Exploring the Consequences of Super Typhoons in Asia Dr

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Consequences of Super Typhoons in Asia Dr Exploring the Consequences of Super Typhoons in Asia Dr. Jessica Turner Senior Product Manager, Model Product Management SUPER TYPHOON HAIYAN AT LANDFALL: 306 KPH ©2014 Risk Management Solutions, Inc. Confidential WITH A 5+ METER STORM SURGE ©2014 Risk Management Solutions, Inc. Confidential RAMMASUN ©2014 Risk Management Solutions, Inc. Confidential WIND HISTORICAL SUPER TYPHOON LANDFALLS The Philippines has the highest number of super typhoon landfalls. But other countries have also experienced them. 1959 -- 2011 ©2014 Risk Management Solutions, Inc. Confidential WHAT ABOUT THE STRONGEST STORMS? ©2014 Risk Management Solutions, Inc. Confidential Mean September Maximum potential intensity surface winds (m/s) ©2014 Risk Management Solutions, Inc. Confidential MODELLING RESULTS: CHINA AND JAPAN ©2014 Risk Management Solutions, Inc. Confidential CLIMATE CHANGE AND SUPER TYPHOONS The heat content of the upper ocean in the West Pacific is increasing. ©2014 Risk Management Solutions, Inc. Confidential SURGE PARTLY DEPENDS ON STORM STRENGTH Typhoon Vera made landfall as a category 5 in Honshu in 1959 with a 3.45 m surge. Photo: Inae Tram Station, Minato Ku, Nagoya City - September 28, 1959 © Nagoya City Disaster Prevention Management Corporation ©2014 Risk Management Solutions, Inc. Confidential BUT IT ALSO DEPENDS ON BATHYMETRY ©2014 Risk Management Solutions, Inc. Confidential SOME HISTORICAL Typhoon Vera (1959) SURGES Peak Surge: 3.5m Typhoon 5612 (1956) Peak Surge: 5.02m Typhoon Bart (1999) Peak Surge: 3.5m Typhoon Doug (1994) Peak Surge: 1.5m Typhoon Joe (1980) Peak Surge: 5.94m ©2014 Risk Management Solutions, Inc. Confidential WORST CASE MODEL RESULTS: HONG KONG 5.5 7.2 4.8 4.7 4.4 ©2014 Risk Management Solutions, Inc. Confidential WORST CASE MODEL RESULTS: JAPAN 5.8 7.1 6.2 7.2 10.0 ©2014 Risk Management Solutions, Inc. Confidential SUMMARY • Super Typhoons are common • Even if the highest wind speeds are rare • Damaging surge is possible without strong winds ©2014 Risk Management Solutions, Inc. Confidential .
Recommended publications
  • Nearshore Dynamics of Storm Surges and Waves Induced by the 2018
    Journal of Marine Science and Engineering Article Nearshore Dynamics of Storm Surges and Waves Induced by the 2018 Typhoons Jebi and Trami Based on the Analysis of Video Footage Recorded on the Coasts of Wakayama, Japan Yusuke Yamanaka 1,* , Yoshinao Matsuba 1,2 , Yoshimitsu Tajima 1 , Ryotaro Shibata 1, Naohiro Hattori 1, Lianhui Wu 1 and Naoko Okami 1 1 Department of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan; [email protected] (Y.M.); [email protected] (Y.T.); [email protected] (R.S.); [email protected] (N.H.); [email protected] (L.W.); [email protected] (N.O.) 2 Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan * Correspondence: [email protected] Received: 30 September 2019; Accepted: 11 November 2019; Published: 13 November 2019 Abstract: In this study, field surveys along the coasts of Wakayama Prefecture, Japan, were first conducted to investigate the coastal damage due to storm surges and storm-induced waves caused by the 2018 Typhoons Jebi and Trami. Special focus was placed on the characteristic behavior of nearshore waves through investigation of observed data, numerical simulations, and image analysis of video footage recorded on the coasts. The survey results indicated that inundation, wave overtopping, and drift debris caused by violent storm-induced waves were the dominant factors causing coastal damage. Results of numerical simulations showed that heights of storm-induced waves were predominantly greater than storm surge heights along the entire coast of Wakayama in both typhoons.
