A Short Course on Approximation Theory

Total Page:16

File Type:pdf, Size:1020Kb

A Short Course on Approximation Theory A Short Course on Approximation Theory N. L. Carothers Department of Mathematics and Statistics Bowling Green State University ii Preface These are notes for a topics course offered at Bowling Green State University on a variety of occasions. The course is typically offered during a somewhat abbreviated six week summer session and, consequently, there is a bit less material here than might be associated with a full semester course offered during the academic year. On the other hand, I have tried to make the notes self-contained by adding a number of short appendices and these might well be used to augment the course. The course title, approximation theory, covers a great deal of mathematical territory. In the present context, the focus is primarily on the approximation of real-valued continuous functions by some simpler class of functions, such as algebraic or trigonometric polynomials. Such issues have attracted the attention of thousands of mathematicians for at least two centuries now. We will have occasion to discuss both venerable and contemporary results, whose origins range anywhere from the dawn of time to the day before yesterday. This easily explains my interest in the subject. For me, reading these notes is like leafing through the family photo album: There are old friends, fondly remembered, fresh new faces, not yet familiar, and enough easily recognizable faces to make me feel right at home. The problems we will encounter are easy to state and easy to understand, and yet their solutions should prove intriguing to virtually anyone interested in mathematics. The techniques involved in these solutions entail nearly every topic covered in the standard undergraduate curriculum. From that point of view alone, the course should have something to offer both the beginner and the veteran. Think of it as an opportunity to take a grand tour of undergraduate mathematics (with the occasional side trip into graduate mathematics) with the likes of Weierstrass, Gauss, and Lebesgue as our guides. Approximation theory, as you might guess from its name, has both a pragmatic side, which is concerned largely with computational practicalities, precise estimations of error, and so on, and also a theoretical side, which is more often concerned with existence and uniqueness questions, and \applications" to other theoretical issues. The working profes- sional in the field moves easily between these two seemingly disparate camps; indeed, most modern books on approximation theory will devote a fair number of pages to both aspects of the subject. Being a well-informed amateur rather than a trained expert on the subject, however, my personal preferences have been the driving force behind my selection of topics. Thus, although we will have a few things to say about computational considerations, the primary focus here is on the theory of approximation. By way of prerequisites, I will freely assume that the reader is familiar with basic notions from linear algebra and advanced calculus. For example, I will assume that the reader is familiar with the notions of a basis for a vector space, linear transformations (maps) defined on a vector space, determinants, and so on; I will also assume that the reader is familiar with the notions of pointwise and uniform convergence for sequence of real-valued functions, iii iv PREFACE \"-δ" and \"-N" proofs (for continuity of a function, say, and convergence of a sequence), closed and compact subsets of the real line, normed vector spaces, and so on. If one or two of these phrases is unfamiliar, don't worry: Many of these topics are reviewed in the text; but if several topics are unfamiliar, please speak with me as soon as possible. For my part, I have tried to carefully point out thorny passages and to offer at least a few hints or reminders whenever details beyond the ordinary are needed. Nevertheless, in order to fully appreciate the material, it will be necessary for the reader to actually work through certain details. For this reason, I have peppered the notes with a variety of exercises, both big and small, at least a few of which really must be completed in order to follow the discussion. In the final chapter, where a rudimentary knowledge of topological spaces is required, I am forced to make a few assumptions that may be unfamiliar to some readers. Still, I feel certain that the main results can be appreciated without necessarily following every detail of the proofs. Finally, I would like to stress that these notes borrow from a number of sources. Indeed, the presentation draws heavily from several classic textbooks, most notably the wonderful books by Natanson [41], de La