Caprifoliaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Adirectionalcline in Mouriri Guianensis (Me Lastom at Ace Ae)
ADIRECTIONALCLINE IN MOURIRI GUIANENSIS (ME LASTOM AT ACE AE) Thomas Morley ( ;t) Abstract of specialization of the most important variable, the ovary, can be clearly identi Morphological variation in Mouriri guia- fied. The overall pattern of distribution nensis is described and analyzed throughout its range in Brazil and adjacent regions. Featu was briefly described previously (Morley, res that vary are ovary size, locule and ovule 1975, 1976); the present paper is a detai number, shape and smoothness of the leaf blade led report. and petiole length. The largest ovaries with the most ovules occur in west central Amazonia; intermediate sizes and numbers are widespread MATERIAL AND METHODS but reach the coast only between Marajó and Ceará; and the smallest ovaries with the fewest The study was carried out with locules and ovules are coastal or nearcoastal from Delta Amacuro in Venezuela to Marajó. pressed specimens borrowed from many Small ovaries also occur in coastal Alagoas and herbaria, to whose curators I am grateful. at Rio de Janeiro. Ovaries with the fewest locu The most instructive characters are those les and ovules are believed to be the most of the unripened ovary, and therefoie specialized, the result of evolution toward only flowering material was of value in decreased waste of ovules, since the fruits of all members are few-seeded. Leaf characters most cases. It was necessary that speci correlate statistically with ovule numbers. mens have a considerable excess of flo Possible origen of the distribution pattern of wers for the dissections to be made wi the species is compared in terms of present thout harm but fortunately only a few rainfall patterns and in terms of Pleistocene climatic change with associated forest refuges. -
Phylogeny and Phylogenetic Taxonomy of Dipsacales, with Special Reference to Sinadoxa and Tetradoxa (Adoxaceae)
PHYLOGENY AND PHYLOGENETIC TAXONOMY OF DIPSACALES, WITH SPECIAL REFERENCE TO SINADOXA AND TETRADOXA (ADOXACEAE) MICHAEL J. DONOGHUE,1 TORSTEN ERIKSSON,2 PATRICK A. REEVES,3 AND RICHARD G. OLMSTEAD 3 Abstract. To further clarify phylogenetic relationships within Dipsacales,we analyzed new and previously pub- lished rbcL sequences, alone and in combination with morphological data. We also examined relationships within Adoxaceae using rbcL and nuclear ribosomal internal transcribed spacer (ITS) sequences. We conclude from these analyses that Dipsacales comprise two major lineages:Adoxaceae and Caprifoliaceae (sensu Judd et al.,1994), which both contain elements of traditional Caprifoliaceae.Within Adoxaceae, the following relation- ships are strongly supported: (Viburnum (Sambucus (Sinadoxa (Tetradoxa, Adoxa)))). Combined analyses of C ap ri foliaceae yield the fo l l ow i n g : ( C ap ri folieae (Diervilleae (Linnaeeae (Morinaceae (Dipsacaceae (Triplostegia,Valerianaceae)))))). On the basis of these results we provide phylogenetic definitions for the names of several major clades. Within Adoxaceae, Adoxina refers to the clade including Sinadoxa, Tetradoxa, and Adoxa.This lineage is marked by herbaceous habit, reduction in the number of perianth parts,nectaries of mul- ticellular hairs on the perianth,and bifid stamens. The clade including Morinaceae,Valerianaceae, Triplostegia, and Dipsacaceae is here named Valerina. Probable synapomorphies include herbaceousness,presence of an epi- calyx (lost or modified in Valerianaceae), reduced endosperm,and distinctive chemistry, including production of monoterpenoids. The clade containing Valerina plus Linnaeeae we name Linnina. This lineage is distinguished by reduction to four (or fewer) stamens, by abortion of two of the three carpels,and possibly by supernumerary inflorescences bracts. Keywords: Adoxaceae, Caprifoliaceae, Dipsacales, ITS, morphological characters, phylogeny, phylogenetic taxonomy, phylogenetic nomenclature, rbcL, Sinadoxa, Tetradoxa. -
Viburnum Opulus Var. Americanum
