Lectures on Quantum Mechanics for mathematicians A.I. Komech 1 Faculty of Mathematics of Vienna University Institute for Information Transmission Problems of RAS, Moscow Department Mechanics and Mathematics of Moscow State University (Lomonosov)
[email protected] Abstract The main goal of these lectures – introduction to Quantum Mechanics for mathematically-minded readers. The second goal is to discuss the mathematical interpretation of the main quantum postulates: transitions between quantum stationary orbits, wave-particle duality and probabilistic interpretation. We suggest a dynamical interpretation of these phenomena based on the new conjectures on attractors of nonlinear Hamiltonian partial differential equations. This conjecture is confirmed for a list of model Hamiltonian nonlinear PDEs by the results obtained since 1990 (we survey sketchy these results). However, for the Maxwell–Schr¨odinger equations this conjecture is still an open problem. We calculate the diffraction amplitude for the scattering of electron beams and Aharonov–Bohm shift via the Kirchhoff approximation. Keywords: Schr¨odinger equation; Maxwell equations; Maxwell–Schr¨odinger equations; semiclassical asymp- totics; Hamilton–Jacobi equation; energy; charge; momentum; angular momentum; quantum transitions; wave- particle duality; probabilistic interpretation; magnetic moment; normal Zeeman effect; spin; rotation group; Pauli equation; electron diffraction; Kirchhoff approximation; Aharonov–Bohm shift; attractors; Hamiltonian equations; nonlinear partial differential equations; Lie group; symmetry group. Contents 1 Introduction 3 arXiv:1907.05786v2 [math-ph] 15 Jul 2019 2 Planck’s law, Einstein’s photons and de Broglie wave-particle duality 4 2.1 Planck’s law and Einstein’s photon . ................ 4 2.2 De Broglie wave-particle duality . ................ 4 3 The Schr¨odinger quantum mechanics 5 3.1 CanonicalQuantisation .