Vall´eePoussin [37], and Cheney [12] (numbers refer to the References at the end of these notes), and from several courses on related topics that I took while a graduate student at The Ohio State University offered by Professor Bogdan Baishanski, whose prowess at the blackboard continues to serve as an inspiration to me. I should also mention that these notes began, some 20 years ago as I write this, as a supplement to Rivlin's classic introduction to the subject [45], which I used as the primary text at the time. This will explain my frequent references to certain formulas or theorems in Rivlin's book. While the notes are no longer dependent on Rivlin, per se, it would still be fair to say that they only supplement his more thorough presentation. In fact, wherever possible, I would encourage the interested reader to consult the original sources cited throughout the text. Contents Preface iii 1 Preliminaries 1 Introduction . 1 Best Approximations in Normed Spaces . 1 Finite-Dimensional Vector Spaces . 4 Problems . 9 2 Approximation by Algebraic Polynomials 11 The Weierstrass Theorem . 11 Bernstein's Proof . 12 Landau's Proof . 14 Improved Estimates . 16 The Bohman-Korovkin Theorem . 18 Problems . 20 3 Trigonometric Polynomials 23 Introduction . 23 Weierstrass's Second Theorem . 27 Problems . 29 4 Characterization of Best Approximation 31 Introduction . 31 Properties of the Chebyshev Polynomials . 37 Chebyshev Polynomials in Practice . 41 Uniform Approximation by Trig Polynomials . 42 Problems . 45 5 A Brief Introduction to Interpolation 47 Lagrange Interpolation . 47 Chebyshev Interpolation . 53 Hermite Interpolation . 54 The Inequalities of Markov and Bernstein . 57 Problems . 60 6 A Brief Introduction to Fourier Series 61 Problems . 72 v vi CONTENTS 7 Jackson's Theorems 73 Direct Theorems . 73 Inverse Theorems . 76 8 Orthogonal Polynomials 79 The Christoffel-Darboux Identity . 86 Problems . 88 9 Gaussian Quadrature 89 Introduction . 89 Gaussian-type Quadrature . 92 Computational Considerations . 94 Applications to Interpolation . 95 The Moment Problem . 96 10 The M¨untz Theorems 101 11 The Stone-Weierstrass Theorem 107 Applications to C2π ................................111 Applications to Lipschitz Functions . 113 Appendices A The `p Norms 115 B Completeness and Compactness 119 C Pointwise and Uniform Convergence 123 D Brief Review of Linear Algebra 127 Sums and Quotients . 127 Inner Product Spaces . 128 E Continuous Linear Transformations 133 F Linear Interpolation 135 G The Principle of Uniform Boundedness 139 H Approximation on Finite Sets 143 Convergence of Approximations over Finite Sets . 146 The One Point Exchange Algorithm . 148 References 151 Chapter 1 Preliminaries Introduction In 1853, the great Russian mathematician, P. L. Chebyshev (Cebyˇsev),whileˇ working on a problem of linkages, devices which translate the linear motion of a steam engine into the circular motion of a wheel, considered the following problem: Given a continuous function f defined on a closed interval [ a; b ] and a posi- Pn k tive integer n, can we \represent" f by a polynomial p(x) = k=0 akx , of degree at most n, in such a way that the maximum error at any point x in [ a; b ] is controlled? In particular, is it possible to construct p so that the error max a≤x≤b jf(x) − p(x)j is minimized? This problem raises several questions, the first of which Chebyshev himself ignored: { Why should such a polynomial even exist? { If it does, can we hope to construct it? { If it exists, is it also unique? R b 2 { What happens if we change the measure of error to, say, a jf(x) − p(x)j dx? Exercise 1.1. How do we know that C[ a; b ] contains non-polynomial functions? Name one (and explain why it isn't a polynomial)! Best Approximations in Normed Spaces Chebyshev's problem is perhaps best understood by rephrasing it in modern terms. What we have here is a problem of best approximation in a normed linear space. Recall that a norm on a (real) vector space X is a nonnegative function on X satisfying kxk ≥ 0, and kxk = 0 if and only if x = 0, kαxk = jαjkxk for any x 2 X and α 2 R, kx + yk ≤ kxk + kyk for any x, y 2 X. 1 2 CHAPTER 1. PRELIMINARIES Any norm on X induces a metric or distance function by setting dist(x; y) = kx − yk. The abstract version of our problem(s) can now be restated: Given a subset (or even a subspace) Y of X and a point x 2 X, is there an element y 2 Y that is nearest to x? That is, can we find a vector y 2 Y such that kx − yk = min z2Y kx − zk? If there is such a best approximation to x from elements of Y , is it unique? It's not hard to see that a satisfactory answer to this question will require that we take Y to be a closed set in X, for otherwise points in Y n Y (sometimes called the boundary of the set Y ) will not have nearest points.
