Polysomatism in Högbomite: the Crystal Structures of 10T, 12H, 14T, and 24R Polysomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amber with Mite Inclusion
Editor Nathan Renfro Contributing Editors Elise A. Skalwold and John I. Koivula The purpose of this new quarterly column in Gems & may seem elusive, even daunting. Continual practice, care- Gemology is to encourage the appreciation of inclusions ful observation, and patience will refine both technique and in forensic gemology and to help build the observational interpretive prowess for both new and experienced inclu- skill set of the practicing gemologist. By providing concise sionists. Observation through the microscope serves as the information and vividly clear photomicrographs and pho- very foundation for many conclusions drawn on a speci- tomacrographs of new or otherwise interesting inclusion men. This can include identification, treatment detection, specimens, the column aims to narrow the knowledge gap separation of natural and synthetic materials, and geo- between advanced inclusionists and gemologists working graphic origin—even secrets of a gem’s genesis and the se- in mainstream general practice. crets of the earth’s depths may ultimately be revealed. The micro-world of gems lies at the very core of gemol- In building proficiency of the micro-world through this ogy. Sometimes its nature contributes to the allure of a column, readers will also expand their personal knowledge gem, as is the case with such coveted gems as sunstones, base and ability with a microscope. Mastery of microscopy, star sapphires, and cat’s-eye chrysoberyls. At other times combined with at least a basic grasp of mineralogy, is es- that world may seem a dreadful distraction to an otherwise sential for understanding the nature of gems and the geo- beautiful, marketable specimen. -
Subject Index, Volume 83, 1998
American Mineralogist, Volume 83, pages 1377–1385, 1998 SUBJECT INDEX, VOLUME 83, 1998 Actinolite 458 jadeitic pyroxene 273 Arsenic model compounds 553 AFM lithium disilicate 1008 Arsenopyrite 316 illite-smectite 762 magnesiowüstite 794 ASH system 881 nucleation and growth 147 MgMgAl-pumpellyite 220 Atmospheric CO2 1503 2+ 3+ Agrell, Stuart O., memorial of 666 Mn (Fe, Mn) 2 O4 786 Augite 419, 434 Albite glass 1141 monazite 248 Awards Al-Fe perovskite (MgSiO3) 947 monazite-(Ce) 259 Mineralogical Society of America, ac - Allanite 248 muscovite 535 ceptance of 917 Allende meteorite 970 muscovite-phengite 775 Mineralogical Society of America, pre- Almandite 1293 offretite 577 sentation of 916 27Al MAS NMR olivine 546 Roebling Medal, acceptance of 914 Al2O3+B2O3+SiO2 ± H2O 638 omphacite 419 Roebling Medal, presentation of 912 AlSiO3OH 881 paranite-(Y) 1100 B8/anti-B8 451 Ammonium illilte 58 phase egg 881 B8-FeO 451 Analcime 339, 746 phosphovanadylilte 889 Bacteria 1583 Analysis, chemical (mineral) pyrope 323, 1293 Bacterial surfaces 1399 almandite 1293 pyroxene 491 Bacterial synthesis of greigite 1469 andradite 835 rossmanite 896 Band Gap 865 anorthite 1209 rubicline 1335 Bamfordite 172 apatite 240, 1122 scandiobabingtonite 1330 Basaltic andesite 36 arsenopyrite 316 scheelite 1100 BaTi5Fe6MgO19 1323 augite 419 schorl 848 Benyacarite 400 bamfordite 172 sodic-ferri-clinoferroholmquistite 668 Berezanskite 907 biogenic magnetite 1409 sorosite 901 Bioaccumulation 1503 boralsilite 638 spessartine 1293 Biogenic magnetite 1409 bornite 1231 titanite 1168 Biogeochemistry 1418, 1494, 1593, 1426 brabantite 259 tourmaline 535, 638, 848 Biomineralization 1454, 1510 brucite 68 tremolite–actinolite–ferro-actinolite 458 Birnessite 305 buergerite 848 tschörtnerite 607 Boehmite 1209 Ca-amphibole 952 wüstite 451 Book reviews caleite 1510, 1503 xenotime 1302 Carey, J.William: Thermodynamics carbon 918 yvonite 383 of Natural Systems. -
Geology of the Crater of Diamonds State Park and Vicinity, Pike County, Arkansas
SPS-03 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director STATE PARK SERIES 03 GEOLOGY OF THE CRATER OF DIAMONDS STATE PARK AND VICINITY, PIKE COUNTY, ARKANSAS by J. M. Howard and W. D. Hanson Little Rock, Arkansas 2008 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director STATE PARK SERIES 03 GEOLOGY OF THE CRATER OF DIAMONDS STATE PARK AND VICINITY, PIKE COUNTY, ARKANSAS by J. M. Howard and W. D. Hanson Little Rock, Arkansas 2008 STATE OF ARKANSAS Mike Beebe, Governor ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director COMMISSIONERS Dr. Richard Cohoon, Chairman………………………………………....Russellville William Willis, Vice Chairman…………………………………...…….Hot Springs David J. Baumgardner………………………………………….………..Little Rock Brad DeVazier…………………………………………………………..Forrest City Keith DuPriest………………………………………………………….