Viburnum opulus L. var. americanum (Mill.) Ait. (American cranberrybush): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project May 8, 2006 James E. Nellessen Taschek Environmental Consulting 8901 Adams St. NE Ste D Albuquerque, NM 87113-2701 Peer Review Administered by Society for Conservation Biology Nellessen, J.E. (2006, May 8). Viburnum opulus L. var. americanum (Mill.) Ait. (American cranberrybush): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/viburnumopulusvaramericanum.pdf [date of access]. ACKNOWLEDGMENTS Production of this assessment would not have been possible without the help of others. I wish to thank David Wunker for his help conducting Internet searches for information on Viburnum opulus var. americanum. I wish to thank Dr. Ron Hartman for supplying photocopies of herbarium specimen labels from the University of Wyoming Rocky Mountain Herbarium. Numerous other specimen labels were obtained through searches of on-line databases, so thanks go to those universities, botanic gardens, and agencies (cited in this document) for having such convenient systems established. I would like to thank local Region 2 botanists Bonnie Heidel of the Wyoming Natural Heritage Program, and Katherine Zacharkevics and Beth Burkhart of the Black Hills National Forest for supplying information. Thanks go to Paula Nellessen for proofing the draft of this document. Thanks go to Teresa Hurt and John Taschek of Taschek Environmental Consulting for supplying tips on style and presentation for this document. Thanks are extended to employees of the USDA Forest Service Region 2, Kathy Roche and Richard Vacirca, for reviewing, supplying guidance, and making suggestions for assembling this assessment. -
The Species of Wurmbea
J. Adelaide Bot. Gard. 16: 33-53 (1995) THE SPECIES OFWURMBEA(LILIACEAE) IN SOUTH AUSTRALIA Robert J. Bates Cl- State Herbarium, Botanic Gardens, North Terrace, Adelaide, South Australia 5000 Abstract Nine species of Wunnbea Thunb. are recognised in South Australia. W. biglandulosa (R. Br.)Macfarlane, W. deserticola Macfarlane and W. sinora Macfarlane are recorded for the first time; Wurmbea biglandulosa ssp. flindersica, W. centralis ssp. australis, W. decumbens, W. dioica ssp. citrina, W. dioica ssp. lacunaria, W. latifolia ssp. vanessae and W. stellata are described. A key, together with notes on each species is provided. Macfarlane (1980) revised the genus for Australia. He placed Anguillaria R. Br. under Wurmbea and recognised W. dioica (R. Br.)F. Muell., W. centralis Macfarlane, W. latifolia Macfarlane and W. uniflora (R. Br.)Macfarlane as occurring in South Australia. Before this only one species, W. dioica (as Anguillaria dioica) was listed for South Australia (J.M. Black 1922, 1943). Macfarlane stated that he had seen no live material of South Australian species. The present author has made extensive field studies of taxa discussed in this paper, has cultivated most and studied herbarium material. Several trips have been made to other states to allow further comparisons to be made. For information on the nomenclatural history, general morphology, biology and ecology of Wurmbea see Macfarlane 1980. Key to the South Australian species of Wurmbea 1 Lower leaves paired (almost opposite), basal, of same shape and size 2 1: Lower leaves well separated, often of different shape and size 4 2 Leaves with serrate margins, flowers unisexual, nectaries 1 per tepal, a single band of colour... -
Liliaceae Lily Family
Liliaceae lily family While there is much compelling evidence available to divide this polyphyletic family into as many as 25 families, the older classification sensu Cronquist is retained here. Page | 1222 Many are familiar as garden ornamentals and food plants such as onion, garlic, tulip and lily. The flowers are showy and mostly regular, three-merous and with a superior ovary. Key to genera A. Leaves mostly basal. B B. Flowers orange; 8–11cm long. Hemerocallis bb. Flowers not orange, much smaller. C C. Flowers solitary. Erythronium cc. Flowers several to many. D D. Leaves linear, or, absent at flowering time. E E. Flowers in an umbel, terminal, numerous; leaves Allium absent. ee. Flowers in an open cluster, or dense raceme. F F. Leaves with white stripe on midrib; flowers Ornithogalum white, 2–8 on long peduncles. ff. Leaves green; flowers greenish, in