Recommended publications
  • Fen Fakültesi Matematik Bölümü Y
    İZMİR INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF ENGINEERING AND SCIENCES DEPARTMENT OF MATHEMATICS CURRICULUM OF THE GRADUATE PROGRAMS M.S. in Mathematics (Thesis) Core Courses MATH 596 Graduate Seminar (0-2) NC AKTS:9 MATH 599 Scientific Research Techniques and Publication Ethics (0-2) NC AKTS:8 MATH 500 M.S. Thesis (0-1) NC AKTS:26 MATH 8XX Special Studies (8-0) NC AKTS:4 In addition, the following courses must be taken. MATH 515 Real Analysis (3-0)3 AKTS:8 MATH 527 Basic Abstract Algebra (3-0)3 AKTS:8 *All M.S. students must register Graduate Seminar course until the beginning of their 4th semester. Total credit (min.) :21 Number of courses with credit (min.) : 7 M.S. in Mathematics (Non-thesis) Core Courses MATH 516 Complex Analysis (3-0)3 AKTS:8 MATH 527 Basic Abstract Algebra (3-0)3 AKTS:8 MATH 533 Ordinary Differential Equations (3-0)3 AKTS:8 MATH 534 Partial Differential Equations (3-0)3 AKTS:8 MATH 573 Modern Geometry I (3-0)3 AKTS:8 MATH 595 Graduation Project (0-2) NC AKTS:5 MATH 596 Graduate Seminar (0-2) NC AKTS:9 MATH 599 Scientific Research Techniques and Publication Ethics (0-2) NC AKTS:8 Total credit (min.) :30 Number of courses with credit (min.) :10 Ph.D. in Mathematics Core Courses MATH 597 Comprehensive Studies (0-2) NC AKTS:9 MATH 598 Graduate Seminar in PhD (0-2) NC AKTS:9 MATH 599 Scientific Research Techniques and Publication Ethics* (0-2) NC AKTS:8 MATH 600 Ph.D.
    [Show full text]
  • RESOURCES in NUMERICAL ANALYSIS Kendall E
    RESOURCES IN NUMERICAL ANALYSIS Kendall E. Atkinson University of Iowa Introduction I. General Numerical Analysis A. Introductory Sources B. Advanced Introductory Texts with Broad Coverage C. Books With a Sampling of Introductory Topics D. Major Journals and Serial Publications 1. General Surveys 2. Leading journals with a general coverage in numerical analysis. 3. Other journals with a general coverage in numerical analysis. E. Other Printed Resources F. Online Resources II. Numerical Linear Algebra, Nonlinear Algebra, and Optimization A. Numerical Linear Algebra 1. General references 2. Eigenvalue problems 3. Iterative methods 4. Applications on parallel and vector computers 5. Over-determined linear systems. B. Numerical Solution of Nonlinear Systems 1. Single equations 2. Multivariate problems C. Optimization III. Approximation Theory A. Approximation of Functions 1. General references 2. Algorithms and software 3. Special topics 4. Multivariate approximation theory 5. Wavelets B. Interpolation Theory 1. Multivariable interpolation 2. Spline functions C. Numerical Integration and Differentiation 1. General references 2. Multivariate numerical integration IV. Solving Differential and Integral Equations A. Ordinary Differential Equations B. Partial Differential Equations C. Integral Equations V. Miscellaneous Important References VI. History of Numerical Analysis INTRODUCTION Numerical analysis is the area of mathematics and computer science that creates, analyzes, and implements algorithms for solving numerically the problems of continuous mathematics. Such problems originate generally from real-world applications of algebra, geometry, and calculus, and they involve variables that vary continuously; these problems occur throughout the natural sciences, social sciences, engineering, medicine, and business. During the second half of the twentieth century and continuing up to the present day, digital computers have grown in power and availability.
