmings on Trail Cameras Keely Benson [email protected] Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/utpp Part of the Other Animal Sciences Commons Recommended Citation Benson, Keely, "Effectiveness of Lure in Capturing Northern Bog Lemmings on Trail Cameras" (2019). Undergraduate Theses and Professional Papers. 248. https://scholarworks.umt.edu/utpp/248 This Thesis is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in Undergraduate Theses and Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Effectiveness of Lure in Capturing Northern Bog Lemmings on Trail Cameras Keely Benson Wildlife Biology Program University of Montana Senior Thesis Project Graduating May 4, 2019 with a Bachelor of Science in Wildlife Biology Thesis submitted in fulfillment of the requirements of a Senior Honors Thesis WILD499/HONR499 Wildlife Biology Program The University of Montana Missoula, Montana Approved by: Committee Chair: Dr. Mark Hebblewhite, Wildlife Biology Program, University of Montana Committee Members: Dr. Mike Mitchell, Montana Cooperative Wildlife Research Unit, University of Montana Dr. Chad Bishop, Wildlife Biology Program University of Montana 1 Effectiveness of Lure in Capturing Northern Bog Lemmings on Trail Cameras Keely Benson Abstract Fens and bogs are unique wetlands that support a diversity of small mammals and many other rare species. -
Oxytocin and Vasopressin Immunoreactive Staining in the Brains of Brandt's Voles (Lasiopodomys Brandtii) and Greater Long-Ta
Neuroscience 169 (2010) 1235–1247 OXYTOCIN AND VASOPRESSIN IMMUNOREACTIVE STAINING IN THE BRAINS OF BRANDT’S VOLES (LASIOPODOMYS BRANDTII) AND GREATER LONG-TAILED HAMSTERS (TSCHERSKIA TRITON) L. XU,a Y. PAN,a K. A. YOUNG,b Z. WANGb neural mechanisms. Using a comparative approach, re- AND Z. ZHANGa* markable differences have been found in several types of aState Key Laboratory of Integrated Management of Pest Insects and social behaviors, and these differences, when grouped Rodents in Agriculture, Institute of Zoology, Chinese Academy of together, constitute general life strategies. Species that Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China follow a monogamous life strategy, for example, usually bDepartment of Psychology and Program in Neuroscience, Florida exhibit high levels of social affiliation among individuals, State University, Tallahassee, FL 32306, USA biparental care for their offspring, and selective aggression towards unfamiliar conspecifics (Kleiman, 1977; Dews- Abstract—Immunoreactive (ir) staining of the neuropeptides bury, 1987). In contrast, non-monogamous species tend to oxytocin (OT) and vasopressin (AVP) was performed in the be solitary, less affiliative, and more aggressive. Such brains of Brandt’s voles (Lasiopodomys brandtii) and greater species differences in behavior may reflect evolutionary long-tailed hamsters (Tscherskia triton)—two species that differ pressure and/or a specific adaptation to the environment. remarkably in social behaviors. Social Brandt’s voles had In addition, such differences may indicate potential under- higher densities of OT-ir cells in the medial preoptic area (MPOA) and medial amygdala (MeA) as well as higher densities lying species differences in the central nervous system. of AVP-ir cells in the lateral hypothalamus (LH) compared to Several elegant rodent models have been developed solitary greater long-tailed hamsters.