dense Triantha racemes on very short peduncles. dd. Leaves oval to elliptic, present at flowering. G G. Flowers in an umbel, 3–6, yellow. Clintonia gg. Flowers in a one-sided raceme, white. Convallaria aa. Leaves mostly cauline. H H. Leaves in one or more whorls. I I. Leaves in numerous whorls; flowers >4cm in diameter. Lilium ii. Leaves in 1–2 whorls; flowers much smaller. J J. Leaves 3 in a single whorl; flowers white or purple. Trillium jj. Leaves in 2 whorls, or 5–9 leaves; flowers yellow, small. Medeola hh. Leaves alternate. K K. Flowers numerous in a terminal inflorescence. L L. Plants delicate, glabrous; leaves 1–2 petiolate. Maianthemum ll. Plant coarse, robust; stems pubescent; leaves many, clasping Veratrum stem. -
FINAL Phyton-Lonicera Maackii
Thompson, R.L. and D.B. Poindexter. 2011. Species richness after Lonicera maackii removal from an old cemetery macroplot on Dead Horse Knob, Madison County, Kentucky. Phytoneuron 2011-50: 1–16. Published 10 Oct 2011. ISSN 2153 733X SPECIES RICHNESS AFTER LONICERA MAACKII REMOVAL FROM AN OLD CEMETERY MACROPLOT ON DEAD HORSE KNOB, MADISON COUNTY, KENTUCKY RALPH L. THOMPSON 1, 2 1 Hancock Biological Station Murray State University Murray, Kentucky 42071 2 Berea College Herbarium, Biology Department Berea, Kentucky 40404 [email protected] DERICK B. POINDEXTER I.W. Carpenter, Jr. Herbarium Appalachian State University, Biology Department Boone, North Carolina 28608 [email protected] ABSTRACT The predominance of Lonicera maackii (Rupr.) Herder (Amur Honeysuckle) in central Kentucky has made it a significant invasive for continued community interaction studies. To better understand the dynamics of vegetation succession with respect to this species and overall species richness, quantitative floristics of two macroplots were made at the summit (312 m) of Dead Horse Knob (Rucker’s Knob) near Berea, in Madison County, east-central Kentucky. An old abandoned cemetery was cleared of L. maackii and a macroplot (20 x 12 m) served as a test plot, while a second macroplot was placed within a dense thicket of L. maackii to serve as a reference plot. Thirty quadrats (1 x 1 m) were randomly placed within each macroplot as a means to determine species frequency. A full floristic survey was then conducted of each macroplot. Results from frequency data suggest that native annual and perennial species will quickly recolonize an area after removal of Amur Honeysuckle and become the most important components of the site. -
Flora of South Australia 5Th Edition | Edited by Jürgen Kellermann
Flora of South Australia 5th Edition | Edited by Jürgen Kellermann KEY TO FAMILIES1 J.P. Jessop2 The sequence of families used in this Flora follows closely the one adopted by the Australian Plant Census (www.anbg.gov. au/chah/apc), which in turn is based on that of the Angiosperm Phylogeny Group (APG III 2009) and Mabberley’s Plant Book (Mabberley 2008). It differs from previous editions of the Flora, which were mainly based on the classification system of Engler & Gilg (1919). A list of all families recognised in this Flora is printed in the inside cover pages with families already published highlighted in bold. The up-take of this new system by the State Herbarium of South Australia is still in progress and the S.A. Census database (www.flora.sa.gov.au/census.shtml) still uses the old classification of families. The Australian Plant Census web-site presents comparison tables of the old and new systems on family and genus level. A good overview of all families can be found in Heywood et al. (2007) and Stevens (2001–), although these authors accept a slightly different family classification. A number of names with which people using this key may be familiar but are not employed in the system used in this work have been included for convenience and are enclosed on quotation marks. 1. Plants reproducing by spores and not producing flowers (“Ferns and lycopods”) 2. Aerial shoots either dichotomously branched, with scale leaves and 3-lobed sporophores or plants with fronds consisting of a simple or divided sterile blade and a simple or branched spikelike sporophore .................................................................................. -