    [Show full text]
  • February 2009
    How Euler Did It by Ed Sandifer Estimating π February 2009 On Friday, June 7, 1779, Leonhard Euler sent a paper [E705] to the regular twice-weekly meeting of the St. Petersburg Academy. Euler, blind and disillusioned with the corruption of Domaschneff, the President of the Academy, seldom attended the meetings himself, so he sent one of his assistants, Nicolas Fuss, to read the paper to the ten members of the Academy who attended the meeting. The paper bore the cumbersome title "Investigatio quarundam serierum quae ad rationem peripheriae circuli ad diametrum vero proxime definiendam maxime sunt accommodatae" (Investigation of certain series which are designed to approximate the true ratio of the circumference of a circle to its diameter very closely." Up to this point, Euler had shown relatively little interest in the value of π, though he had standardized its notation, using the symbol π to denote the ratio of a circumference to a diameter consistently since 1736, and he found π in a great many places outside circles. In a paper he wrote in 1737, [E74] Euler surveyed the history of calculating the value of π. He mentioned Archimedes, Machin, de Lagny, Leibniz and Sharp. The main result in E74 was to discover a number of arctangent identities along the lines of ! 1 1 1 = 4 arctan " arctan + arctan 4 5 70 99 and to propose using the Taylor series expansion for the arctangent function, which converges fairly rapidly for small values, to approximate π. Euler also spent some time in that paper finding ways to approximate the logarithms of trigonometric functions, important at the time in navigation tables.
    [Show full text]
  • Approximation Atkinson Chapter 4, Dahlquist & Bjork Section 4.5
    Approximation Atkinson Chapter 4, Dahlquist & Bjork Section 4.5, Trefethen's book Topics marked with ∗ are not on the exam 1 In approximation theory we want to find a function p(x) that is `close' to another function f(x). We can define closeness using any metric or norm, e.g. Z 2 2 kf(x) − p(x)k2 = (f(x) − p(x)) dx or kf(x) − p(x)k1 = sup jf(x) − p(x)j or Z kf(x) − p(x)k1 = jf(x) − p(x)jdx: In order for these norms to make sense we need to restrict the functions f and p to suitable function spaces. The polynomial approximation problem takes the form: Find a polynomial of degree at most n that minimizes the norm of the error. Naturally we will consider (i) whether a solution exists and is unique, (ii) whether the approximation converges as n ! 1. In our section on approximation (loosely following Atkinson, Chapter 4), we will first focus on approximation in the infinity norm, then in the 2 norm and related norms. 2 Existence for optimal polynomial approximation. Theorem (no reference): For every n ≥ 0 and f 2 C([a; b]) there is a polynomial of degree ≤ n that minimizes kf(x) − p(x)k where k · k is some norm on C([a; b]). Proof: To show that a minimum/minimizer exists, we want to find some compact subset of the set of polynomials of degree ≤ n (which is a finite-dimensional space) and show that the inf over this subset is less than the inf over everything else.
    [Show full text]
  • Zonotopal Algebra and Forward Exchange Matroids
    Zonotopal algebra and forward exchange matroids Matthias Lenz1,2 Technische Universit¨at Berlin Sekretariat MA 4-2 Straße des 17. Juni 136 10623 Berlin GERMANY Abstract Zonotopal algebra is the study of a family of pairs of dual vector spaces of multivariate polynomials that can be associated with a list of vectors X. It connects objects from combinatorics, geometry, and approximation theory. The origin of zonotopal algebra is the pair (D(X), P(X)), where D(X) denotes the Dahmen–Micchelli space that is spanned by the local pieces of the box spline and P(X) is a space spanned by products of linear forms. The first main result of this paper is the construction of a canonical basis for D(X). We show that it is dual to the canonical basis for P(X) that is already known. The second main result of this paper is the construction of a new family of zonotopal spaces that is far more general than the ones that were recently studied by Ardila–Postnikov, Holtz–Ron, Holtz–Ron–Xu, Li–Ron, and others. We call the underlying combinatorial structure of those spaces forward exchange matroid. A forward exchange matroid is an ordered matroid together with a subset of its set of bases that satisfies a weak version of the basis exchange axiom. Keywords: zonotopal algebra, matroid, Tutte polynomial, hyperplane arrangement, multivariate spline, graded vector space, kernel of differential operators, Hilbert series 2010 MSC: Primary 05A15, 05B35, 13B25, 16S32, 41A15. Secondary: 05C31, arXiv:1204.3869v4 [math.CO] 31 Mar 2016 41A63, 47F05. Email address: [email protected] (Matthias Lenz) 1Present address: D´epartement de math´ematiques, Universit´ede Fribourg, Chemin du Mus´ee 23, 1700 Fribourg, Switzerland 2The author was supported by a Sofia Kovalevskaya Research Prize of Alexander von Humboldt Foundation awarded to Olga Holtz and by a PhD scholarship from the Berlin Mathematical School (BMS) 22nd November 2018 1.