    [Show full text]
  • Japan's Insurance Market 2020
    Japan’s Insurance Market 2020 Japan’s Insurance Market 2020 Contents Page To Our Clients Masaaki Matsunaga President and Chief Executive The Toa Reinsurance Company, Limited 1 1. The Risks of Increasingly Severe Typhoons How Can We Effectively Handle Typhoons? Hironori Fudeyasu, Ph.D. Professor Faculty of Education, Yokohama National University 2 2. Modeling the Insights from the 2018 and 2019 Climatological Perils in Japan Margaret Joseph Model Product Manager, RMS 14 3. Life Insurance Underwriting Trends in Japan Naoyuki Tsukada, FALU, FUWJ Chief Underwriter, Manager, Underwriting Team, Life Underwriting & Planning Department The Toa Reinsurance Company, Limited 20 4. Trends in Japan’s Non-Life Insurance Industry Underwriting & Planning Department The Toa Reinsurance Company, Limited 25 5. Trends in Japan's Life Insurance Industry Life Underwriting & Planning Department The Toa Reinsurance Company, Limited 32 Company Overview 37 Supplemental Data: Results of Japanese Major Non-Life Insurance Companies for Fiscal 2019, Ended March 31, 2020 (Non-Consolidated Basis) 40 ©2020 The Toa Reinsurance Company, Limited. All rights reserved. The contents may be reproduced only with the written permission of The Toa Reinsurance Company, Limited. To Our Clients It gives me great pleasure to have the opportunity to welcome you to our brochure, ‘Japan’s Insurance Market 2020.’ It is encouraging to know that over the years our brochures have been well received even beyond our own industry’s boundaries as a source of useful, up-to-date information about Japan’s insurance market, as well as contributing to a wider interest in and understanding of our domestic market. During fiscal 2019, the year ended March 31, 2020, despite a moderate recovery trend in the first half, uncertainties concerning the world economy surged toward the end of the fiscal year, affected by the spread of COVID-19.
    [Show full text]
  • DATA and MONITORING
    WORLD CLIMATE PROGRAMME DATA and MONITORING MEETING OF EXPERTS ON THE CLIMATE OF THE 20TH CENTURY (Geneva, Switzerland, 26-30 April 1999) WCDMP-No. 42 WMO-TD No. 972 * m World Meteorological Organization (Geneva, September 1999) The WCP implemented by WMO in conjunction with other international organizations consists of four major components: The World Climate Data and Monitoring Programme (WCDMP) The World Climate Applications and Services Programme (WCASP) The World Climate Impact Assessment and Response Strategies Programme (WCIRP) The World Climate Research Programme (WCRP) World Meteorological Organization Case postale N° 2300 1211 Geneva Switzerland World Climate Data and Monitoring Programme Telephone: (+41-22)730 81 11 Telefax: (+41-22)730 80 42 Telex: 414199 Email : [email protected] World Wide Web:http://www.wmo.ch/web/wcp/wcdmp/wcdmp.html NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secreta­ riat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Editorial note: This report has for the greater part been produced without editorial revision by the WMO Secretariat. It is not an official publication and its distribution in this form does not imply endorsement by the Organization of the ideas expressed. MEETING OF EXPERTS ON THE CLIMATE OF THE 20TH CENTURY (Geneva, Switzerland,
    [Show full text]
  • Downloaded 09/24/21 02:19 PM UTC 1092 MONTHLY WEATHER REVIEW VOLUME 126
    APRIL 1998 NOTES AND CORRESPONDENCE 1091 Statistical Analysis of the Characteristics of Severe Typhoons Hitting the Japanese Main Islands TAKESHI FUJII General Education and Research Center, Kyoto Sangyo University, Kyoto, Japan 5 May 1997 and 19 July 1997 ABSTRACT Characteristics of 51 severe typhoons hitting the Japanese main islands with central pressure equal to or less than 980 hPa during the period 1955±94 were analyzed by an objective method using hourly station observation during typhoon passages. Position of a typhoon center, central pressure depth Dp, and radius of the maximum wind rm, were obtained at hourly intervals after landfall on the main islands of Japan. The pressure pro®le of severe typhoons used in this analysis was chosen from formulas presented in previous papers, namely the same as one used by the U.S. Army Corps of Engineers for hurricanes hitting Florida. Coastlines of the main islands were divided into three sections: areas A, B, and C extending from west to east. Statistical analyses of parameters were made for each area. At time of landfall, the maximum value of Dp was 83.2 hPa for area A, 85.2 hPa for area B, and 47.8 hPa for area C. The differences in return period of Dp among areas are considered to be caused by the SST distribution off the Paci®c coast. On average, typhoons making landfall in area C have larger rm and speed, and display a more eastward component of translation than those in the other two areas. The differences of speed and direction among areas and months can be explained to be caused by variation of the synoptic-scale air current at the 500-hPa level.
