Feynman Quantization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unit 1 Old Quantum Theory
UNIT 1 OLD QUANTUM THEORY Structure Introduction Objectives li;,:overy of Sub-atomic Particles Earlier Atom Models Light as clectromagnetic Wave Failures of Classical Physics Black Body Radiation '1 Heat Capacity Variation Photoelectric Effect Atomic Spectra Planck's Quantum Theory, Black Body ~diation. and Heat Capacity Variation Einstein's Theory of Photoelectric Effect Bohr Atom Model Calculation of Radius of Orbits Energy of an Electron in an Orbit Atomic Spectra and Bohr's Theory Critical Analysis of Bohr's Theory Refinements in the Atomic Spectra The61-y Summary Terminal Questions Answers 1.1 INTRODUCTION The ideas of classical mechanics developed by Galileo, Kepler and Newton, when applied to atomic and molecular systems were found to be inadequate. Need was felt for a theory to describe, correlate and predict the behaviour of the sub-atomic particles. The quantum theory, proposed by Max Planck and applied by Einstein and Bohr to explain different aspects of behaviour of matter, is an important milestone in the formulation of the modern concept of atom. In this unit, we will study how black body radiation, heat capacity variation, photoelectric effect and atomic spectra of hydrogen can be explained on the basis of theories proposed by Max Planck, Einstein and Bohr. They based their theories on the postulate that all interactions between matter and radiation occur in terms of definite packets of energy, known as quanta. Their ideas, when extended further, led to the evolution of wave mechanics, which shows the dual nature of matter -
Fen Fakültesi Matematik Bölümü Y
İZMİR INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF ENGINEERING AND SCIENCES DEPARTMENT OF MATHEMATICS CURRICULUM OF THE GRADUATE PROGRAMS M.S. in Mathematics (Thesis) Core Courses MATH 596 Graduate Seminar (0-2) NC AKTS:9 MATH 599 Scientific Research Techniques and Publication Ethics (0-2) NC AKTS:8 MATH 500 M.S. Thesis (0-1) NC AKTS:26 MATH 8XX Special Studies (8-0) NC AKTS:4 In addition, the following courses must be taken. MATH 515 Real Analysis (3-0)3 AKTS:8 MATH 527 Basic Abstract Algebra (3-0)3 AKTS:8 *All M.S. students must register Graduate Seminar course until the beginning of their 4th semester. Total credit (min.) :21 Number of courses with credit (min.) : 7 M.S. in Mathematics (Non-thesis) Core Courses MATH 516 Complex Analysis (3-0)3 AKTS:8 MATH 527 Basic Abstract Algebra (3-0)3 AKTS:8 MATH 533 Ordinary Differential Equations (3-0)3 AKTS:8 MATH 534 Partial Differential Equations (3-0)3 AKTS:8 MATH 573 Modern Geometry I (3-0)3 AKTS:8 MATH 595 Graduation Project (0-2) NC AKTS:5 MATH 596 Graduate Seminar (0-2) NC AKTS:9 MATH 599 Scientific Research Techniques and Publication Ethics (0-2) NC AKTS:8 Total credit (min.) :30 Number of courses with credit (min.) :10 Ph.D. in Mathematics Core Courses MATH 597 Comprehensive Studies (0-2) NC AKTS:9 MATH 598 Graduate Seminar in PhD (0-2) NC AKTS:9 MATH 599 Scientific Research Techniques and Publication Ethics* (0-2) NC AKTS:8 MATH 600 Ph.D. -
Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model
Instituto de Física Teórica IFT Universidade Estadual Paulista October/92 IFT-R043/92 Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model J.C.Brunelli Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405-900 - São Paulo, S.P. Brazil 'This work was supported by CNPq. Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405 - Sao Paulo, S.P. Brazil Telephone: 55 (11) 288-5643 Telefax: 55(11)36-3449 Telex: 55 (11) 31870 UJMFBR Electronic Address: [email protected] 47553::LIBRARY Stochastic Quantization of Fermionic Theories: 1. Introduction Renormalization of the Massive Thimng Model' The stochastic quantization method of Parisi-Wu1 (for a review see Ref. 2) when applied to fermionic theories usually requires the use of a Langevin system modified by the introduction of a kernel3 J. C. Brunelli (1.1a) InBtituto de Física Teórica (1.16) Universidade Estadual Paulista Rua Pamplona, 145 01405 - São Paulo - SP where BRAZIL l = 2Kah(x,x )8(t - ?). (1.2) Here tj)1 tp and the Gaussian noises rj, rj are independent Grassmann variables. K(xty) is the aforementioned kernel which ensures the proper equilibrium limit configuration for Accepted for publication in the International Journal of Modern Physics A. mas si ess theories. The specific form of the kernel is quite arbitrary but in what follows, we use K(x,y) = Sn(x-y)(-iX + ™)- Abstract In a number of cases, it has been verified that the stochastic quantization procedure does not bring new anomalies and that the equilibrium limit correctly reproduces the basic (jJsfsini g the Langevin approach for stochastic processes we study the renormalizability properties of the models considered4. -