    [Show full text]
  • Math 541 - Numerical Analysis Approximation Theory Discrete Least Squares Approximation
    Math 541 - Numerical Analysis Approximation Theory Discrete Least Squares Approximation Joseph M. Mahaffy, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://jmahaffy.sdsu.edu Spring 2018 Discrete Least Squares Approximation — Joseph M. Mahaffy, [email protected] (1/97) Outline 1 Approximation Theory: Discrete Least Squares Introduction Discrete Least Squares A Simple, Powerful Approach 2 Application: Cricket Thermometer Polynomial fits Model Selection - BIC and AIC Different Norms Weighted Least Squares 3 Application: U. S. Population Polynomial fits Exponential Models 4 Application: Pharmokinetics Compartment Models Dog Study with Opioid Exponential Peeling Nonlinear least squares fits Discrete Least Squares Approximation — Joseph M. Mahaffy, [email protected] (2/97) Introduction Approximation Theory: Discrete Least Squares Discrete Least Squares A Simple, Powerful Approach Introduction: Matching a Few Parameters to a Lot of Data. Sometimes we get a lot of data, many observations, and want to fit it to a simple model. 8 6 4 2 0 0 1 2 3 4 5 Underlying function f(x) = 1 + x + x^2/25 Measured Data Average Linear Best Fit Quadratic Best Fit PDF-link: code. Discrete Least Squares Approximation — Joseph M. Mahaffy, [email protected] (3/97) Introduction Approximation Theory: Discrete Least Squares Discrete Least Squares A Simple, Powerful Approach Why a Low Dimensional Model? Low dimensional models (e.g. low degree polynomials) are easy to work with, and are quite well behaved (high degree polynomials can be quite oscillatory.) All measurements are noisy, to some degree.
    [Show full text]
  • Arxiv:1106.4415V1 [Math.DG] 22 Jun 2011 R,Rno Udai Form
    JORDAN STRUCTURES IN MATHEMATICS AND PHYSICS Radu IORDANESCU˘ 1 Institute of Mathematics of the Romanian Academy P.O.Box 1-764 014700 Bucharest, Romania E-mail: [email protected] FOREWORD The aim of this paper is to offer an overview of the most important applications of Jordan structures inside mathematics and also to physics, up- dated references being included. For a more detailed treatment of this topic see - especially - the recent book Iord˘anescu [364w], where sugestions for further developments are given through many open problems, comments and remarks pointed out throughout the text. Nowadays, mathematics becomes more and more nonassociative (see 1 § below), and my prediction is that in few years nonassociativity will govern mathematics and applied sciences. MSC 2010: 16T25, 17B60, 17C40, 17C50, 17C65, 17C90, 17D92, 35Q51, 35Q53, 44A12, 51A35, 51C05, 53C35, 81T05, 81T30, 92D10. Keywords: Jordan algebra, Jordan triple system, Jordan pair, JB-, ∗ ∗ ∗ arXiv:1106.4415v1 [math.DG] 22 Jun 2011 JB -, JBW-, JBW -, JH -algebra, Ricatti equation, Riemann space, symmet- ric space, R-space, octonion plane, projective plane, Barbilian space, Tzitzeica equation, quantum group, B¨acklund-Darboux transformation, Hopf algebra, Yang-Baxter equation, KP equation, Sato Grassmann manifold, genetic alge- bra, random quadratic form. 1The author was partially supported from the contract PN-II-ID-PCE 1188 517/2009. 2 CONTENTS 1. Jordan structures ................................. ....................2 § 2. Algebraic varieties (or manifolds) defined by Jordan pairs ............11 § 3. Jordan structures in analysis ....................... ..................19 § 4. Jordan structures in differential geometry . ...............39 § 5. Jordan algebras in ring geometries . ................59 § 6. Jordan algebras in mathematical biology and mathematical statistics .66 § 7.