    [Show full text]
  • A Multimodel Intercomparison of an Intense Typhoon in Future, Warmer Climates by Four 5-Km-Mesh Models
    1AUGUST 2017 K A N A D A E T A L . 6017 A Multimodel Intercomparison of an Intense Typhoon in Future, Warmer Climates by Four 5-km-Mesh Models a b a c SACHIE KANADA, TETSUYA TAKEMI, MASAYA KATO, SHOTA YAMASAKI, c a d e HIRONORI FUDEYASU, KAZUHISA TSUBOKI, OSAMU ARAKAWA, AND IZURU TAKAYABU a Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi, Japan b Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan c Yokohama National University, Yokohama, Kanagawa, Japan d University of Tsukuba, Tsukuba, Ibaraki, Japan e Meteorological Research Institute, JMA, Tsukuba, Ibaraki, Japan (Manuscript received 2 October 2016, in final form 13 February 2017) ABSTRACT Intense tropical cyclones (TCs) sometimes cause huge disasters, so it is imperative to explore the impacts of climate change on such TCs. Therefore, the authors conducted numerical simulations of the most destructive historical TC in Japanese history, Typhoon Vera (1959), in the current climate and a global warming climate. The authors used four nonhydrostatic models with a horizontal resolution of 5 km: the cloud-resolving storm simulator, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, the Japan Meteorological Agency (JMA) operational nonhydrostatic mesoscale model, and the Weather Re- search and Forecasting Model. Initial and boundary conditions for the control simulation were provided by the Japanese 55-year Reanalysis dataset. Changes between the periods of 1979–2003 and 2075–99 were estimated from climate runs of a 20-km-mesh atmospheric general circulation model, and these changes were added to the initial and boundary conditions of the control simulation to produce the future climate conditions.
    [Show full text]
  • Impact Assessment of Coastal Hazards Due to Future Changes of Tropical Cyclones in the North Pacific Ocean
    Weather and Climate Extremes ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Weather and Climate Extremes journal homepage: www.elsevier.com/locate/wace Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean Nobuhito Mori n, Tetsuya Takemi Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan article info abstract Article history: Tropical cyclones generate severe hazards in the middle latitudes. A brief review and applications of Received 13 July 2015 dynamical and statistical downscaling of tropical cyclone (TC) are described targeting extreme storm Received in revised form surge and storm wave hazard assessment. First, a review of the current understanding of the changes in 10 September 2015 the characteristics of TCs in the past and in the future is shown. Then, a review and ongoing research Accepted 17 September 2015 about impact assessment of tropical cyclones both dynamical downscaling and statistical model are described for Typhoon Vera in 1959 and Typhoon Haiyan in 2013. Finally, several examples of impact Keywords: assessment of storm surge and extreme wave changes are presented. Changes in both TC intensity and Climate change track are linked to future changes in extreme storm surge and wave climate in middle latitude. Tropical cyclones & 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license Downscaling (http://creativecommons.org/licenses/by/4.0/). Impact assessment Coastal hazards 1. Introduction long-term projections of TCs under climate change are also im- portant. Global warming in the future is expected to affect the Tropical cyclones (TCs) are one of the major meteorological characteristics of TCs, in particular their frequency, intensity, and hazards as a cause of flooding, landslides, damaging winds, high track.