Arxiv:1206.1084V3 [Quant-Ph] 3 May 2019
Overview of Bohmian Mechanics Xavier Oriolsa and Jordi Mompartb∗ aDepartament d'Enginyeria Electr`onica, Universitat Aut`onomade Barcelona, 08193, Bellaterra, SPAIN bDepartament de F´ısica, Universitat Aut`onomade Barcelona, 08193 Bellaterra, SPAIN This chapter provides a fully comprehensive overview of the Bohmian formulation of quantum phenomena. It starts with a historical review of the difficulties found by Louis de Broglie, David Bohm and John Bell to convince the scientific community about the validity and utility of Bohmian mechanics. Then, a formal explanation of Bohmian mechanics for non-relativistic single-particle quantum systems is presented. The generalization to many-particle systems, where correlations play an important role, is also explained. After that, the measurement process in Bohmian mechanics is discussed. It is emphasized that Bohmian mechanics exactly reproduces the mean value and temporal and spatial correlations obtained from the standard, i.e., `orthodox', formulation. The ontological characteristics of the Bohmian theory provide a description of measurements in a natural way, without the need of introducing stochastic operators for the wavefunction collapse. Several solved problems are presented at the end of the chapter giving additional mathematical support to some particular issues. A detailed description of computational algorithms to obtain Bohmian trajectories from the numerical solution of the Schr¨odingeror the Hamilton{Jacobi equations are presented in an appendix. The motivation of this chapter is twofold. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
RESOURCES in NUMERICAL ANALYSIS Kendall E
RESOURCES IN NUMERICAL ANALYSIS Kendall E. Atkinson University of Iowa Introduction I. General Numerical Analysis A. Introductory Sources B. Advanced Introductory Texts with Broad Coverage C. Books With a Sampling of Introductory Topics D. Major Journals and Serial Publications 1. General Surveys 2. Leading journals with a general coverage in numerical analysis. 3. Other journals with a general coverage in numerical analysis. E. Other Printed Resources F. Online Resources II. Numerical Linear Algebra, Nonlinear Algebra, and Optimization A. Numerical Linear Algebra 1. General references 2. Eigenvalue problems 3. Iterative methods 4. Applications on parallel and vector computers 5. Over-determined linear systems. B. Numerical Solution of Nonlinear Systems 1. Single equations 2. Multivariate problems C. Optimization III. Approximation Theory A. Approximation of Functions 1. General references 2. Algorithms and software 3. Special topics 4. Multivariate approximation theory 5. Wavelets B. Interpolation Theory 1. Multivariable interpolation 2. Spline functions C. Numerical Integration and Differentiation 1. General references 2. Multivariate numerical integration IV. Solving Differential and Integral Equations A. Ordinary Differential Equations B. Partial Differential Equations C. Integral Equations V. Miscellaneous Important References VI. History of Numerical Analysis INTRODUCTION Numerical analysis is the area of mathematics and computer science that creates, analyzes, and implements algorithms for solving numerically the problems of continuous mathematics. Such problems originate generally from real-world applications of algebra, geometry, and calculus, and they involve variables that vary continuously; these problems occur throughout the natural sciences, social sciences, engineering, medicine, and business. During the second half of the twentieth century and continuing up to the present day, digital computers have grown in power and availability. -
A Short Course on Approximation Theory