    [Show full text]
  • Feynman Quantization
    3 FEYNMAN QUANTIZATION An introduction to path-integral techniques Introduction. By Richard Feynman (–), who—after a distinguished undergraduate career at MIT—had come in as a graduate student to Princeton, was deeply involved in a collaborative effort with John Wheeler (his thesis advisor) to shake the foundations of field theory. Though motivated by problems fundamental to quantum field theory, as it was then conceived, their work was entirely classical,1 and it advanced ideas so radicalas to resist all then-existing quantization techniques:2 new insight into the quantization process itself appeared to be called for. So it was that (at a beer party) Feynman asked Herbert Jehle (formerly a student of Schr¨odinger in Berlin, now a visitor at Princeton) whether he had ever encountered a quantum mechanical application of the “Principle of Least Action.” Jehle directed Feynman’s attention to an obscure paper by P. A. M. Dirac3 and to a brief passage in §32 of Dirac’s Principles of Quantum Mechanics 1 John Archibald Wheeler & Richard Phillips Feynman, “Interaction with the absorber as the mechanism of radiation,” Reviews of Modern Physics 17, 157 (1945); “Classical electrodynamics in terms of direct interparticle action,” Reviews of Modern Physics 21, 425 (1949). Those were (respectively) Part III and Part II of a projected series of papers, the other parts of which were never published. 2 See page 128 in J. Gleick, Genius: The Life & Science of Richard Feynman () for a popular account of the historical circumstances. 3 “The Lagrangian in quantum mechanics,” Physicalische Zeitschrift der Sowjetunion 3, 64 (1933). The paper is reprinted in J.
    [Show full text]
  • Faster Algorithms Via Approximation Theory
    Foundations and Trends R in Theoretical Computer Science Vol. 9, No. 2 (2013) 125–210 c 2014 S. Sachdeva and N. K. Vishnoi DOI: 10.1561/0400000065 Faster Algorithms via Approximation Theory Sushant Sachdeva Nisheeth K. Vishnoi Yale University Microsoft Research [email protected] [email protected] Contents Introduction 126 I APPROXIMATION THEORY 135 1 Uniform Approximations 136 2 Chebyshev Polynomials 140 3 Approximating Monomials 145 4 Approximating the Exponential 149 5 Lower Bounds for Polynomial Approximations 153 6 Approximating the Exponential using Rational Functions 158 7 Approximating the Exponential using Rational Functions with Negative Poles 163 ii iii II APPLICATIONS 171 8 Simulating Random Walks 174 9 Solving Equations via the Conjugate Gradient Method 179 10 Computing Eigenvalues via the Lanczos Method 185 11 Computing the Matrix Exponential 191 12 Matrix Inversion via Exponentiation 196 References 205 Abstract This monograph presents ideas and techniques from approximation theory for approximating functions such as xs; x−1 and e−x, and demonstrates how these results play a crucial role in the design of fast algorithms for problems which are increasingly relevant. The key lies in the fact that such results imply faster ways to compute primitives such as Asv; A−1v; exp(−A)v; eigenvalues, and eigenvectors, which are fundamental to many spectral algorithms. Indeed, many fast algorithms reduce to the computation of such primitives, which have proved useful for speeding up several fundamental computations such as random walk simulation, graph partitioning, and solving systems of linear equations. S. Sachdeva and N. K. Vishnoi. Faster Algorithms via Approximation Theory.
    [Show full text]
  • Function Approximation Through an Efficient Neural Networks Method
    Paper ID #25637 Function Approximation through an Efficient Neural Networks Method Dr. Chaomin Luo, Mississippi State University Dr. Chaomin Luo received his Ph.D. in Department of Electrical and Computer Engineering at Univer- sity of Waterloo, in 2008, his M.Sc. in Engineering Systems and Computing at University of Guelph, Canada, and his B.Eng. in Electrical Engineering from Southeast University, Nanjing, China. He is cur- rently Associate Professor in the Department of Electrical and Computer Engineering, at the Mississippi State University (MSU). He was panelist in the Department of Defense, USA, 2015-2016, 2016-2017 NDSEG Fellowship program and panelist in 2017 NSF GRFP Panelist program. He was the General Co-Chair of 2015 IEEE International Workshop on Computational Intelligence in Smart Technologies, and Journal Special Issues Chair, IEEE 2016 International Conference on Smart Technologies, Cleveland, OH. Currently, he is Associate Editor of International Journal of Robotics and Automation, and Interna- tional Journal of Swarm Intelligence Research. He was the Publicity Chair in 2011 IEEE International Conference on Automation and Logistics. He was on the Conference Committee in 2012 International Conference on Information and Automation and International Symposium on Biomedical Engineering and Publicity Chair in 2012 IEEE International Conference on Automation and Logistics. He was a Chair of IEEE SEM - Computational Intelligence Chapter; a Vice Chair of IEEE SEM- Robotics and Automa- tion and Chair of Education Committee of IEEE SEM. He has extensively published in reputed journal and conference proceedings, such as IEEE Transactions on Neural Networks, IEEE Transactions on SMC, IEEE-ICRA, and IEEE-IROS, etc. His research interests include engineering education, computational intelligence, intelligent systems and control, robotics and autonomous systems, and applied artificial in- telligence and machine learning for autonomous systems.