….Magnolia Becky Keogh……………………………………………………...……..Little Rock David Lumbert…………………………………………………...………Little Rock Little Rock, Arkansas 2008 i TABLE OF CONTENTS Introduction…………………………………………………………………………..................... 1 Geology…………………………………………………………………………………………... 1 Prairie Creek Diatreme Rock Types……………………………….…………...……...………… 3 Mineralogy of Diamonds…………………….……………………………………………..……. 6 Typical shapes of Arkansas diamonds…………………………………………………………… 6 Answers to Frequently Asked Questions……………..……………………………….....……… 7 Definition of Rock Types……………………………………………………………………… 7 Formation Processes.…...…………………………………………………………….....…….. 8 Search Efforts……………...……………………………...……………………...………..…. -
Shin-Skinner January 2018 Edition
Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com. -
Geomrcrobrology: Ixinractionsbetween MTCNOBESAND Mtxbrals
REVIEWS in MINERALOGY Volume 35 GEoMrcRoBroLoGY: IXInRACTIoNSBETWEEN MTCNOBESAND MTxBRALS J. F. BeNn'rpr",D& K. H. NpemoN,Eorrons CONTENTS Chapter 1 Microorganisrns and biogeochemicalcycles: What can we learn from layereclmicrobial communities? K. H. Nealson & D. A. Stahl 2 Microbial Diversity in Modern Subsurface,Ocean, and Surface Environments S.M. Barns & S. Nierzwichi-Bauer 3 Processesat Minerals and Surfaceswith Relevanceto Microorganisms and Prebiotic Synthesis J.F. Banfield & R.J. Hatners 4 Spatial Relationships between Bacteria and Mineral Surfaces B.J. Little, P.A. lVagner & Z. Lewandowshi 5 Surface Mediated Mineral Development by Bacteria D. Fortin, F.G. Fenis & T.J. Beueridge 6 Microbial Biomineralization of Magnetic Iron Minerals: Microbiology, Magnetism and Environmental Significance D.A. Bazylinksi & B.M. Moskowitz 7 Bacterially'mediated Mineral Formation: Insights into Manganese(II) Oxidation from Molecular Genetic and Biochemical Studies B.M. Tebo,W.C. Ghiorse,L.G. uan Waasbergen,P.L. Siering, & R. Caspi 8 Algal Deposition of Carbonatesand Silicates E.W. de Vrind-de Jong & J.P.M. de Vrind q Reactions of Extracellular Organic Ligands with DissolvedMetal Ions and Mineral Surfaces A.T. Stone 10 The Bacterial View of the Periodic Table: Soecific Functions for all Elements S. Siluer 11 Geomicrobiology of Sulfide Mineral Oxidation D.K. Nordstrotn & G. Southam I2 Biogeochemical Weathering of Silicate Minerals W.W.Barher, S.A. Welch & J.F. Banfield 13 Long-term Evolution of the Biogeochemical Carbon Cycle D.J. DesMarais ISBN 0-939950-43-X This 448 page, paperbound book accompaniedthe Short Course on Geomicrobiologypresented by the Mineralogical Societyof America on October 18 and Ig, lgg7, at the Alta Peruvian Lodge in Alta, Utah. -
2004 Newsletter
Department of Geosciences University of Massachusetts Amherst A LETTER FROM THE DEPARTMENT HEAD JANUARY 2004 This is the first department newsletter in of these efforts, we have tried to leverage In Memoriam several years, and much has happened. university dollars with federal money, and This edition is somewhat longer than to strategically invest the funds we receive Remembering Terrence Burke Page 2 normal in order to catch up, and hopefully from our alumni to improve classroom and we will get back on schedule with regular field teaching facilities. We also work Memories of Howard Jaffe newsletters after this. Budgets have been closely with departments in the other local Page 3 tight, but as you will see, the department colleges to use our collective efforts when Faculty News has made significant progress in a number that seems like the best strategy. With all of critical areas, including faculty and of the new equipment and laboratories, the David Alexander departs student research, laboratory improvement, department is still as active in the field as Page 4 and a general broadening of our curricu- ever with every faculty member and nearly Steve Haggerty retires lum. The campus has invested new all graduate students working in some Page 5 resources in the department over the past exciting part of the world last year. Some Welcome back Don Wise couple of years, which speaks volumes highlights are included in this newsletter, Page 6 about how we are viewed across the but check our web site to see more about Meet our new faculty—Steve campus. We are commonly cited as an what we have been up to. -
A New Occurrence of Yimengite-Hawthorneite and Crichtonite-Group Minerals in An