A Short Course on Approximation Theory N. L. Carothers Department of Mathematics and Statistics Bowling Green State University ii Preface These are notes for a topics course offered at Bowling Green State University on a variety of occasions. The course is typically offered during a somewhat abbreviated six week summer session and, consequently, there is a bit less material here than might be associated with a full semester course offered during the academic year. On the other hand, I have tried to make the notes self-contained by adding a number of short appendices and these might well be used to augment the course. The course title, approximation theory, covers a great deal of mathematical territory. In the present context, the focus is primarily on the approximation of real-valued continuous functions by some simpler class of functions, such as algebraic or trigonometric polynomials. Such issues have attracted the attention of thousands of mathematicians for at least two centuries now. We will have occasion to discuss both venerable and contemporary results, whose origins range anywhere from the dawn of time to the day before yesterday. This easily explains my interest in the subject. For me, reading these notes is like leafing through the family photo album: There are old friends, fondly remembered, fresh new faces, not yet familiar, and enough easily recognizable faces to make me feel right at home. The problems we will encounter are easy to state and easy to understand, and yet their solutions should prove intriguing to virtually anyone interested in mathematics. The techniques involved in these solutions entail nearly every topic covered in the standard undergraduate curriculum. -
Walther Nernst, Albert Einstein, Otto Stern, Adriaan Fokker
Walther Nernst, Albert Einstein, Otto Stern, Adriaan Fokker, and the Rotational Specific Heat of Hydrogen Clayton Gearhart St. John’s University (Minnesota) Max-Planck-Institut für Wissenschaftsgeschichte Berlin July 2007 1 Rotational Specific Heat of Hydrogen: Widely investigated in the old quantum theory Nernst Lorentz Eucken Einstein Ehrenfest Bohr Planck Reiche Kemble Tolman Schrödinger Van Vleck Some of the more prominent physicists and physical chemists who worked on the specific heat of hydrogen through the mid-1920s. See “The Rotational Specific Heat of Molecular Hydrogen in the Old Quantum Theory” http://faculty.csbsju.edu/cgearhart/pubs/sel_pubs.htm (slide show) 2 Rigid Rotator (Rotating dumbbell) •The rigid rotator was among the earliest problems taken up in the old (pre-1925) quantum theory. • Applications: Molecular spectra, and rotational contri- bution to the specific heat of molecular hydrogen • The problem should have been simple Molecular • relatively uncomplicated theory spectra • only one adjustable parameter (moment of inertia) • Nevertheless, no satisfactory theoretical description of the specific heat of hydrogen emerged in the old quantum theory Our story begins with 3 Nernst’s Heat Theorem Walther Nernst 1864 – 1941 • physical chemist • studied with Boltzmann • 1889: lecturer, then professor at Göttingen • 1905: professor at Berlin Nernst formulated his heat theorem (Third Law) in 1906, shortly after appointment as professor in Berlin. 4 Nernst’s Heat Theorem and Quantum Theory • Initially, had nothing to do with quantum theory. • Understand the equilibrium point of chemical reactions. • Nernst’s theorem had implications for specific heats at low temperatures. • 1906–1910: Nernst and his students undertook extensive measurements of specific heats of solids at low (down to liquid hydrogen) temperatures. -
On the Definition of the Renormalization Constants in Quantum Electrodynamics