    [Show full text]
  • PIAMA 26 a Historical Appreciation of Naval Air Power
    Papers in Australian Maritime Affairs No. 26 Papers in Australian Maritime Affairs Papers in Australian Maritime Affairs No. 26 A Historical Appreciation of the Contribution of Naval Air Power A Historical Appreciation Of The Contribution Naval Air Power A Historical Appreciation Andrew T Ross and James M Sandison with an introduction by Jack McCaffrie A.T. Ross and J.M. Sandison A.T. SEA POWER CENTRE - AUSTRALIA A HISTORICAL APPRECIATION OF THE CONTRIBUTION OF NAVAL AIR POWER © Copyright Commonwealth of Australia 2008 This work is copyright. Apart from any fair dealing for the purpose of study, research, criticism or review, as permitted under the Copyright Act 1968, and with standard source credit included, no part may be reproduced without written permission. Enquiries should be addressed to the Director, Sea Power Centre - Australia, Department of Defence, CANBERRA ACT 2600. National Library of Australian Cataloguing-in-Publication entry Ross, A.T. 1948- Sandison, J.M. 1932- McCaffrie, J. 1948- A historical appreciation of the contribution of naval air power ISSN 1327-5658 ISBN 978-0-642-2965-5 A HISTORICAL APPRECIATION OF THE CONTRIBUTION OF NAVAL AIR POWER by Andrew T. Ross and James M. Sandison with an introduction by Jack McCaffrie iv Disclaimer The views expressed are the authors’ and do not necessarily reflect the official policy or position of the Government of Australia, the Department of Defence and the Royal Australian Navy. The Commonwealth of Australia will not be legally responsible in contract, tort or otherwise for any statement made in this publication. Sea Power Centre – Australia The Sea Power Centre – Australia (SPC-A), was established to undertake activities to promote the study, discussion and awareness of maritime issues and strategy within the RAN and the Defence and civil communities at large.
    [Show full text]
  • Storm Surge Inundation Analysis with Consideration of Building Shape and Layout at Ise Bay by Maximum Potential Typhoon
    Journal of Marine Science and Engineering Article Storm Surge Inundation Analysis with Consideration of Building Shape and Layout at Ise Bay by Maximum Potential Typhoon Masaki Nimura 1,*, Shuzo Nishida 2, Koji Kawasaki 1,2,3,4, Tomokazu Murakami 5 and Shinya Shimokawa 5 1 Hydro Technology Institute, Co., Ltd., Nakanoshima, Osaka 530-6126, Japan; [email protected] 2 Department of Civil Engineering, Osaka University, Osaka 565-0871, Japan; [email protected] 3 Department of Urban Design and Engineering, Osaka City University, Osaka 558-8585, Japan 4 Department of Civil Engineering, Meijo University, Nagoya 468-8502, Japan 5 National Research Institute for Earth Science and Disaster Resilience, Tsukuba 305-0006, Japan; [email protected] (T.M.); [email protected] (S.S.) * Correspondence: [email protected] Received: 10 November 2020; Accepted: 8 December 2020; Published: 15 December 2020 Abstract: Global warming is feared to cause sea-level rise and intensification of typhoons, and these changes will lead to an increase in storm surge levels. For that reason, it is essential to predict the inundation areas for the maximum potential typhoon and evaluate the disaster mitigation effect of seawalls. In this study, we analyzed storm surge inundation of the inner part of Ise Bay (coast of Aichi and Mie Prefecture, Japan) due to the maximum potential typhoon in the future climate with global warming. In the analysis, a high-resolution topographical model was constructed considering buildings’ shape and arrangement and investigated the inundation process inside the seawall in detail. The results showed that buildings strongly influence the storm surge inundation process inside the seawall, and a high-velocity current is generated in some areas.