26 A new occurrence of yimengite-hawthorneite and crichtonite-group minerals in an 27 orthopyroxenite from kimberlite: Implications for mantle metasomatism 1,* 1 1 28 Dmitriy I. Rezvukhin , Taisia A. Alifirova , Andrey V. Korsakov , Alexander V. 1 29 Golovin 1 30 Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy 31 of Sciences, 3 Koptyuga Avenue, Novosibirsk 630090, Russia 32 *corresponding author, e-mail: [email protected], [email protected] 33 34 ABSTRACT 35 LILE-enriched chromium titanates of the magnetoplumbite (AM12O19) and crichtonite 36 (ABC18T2O38) groups were recognized as abundant inclusions in orthopyroxene grains in a 37 mantle-derived xenolith from the Udachnaya-East kimberlite pipe, Daldyn field, Siberian craton. 38 The studied xenolith consists of three parts: an orthopyroxenite, a garnet clinopyroxenite, and a 39 garnet-orthopyroxene intermediate domain between the two. Within the host enstatite (Mg# 40 92.6) in the orthopyroxenitic part of the sample titanate inclusions are associated with Cr-spinel, 41 diopside, rutile, Mg-Cr-ilmenite, and pentlandite. Crichtonite-group minerals also occur as 42 lamellae inclusions in pyrope grains of the intermediate domain adjacent to the orthopyroxenite, 43 as well as in interstitial to enstatite oxide intergrowths together with Cr-spinel, rutile, and 44 ilmenite. 45 Yimengite-hawthorneite inclusions in enstatite contain (wt%) 3.72-8.04 BaO, 2.05-3.43 46 K2O, and 0.06-0.48 CaO. Their composition is transitional between yimengite and hawthorneite 47 endmembers with most grains exhibiting K-dominant chemistry. A distinct feature of the studied 48 yimengite-hawthorneite minerals is a high content of Al2O3 (5.74-7.69 wt%). -
F^ the Journal of \ Y Volume 26 No
Gemmologf^ The Journal of \ y Volume 26 No. 6 April 1999 II J The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 0171 404 3334 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uk/gagtl President: Professor R.A. Howie Vice-Presidents: E.M. Bruton, A.E. Farn, D.G. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Jnr, K. Nassau Honorary Life Members: D.J. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, N.W. Deeks, R.R. Harding, MJ. O'Donoghue, I. Thomson, V.R Watson Members' Council: A.J. Allnutt, P. Dwyer-Hickey, S.A. Everitt, A.G. Good, J. Greatwood, B. Jackson, J. Kessler, J. Monnickendam, L. Music, J.B. Nelson, P.G. Read, R. Shepherd, P.J. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West - L Knight, Scottish - B. Jackson Examiners: A.J. Allnutt, M.Sc, Ph.D., FGA, L. Bartlett, B.Sc, M.Phil., FGA, DGA, E.M. Bruton, FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Howe, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, M. Newton, B.Sc, D.Phil, C.J.E. Oldershaw, B.Sc (Hons), FGA, H.L. Plumb, B.Sc, FGA, DGA, R.D. ROSS, B.Sc, FGA, DGA, PA. Sadler, B.Sc, FGA, DGA, E. -
Revised Nomenclature of Högbomite, Nigerite, and Taaffeite Minerals
Eur. J. Mineral. 2002, 14, 389–395 Revised nomenclature of högbomite, nigerite, and taaffeite minerals THOMAS ARMBRUSTER Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, e-mail: [email protected] Abstract: Minerals of the högbomite, nigerite, and taaffeite groups form polysomatic series composed of spinel (S) and nolanite (N) modules. The idealised formula of a spinel module is T2M4O8 where T and M represent tetrahedrally and octahedrally coordinated cations. The nolanite module in nigerite and högbomite minerals has the formula TM4O7(OH) whereas the nolanite module in the Be- bearing taaffeite minerals is modified (N’) and has the formula BeTM4O8. The modules are normalised to two closest-packed oxygen layers situated parallel to (001) in hexagonal setting. The composition of these minerals thus depends: (1) on the composition of the nolanite module, (2) on the composition of spinel module, (3) on the number of spinel and nolanite modules forming the structure. Högbomite- and nigerite-group minerals are distinguished by the dominant tetravalent cation in the nolanite module. If the molar concentration of Ti > Sn, the group name is högbomite. If the molar concentration of Sn > Ti, the group name is nigerite. Taaffeite- group minerals have a nolanite module without OH groups but with additional tetrahedral Be. In the new nomenclature, approved by the IMA CNMMN, the subgroup name is chosen according to the composition of the aluminium-spinel module. If the spinel module is dominated by the gahnite component, ZnAl2O4, the prefix ‘zinco’ is used. If the spinel module is dominated by the hercynite component, FeAl2O4, the prefix ‘ferro’ is used. -
Mathiasite-Loveringite and Priderite in Mantle Xenoliths from the Alto Paranaíba Igneous Province, Brazil: Genesis and Constraints on Mantle Metasomatism