On the Definition of the Renormalization Constants in Quantum Electrodynamics Autor(en): Källén, Gunnar Objekttyp: Article Zeitschrift: Helvetica Physica Acta Band(Jahr): 25(1952) Heft IV Erstellt am: Mar 18, 2014 Persistenter Link: http://dx.doi.org/10.5169/seals-112316 Nutzungsbedingungen Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und unter deren Einhaltung weitergegeben werden. Die Speicherung von Teilen des elektronischen Angebots auf anderen Servern ist nur mit vorheriger schriftlicher Genehmigung möglich. Die Rechte für diese und andere Nutzungsarten der Inhalte liegen beim Herausgeber bzw. beim Verlag. Ein Dienst der ETH-Bibliothek Rämistrasse 101, 8092 Zürich, Schweiz [email protected] http://retro.seals.ch On the Definition of the Renormalization Constants in Quantum Electrodynamics by Gunnar Källen.*) Swiss Federal Institute of Technology, Zürich. (14.11.1952.) Summary. A formulation of quantum electrodynamics in terms of the renor- malized Heisenberg operators and the experimental mass and charge of the electron is given. The renormalization constants are implicitly defined and ex¬ pressed as integrals over finite functions in momentum space. No discussion of the convergence of these integrals or of the existence of rigorous solutions is given. Introduction. The renormalization method in quantum electrodynamics has been investigated by many authors, and it has been proved by Dyson1) that every term in a formal expansion in powers of the coupling constant of various expressions is a finite quantity. -
THE DEVELOPMENT of the SPACE-TIME VIEW of QUANTUM ELECTRODYNAMICS∗ by Richard P
THE DEVELOPMENT OF THE SPACE-TIME VIEW OF QUANTUM ELECTRODYNAMICS∗ by Richard P. Feynman California Institute of Technology, Pasadena, California Nobel Lecture, December 11, 1965. We have a habit in writing articles published in scientific journals to make the work as finished as possible, to cover all the tracks, to not worry about the blind alleys or to describe how you had the wrong idea first, and so on. So there isn’t any place to publish, in a dignified manner, what you actually did in order to get to do the work, although, there has been in these days, some interest in this kind of thing. Since winning the prize is a personal thing, I thought I could be excused in this particular situation, if I were to talk personally about my relationship to quantum electrodynamics, rather than to discuss the subject itself in a refined and finished fashion. Furthermore, since there are three people who have won the prize in physics, if they are all going to be talking about quantum electrodynamics itself, one might become bored with the subject. So, what I would like to tell you about today are the sequence of events, really the sequence of ideas, which occurred, and by which I finally came out the other end with an unsolved problem for which I ultimately received a prize. I realize that a truly scientific paper would be of greater value, but such a paper I could publish in regular journals. So, I shall use this Nobel Lecture as an opportunity to do something of less value, but which I cannot do elsewhere. -
Second Quantization
Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0. -
General Quantization
General quantization David Ritz Finkelstein∗ October 29, 2018 Abstract Segal’s hypothesis that physical theories drift toward simple groups follows from a general quantum principle and suggests a general quantization process. I general- quantize the scalar meson field in Minkowski space-time to illustrate the process. The result is a finite quantum field theory over a quantum space-time with higher symmetry than the singular theory. Multiple quantification connects the levels of the theory. 1 Quantization as regularization Quantum theory began with ad hoc regularization prescriptions of Planck and Bohr to fit the weird behavior of the electromagnetic field and the nuclear atom and to handle infinities that blocked earlier theories. In 1924 Heisenberg discovered that one small change in algebra did both naturally. In the early 1930’s he suggested extending his algebraic method to space-time, to regularize field theory, inspiring the pioneering quantum space-time of Snyder [43]. Dirac’s historic quantization program for gravity also eliminated absolute space-time points from the quantum theory of gravity, leading Bergmann too to say that the world point itself possesses no physical reality [5, 6]. arXiv:quant-ph/0601002v2 22 Jan 2006 For many the infinities that still haunt physics cry for further and deeper quanti- zation, but there has been little agreement on exactly what and how far to quantize. According to Segal canonical quantization continued a drift of physical theory toward simple groups that special relativization began. He proposed on Darwinian grounds that further quantization should lead to simple groups [32]. Vilela Mendes initiated the work in that direction [37].