    [Show full text]
  • A Rational Approximation to the Logarithm
    A Rational Approximation to the Logarithm By R. P. Kelisky and T. J. Rivlin We shall use the r-method of Lanczos to obtain rational approximations to the logarithm which converge in the entire complex plane slit along the nonpositive real axis, uniformly in certain closed regions in the slit plane. We also provide error esti- mates valid in these regions. 1. Suppose z is a complex number, and s(l, z) denotes the closed line segment joining 1 and z. Let y be a positive real number, y ¿¿ 1. As a polynomial approxima- tion, of degree n, to log x on s(l, y) we propose p* G Pn, Pn being the set of poly- nomials with real coefficients of degree at most n, which minimizes ||xp'(x) — X|J===== max \xp'(x) — 1\ *e«(l.v) among all p G Pn which satisfy p(l) = 0. (This procedure is suggested by the observation that w = log x satisfies xto'(x) — 1=0, to(l) = 0.) We determine p* as follows. Suppose p(x) = a0 + aix + ■• • + a„xn, p(l) = 0 and (1) xp'(x) - 1 = x(x) = b0 + bix +-h bnxn . Then (2) 6o = -1 , (3) a,- = bj/j, j = 1, ■•-,«, and n (4) a0= - E Oj • .-i Thus, minimizing \\xp' — 1|| subject to p(l) = 0 is equivalent to minimizing ||«-|| among all i£P„ which satisfy —ir(0) = 1. This, in turn, is equivalent to maximiz- ing |7r(0) I among all v G Pn which satisfy ||ir|| = 1, in the sense that if vo maximizes |7r(0)[ subject to ||x|| = 1, then** = —iro/-7ro(0) minimizes ||x|| subject to —ir(0) = 1.
    [Show full text]
  • Publications by Lloyd N. Trefethen
    Publications by Lloyd N. Trefethen I. Books I.1. Numerical Conformal Mapping, editor, 269 pages. Elsevier, 1986. I.2. Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations, x+315 pages. Graduate textbook, privately published at http://comlab.ox.ac.uk/nick.trefethen/, 1996. I.3. Numerical Linear Algebra, with David Bau III, xii+361 pages. SIAM, 1997. I.4. Spectral Methods in MATLAB, xviii+165 pages. SIAM, 2000. I.5. Schwarz-Christoffel Mapping, with Tobin A. Driscoll, xvi+132 pages. Cambridge U. Press, 2002. I.6. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, with Mark Embree, xviii+606 pages. Princeton U. Press, 2005. I.7. Trefethen’s Index Cards: Forty years of Notes about People, Words, and Mathematics, xv + 368 pages. World Scientific Publishing, 2011. I.8. Approximation Theory and Approximation Practice. SIAM, to appear in 2013. In addition to these a book has been published by other authors about the international problem solving challenge I organised in 2002 (item VIII.8 below): F. Bornemann, D. Laurie, S. Wagon and D. Waldvogel, The SIAM 100-Digit Challenge, SIAM, 2004, to appear in German translation as Abenteuer Numerik: Eine Führung entlang der Herausforderung von Trefethen, Springer, 2006. II. Finite difference and spectral methods for partial differential equations II.1. Group velocity in finite difference schemes. SIAM Review 24 (1982), 113-136. II.2. Group velocity interpretation of the stability theory of Gustafsson, Kreiss, and Sundström. J. Comp. Phys. 49 (1983), 199-217. II.3. On Lp-instability and dispersion at discontinuities in finite difference schemes.
    [Show full text]