CAPRIFOLIACEAE Christine Pang, Darla Chenin, and Amber M
Comparative Seed Manual: CAPRIFOLIACEAE Christine Pang, Darla Chenin, and Amber M. VanDerwarker (Completed, May 10, 2019) This seed manual consists of photos and relevant information on plant species housed in the Integrative Subsistence Laboratory at the Anthropology Department, University of California, Santa Barbara. The impetus for the creation of this manual was to enable UCSB graduate students to have access to comparative materials when making in-field identifications. Most of the plant species included in the manual come from New World locales with an emphasis on Eastern North America, California, Mexico, Central America, and the South American Andes. Published references consulted1: 1998. Moerman, Daniel E. Native American ethnobotany. Vol. 879. Portland, OR: Timber press. 2009. Moerman, Daniel E. Native American medicinal plants: an ethnobotanical dictionary. OR: Timber Press. 2010. Moerman, Daniel E. Native American food plants: an ethnobotanical dictionary. OR: Timber Press. Species included herein: Symphoricarpos spp. 1 Disclaimer: Information on relevant edible and medicinal uses comes from a variety of sources, both published and internet-based; this manual does NOT recommend using any plants as food or medicine without first consulting a medical professional. Symphoricarpos spp. Family: Caprifoliaceae Common Names: Snowberry, Snowberry Bush, Waxberry, Ghostberry, Coralberry Habitat and Growth Habit: The distribution of this plant ranges from North to Central America. Human Uses: Humans have used this plant for ornamental purposes, after flowering the berries change color seasonally. Sources Consulted: http://urbanbutterflygarden.co.uk/snowberry-symphoricarpos-spp, accessed May 10, 2019 https://www.fs.fed.us/database/feis/plants/shrub/symlon/all.html, accessed May 10, 2019 . -
PLANT MORPHOLOGY: Vegetative & Reproductive
PLANT MORPHOLOGY: Vegetative & Reproductive Study of form, shape or structure of a plant and its parts Vegetative vs. reproductive morphology http://commons.wikimedia.org/wiki/File:Peanut_plant_NSRW.jpg Vegetative morphology http://faculty.baruch.cuny.edu/jwahlert/bio1003/images/anthophyta/peanut_cotyledon.jpg Seed = starting point of plant after fertilization; a young plant in which development is arrested and the plant is dormant. Monocotyledon vs. dicotyledon cotyledon = leaf developed at 1st node of embryo (seed leaf). “Textbook” plant http://bio1903.nicerweb.com/Locked/media/ch35/35_02AngiospermStructure.jpg Stem variation Stem variation http://www2.mcdaniel.edu/Biology/botf99/stems&leaves/barrel.jpg http://www.puc.edu/Faculty/Gilbert_Muth/art0042.jpg http://www2.mcdaniel.edu/Biology/botf99/stems&leaves/xstawb.gif http://biology.uwsp.edu/courses/botlab/images/1854$.jpg Vegetative morphology Leaf variation Leaf variation Leaf variation Vegetative morphology If the primary root persists, it is called a “true root” and may take the following forms: taproot = single main root (descends vertically) with small lateral roots. fibrous roots = many divided roots of +/- equal size & thickness. http://oregonstate.edu/dept/nursery-weeds/weedspeciespage/OXALIS/oxalis_taproot.jpg adventitious roots = roots that originate from stem (or leaf tissue) rather than from the true root. All roots on monocots are adventitious. (e.g., corn and other grasses). http://plant-disease.ippc.orst.edu/plant_images/StrawberryRootLesion.JPG Root variation http://bio1903.nicerweb.com/Locked/media/ch35/35_04RootDiversity.jpg Flower variation http://130.54.82.4/members/Okuyama/yudai_e.htm Reproductive morphology: flower Yuan Yaowu Flower parts pedicel receptacle sepals petals Yuan Yaowu Flower parts Pedicel = (Latin: ped “foot”) stalk of a flower. -
Vegetative Vs. Reproductive Morphology