    [Show full text]
  • Development of Inundation Map for Bantayan Island, Cebu Using Delft3d- Flow Storm Surge Simulations of Typhoon Haiyan
    Project NOAH Open-File Reports Vol. 3 (2014), pp. 37-44, ISSN 2362 7409 Development of Inundation Map for Bantayan Island, Cebu Using Delft3D- Flow Storm Surge Simulations of Typhoon Haiyan Camille Cuadra, Nophi Ian Biton, Krichi May Cabacaba, Joy Santiago, John Kenneth Suarez, John Phillip Lapidez, Alfredo Mahar Francisco Lagmay, Vicente Malano Abstract: On average, 20 typhoons enter the Philippine Area of Responsibility annually, making it vulnerable to different storm hazards. Apart from the frequency of tropical cyclones, the archipelagic nature of the country makes it particularly prone to storm surges. On 08 November 2013, Haiyan, a Category 5 Typhoon with maximum one- minute sustained wind speed of 315 kph, hit the central region of the Philippines. In its path, the howler devastated Bantayan Island, a popular tourist destination. The island is located north of Cebu City, the second largest metropolis of the Philippines in terms of populace. Having been directly hit by Typhoon Haiyan, Bantayan Island was severely damaged by strong winds and storm surges, with more than 11,000 houses totally destroyed while 5,000 more suffered minor damage. The adverse impacts of possible future storm surge events in the island can only be mitigated if hazard maps that depict inundation of the coastal areas of Bantayan are generated. To create such maps, Delft3D-Flow, a hydrodynamic modelling software was used to simulate storm surges. These simulations were made over a 10-m per pixel resolution IfSAR Digital Elevation Model (DEM) and the General Bathymetric Chart of the Oceans (GEBCO) bathymetry. The results of the coastal inundation model for Typhoon Haiyan’s storm surges were validated using data collected from field work and local government reports.
    [Show full text]
  • Significant Data on Major Disasters Worldwide, 1900-Present
    DISASTER HISTORY Signi ficant Data on Major Disasters Worldwide, 1900 - Present Prepared for the Office of U.S. Foreign Disaster Assistance Agency for International Developnent Washington, D.C. 20523 Labat-Anderson Incorporated Arlington, Virginia 22201 Under Contract AID/PDC-0000-C-00-8153 INTRODUCTION The OFDA Disaster History provides information on major disasters uhich have occurred around the world since 1900. Informtion is mare complete on events since 1964 - the year the Office of Fore8jn Disaster Assistance was created - and includes details on all disasters to nhich the Office responded with assistance. No records are kept on disasters uhich occurred within the United States and its territories.* All OFDA 'declared' disasters are included - i.e., all those in uhich the Chief of the U.S. Diplmtic Mission in an affected country determined that a disaster exfsted uhich warranted U.S. govermnt response. OFDA is charged with responsibility for coordinating all USG foreign disaster relief. Significant anon-declared' disasters are also included in the History based on the following criteria: o Earthquake and volcano disasters are included if tbe mmber of people killed is at least six, or the total nmber uilled and injured is 25 or more, or at least 1,000 people art affect&, or damage is $1 million or more. o mather disasters except draught (flood, storm, cyclone, typhoon, landslide, heat wave, cold wave, etc.) are included if the drof people killed and injured totals at least 50, or 1,000 or mre are homeless or affected, or damage Is at least S1 mi 1l ion. o Drought disasters are included if the nunber affected is substantial.