Cent. Eur. J. Geosci. • 6(4) • 2014 • 614-632 DOI: 10.2478/s13533-012-0197-5 Central European Journal of Geosciences Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: genesis and constraints on mantle metasomatism Topical issue Vidyã V. Almeida1;2∗, Valdecir de A. Janasi2, Darcy P. Svisero2, Felix Nannini2;3 1 Geological Survey of Brazil (CPRM, SUREG SP), Rua Costa, 55, CEP 01304-010, São Paulo, SP, Brazil 2 Departamento de Mineralogia e Geotectônica, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, CEP 05508-080, São Paulo, SP, Brazil 3 Geological Survey of Brazil (CPRM, SUREG RE), Av. Sul, 2291, CEP 50770-011, Recife, PE, Brazil Received 01 April 2014; accepted 05 July2014 Abstract: Alkali-bearing Ti oxides were identified in mantle xenoliths enclosed in kimberlite-like rocks from Limeira 1 alkaline intrusion from the Alto Paranaíba Igneous Province, southeastern Brazil. The metasomatic mineral assemblages include mathiasite-loveringite and priderite associated with clinopyroxene, phlogopite, ilmenite and rutile. Mathiasite-loveringite (55-60 wt.% TiO2; 5.2-6.7 wt.% ZrO2) occurs in peridotite xenoliths rimming chromite (∼50 wt.% Cr2O3) and subordinate ilmenite (12-13.4 wt.% MgO) in double reaction rim coronas. Priderite (Ba/(K+Ba)< 0:05) occurs in phlogopite-rich xenoliths as lamellae within Mg-ilmenite (8.4-9.8 wt.% MgO) or as intergrowths in rutile crystals that may be included in sagenitic phlogopite. Mathiasite-loveringite was formed by reaction of peridotite primary minerals with alkaline melts. The priderite was formed by reaction of peridotite minerals with ultrapotassic melts. -
IMA–CNMNC Approved Mineral Symbols
Mineralogical Magazine (2021), 85, 291–320 doi:10.1180/mgm.2021.43 Article IMA–CNMNC approved mineral symbols Laurence N. Warr* Institute of Geography and Geology, University of Greifswald, 17487 Greifswald, Germany Abstract Several text symbol lists for common rock-forming minerals have been published over the last 40 years, but no internationally agreed standard has yet been established. This contribution presents the first International Mineralogical Association (IMA) Commission on New Minerals, Nomenclature and Classification (CNMNC) approved collection of 5744 mineral name abbreviations by combining four methods of nomenclature based on the Kretz symbol approach. The collection incorporates 991 previously defined abbreviations for mineral groups and species and presents a further 4753 new symbols that cover all currently listed IMA minerals. Adopting IMA– CNMNC approved symbols is considered a necessary step in standardising abbreviations by employing a system compatible with that used for symbolising the chemical elements. Keywords: nomenclature, mineral names, symbols, abbreviations, groups, species, elements, IMA, CNMNC (Received 28 November 2020; accepted 14 May 2021; Accepted Manuscript published online: 18 May 2021; Associate Editor: Anthony R Kampf) Introduction used collection proposed by Whitney and Evans (2010). Despite the availability of recommended abbreviations for the commonly Using text symbols for abbreviating the scientific names of the studied mineral species, to date < 18% of mineral names recog- chemical elements -
The Gemmological Laboratory Book a Guide for the Management and Technical Operations of Gemmological Laboratories
© CIBJO 2016 All rights reserved GEMMOLOGICAL COMMISSION 2016 - 1 2016–1 2016-10–27 CIBJO/Laboratories CIBJO/GEMMOLOGICAL COMMISSION The Gemmological Laboratory Book A Guide for the Management and Technical Operations of Gemmological Laboratories i © CIBJO 2016 All rights reserved GEMMOLOGICAL COMMISSION 2016 — 1 Table of Contents FOREWORD ............................................................................................................................III INTRODUCTION ........................................................................................................................V 1. SCOPE............................................................................................................................. 6 2. NORMATIVE REFERENCES .................................................................................................. 6 3. TERMS AND DEFINITIONS .................................................................................................. 7 3.1. AUDIT ..................................................................................................................... 7 3.2. CALIBRATION ........................................................................................................... 7 3.3. CERTIFICATE............................................................................................................ 7 3.4. CERTIFIED REFERENCE MATERIALS — CRMS ................................................................ 7 3.5. COMPETENT SUBCONTRACTOR ..................................................................................