Today’s lecture: plant morphology Vegetative vs. reproductive morphology Vegetative morphology Growth, development, photosynthesis, support Not involved in sexual reproduction Reproductive morphology Sexual reproduction Vegetative morphology: seeds Seed = a dormant young plant in which development is arrested. Cotyledon (seed leaf) = leaf developed at the first node of the embryonic stem; present in the seed prior to germination. Vegetative morphology: roots Water and mineral uptake radicle primary roots stem secondary roots taproot fibrous roots adventitious roots Vegetative morphology: roots Modified roots Symbiosis/parasitism Food storage stem secondary roots Increase nutrient Allow dormancy adventitious roots availability Facilitate vegetative spread Vegetative morphology: stems plumule primary shoot Support, vertical elongation apical bud node internode leaf lateral (axillary) bud lateral shoot stipule Vegetative morphology: stems Vascular tissue = specialized cells transporting water and nutrients Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Modified stems Asexual (vegetative) reproduction Stolon: above ground Rhizome: below ground Stems elongating laterally, producing adventitious roots and lateral shoots Vegetative morphology: stems Modified stems Food storage Bulb: leaves are storage organs Corm: stem is storage organ Stems not elongating, packed with carbohydrates Vegetative -
Ovary Structure of the Genus Gyrogyne (Gesneriaceae, Epithemateae)
CSIRO PUBLISHING www.publish.csiro.au/journals/asb Australian Systematic Botany 16, 629–632 Ovary structure of the genus Gyrogyne (Gesneriaceae, Epithemateae) Yin-Zheng Wang Laboratory of Systematic & Evolutionary Botany and Herbarium, Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, People’s Republic of China. Email: [email protected] Abstract. The anatomical re-investigation of the ovary in the holotype of Gyrogyne subaequifolia W.T.Wang is carried out in order to clarify the ovarian structure of the genus Gyrogyne W.T.Wang (Gesneriaceae), a seemingly unusual ovarian structure according to its original description. The present anatomical re-investigation reveals that the ovary is, in fact, bilocular with a swollen axile placenta in the centre, that is, the median area of the membranous septum. The ovarian structure of G. subaequifolia shows, thus, a common feature frequently observed in the ovaries of Gesneriaceae rather than a unique ovarian characteristic that contributes to the family Gesneriaceae. The systematic placement of Gyrogyne and the relationship between Gyrogyne and allies are discussed. SB03004 NoY.- tesZ. onWang t he ovary structur e of Gy rogyne Introduction Results The monospecific genus Gyrogyne W. T. Wa n g The transections at the basal part of the ovary are not clear, (Gesneriaceae) endemic to China was established on the for the flower is very depressed (not shown). Upward from basis of the only species, G. subaequifolia W. T. Wa n g , the lower part, the structure of the ovary gradually becomes described at the same time (Wang 1981). In the original visible. -
Investigation Into the Genetic Basis of Increased Locule Number in Heirloom Tomato Cultivars
Investigation Into The Genetic Basis Of Increased Locule Number In Heirloom Tomato Cultivars Item Type text; Electronic Thesis Authors Paton, Andrew James Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 11:38:21 Item License http://rightsstatements.org/vocab/InC/1.0/ Link to Item http://hdl.handle.net/10150/632842 INVESTIGATION INTO THE GENETIC BASIS OF INCREASED LOCULE NUMBER IN HEIRLOOM TOMATO CULTIVARS By ANDREW JAMES PATON ____________________ A Thesis Submitted to The Honors College In Partial Fulfillment of the Bachelors degree With Honors in Molecular and Cellular Biology THE UNIVERSITY OF ARIZONA M A Y 2 0 1 9 Approved by: ____________________________ Dr. Frans Tax Department of Molecular and Cellular Biology Abstract Tomatoes are an important crop for many types of foods and can be easily preserved, making them an attractive candidate for selective genetic modification. One trait that could be improved upon is locule number, which can increase the practical edible mass of each tomato. To identify genes that may be responsible for this phenotype, we PCR-amplified, gel-imaged, and sequenced candidate genes in several heirloom tomato cultivars that naturally exhibit multiple locules. These candidate genes were selected from genes involved in the CLV-WUS feedback mechanism that act to control proliferation of apical meristems, which directly impact the characteristics of fruit.