    [Show full text]
  • The Urgent Development Study on the Project on Rehabilitation and Recovery from Typhoon Yolanda in the Philippines
    DEPARTMENT OF FINANCE (DOF) DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS (DPWH) DEPARTMENT OF INTERIOR AND LOCAL GOVERNMENT (DILG) THE REPUBLIC OF THE PHILIPPINES THE URGENT DEVELOPMENT STUDY ON THE PROJECT ON REHABILITATION AND RECOVERY FROM TYPHOON YOLANDA IN THE PHILIPPINES FINAL REPORT (II) MAIN REPORT VOLUME 1: RECOVERY AND RECONSTRUCTION PLANNING FEBRUARY 2017 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS GLOBAL CO., LTD. CTI ENGINEERING INTERNATIONAL CO., LTD. PACIFIC CONSULTANTS CO., LTD. EI YACHIYO ENGINEERING CO., LTD. JR PASCO CORPORATION 17-018 DEPARTMENT OF FINANCE (DOF) DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS (DPWH) DEPARTMENT OF INTERIOR AND LOCAL GOVERNMENT (DILG) THE REPUBLIC OF THE PHILIPPINES THE URGENT DEVELOPMENT STUDY ON THE PROJECT ON REHABILITATION AND RECOVERY FROM TYPHOON YOLANDA IN THE PHILIPPINES FINAL REPORT (II) MAIN REPORT VOLUME 1: RECOVERY AND RECONSTRUCTION PLANNING FEBRUARY 2017 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS GLOBAL CO., LTD. CTI ENGINEERING INTERNATIONAL CO., LTD. PACIFIC CONSULTANTS CO., LTD. YACHIYO ENGINEERING CO., LTD. PASCO CORPORATION Composition of Final Report (II) Summary Main Report Volume 1 Recovery and Reconstruction Planning Volume 2 Quick Impact Projects Appendix Technical Supporting Report 1 (Volume 1, Chapter 2) Technical Supporting Report 2 (Volume 1, Chapter 3 and 4) Technical Supporting Report 3 (Volume 2) US$ 1.00 = Phillipines Peso (PHP) 49.68 = Japanese Yen ¥ 117.38 (January, 2017) Republic of the Philippines The Urgent Development Study on The Project on Rehabilitation and Recovery from Typhoon Yolanda Final report (II) Main Report Volume 1: Recovery and Reconstruction Planning Table of Contents Map of the Disaster Affected Area and Target Area Table of Contents List of Tables List of Figures Abbreviations Page Chapter 1 Introduction 1.1 The background and scope of work of the 2nd year ...............................................................................
    [Show full text]
  • The Impact of Typhoon Landfalls on China's Precipitation During 1977-2005
    EARTH SCIENCES CENTRE GÖTEBORG UNIVERSITY B521 2007 THE IMPACT OF TYPHOON LANDFALLS ON CHINA’S PRECIPITATION DURING 1977-2005 Sara Katarina Sunno Department of Physical Geography GÖTEBORG 2007 GÖTEBORGS UNIVERSITET Institutionen för geovetenskaper Naturgeografi Geovetarcentrum THE IMPACT OF TYPHOON LANDFALLS ON CHINA’S PRECIPITATION DURING 1977-2005 Sara Katarina Sunno ISSN 1400-3821 B521 Projektarbete Göteborg 2007 Postadress Besöksadress Telefo Telfax Earth Sciences Centre Geovetarcentrum Geovetarcentrum 031-773 19 51 031-773 19 86 Göteborg University S-405 30 Göteborg Guldhedsgatan 5A S-405 30 Göteborg SWEDEN Abstract The purpose of this study has been to investigate the impact of typhoon landfalls on China’s precipitation during the past twenty nine years. Results show that the precipitation has significantly varied in China during the studied time period and that there has been no significant variation in typhoon landfall frequency, except in 2005 when an extreme year was noted. It has been shown that there is no direct correlation with either the positive nor negative departure in average normal precipitation and frequency of land fallen TYs in China. However it has been concluded that a single typhoon event has a significant impact on the overall precipitation. Furthermore the peak typhoon season precipitation anomalies have been shown to be greater than the annual precipitation anomalies. It has also been apparent through the case studies that no correlation could be found between the wind intensity and the intensity of the precipitation. Keywords: Typhoon, Landfall, Precipitation, China, NWPAC. i Preface This study completes the Master Degree Program in Physical Geography at the Department of Earth Sciences, Göteborg University, Sweden.
    [Show full text]