Quantitative Estimation of Strong Winds in an Urban District During Typhoon Jebi (2018) by Merging Mesoscale Meteorological and Large-Eddy Simulations

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Estimation of Strong Winds in an Urban District During Typhoon Jebi (2018) by Merging Mesoscale Meteorological and Large-Eddy Simulations 22 SOLA, 2019, Vol. 15, 22−27, doi:10.2151/sola.2019-005 Quantitative Estimation of Strong Winds in an Urban District during Typhoon Jebi (2018) by Merging Mesoscale Meteorological and Large-Eddy Simulations Tetsuya Takemi, Toshiya Yoshida, Shota Yamasaki, and Kentaro Hase Disaster Prevention Research Institute, Kyoto University, Uji, Japan of strong winds by Typhoon Jebi. Abstract Buildings and structures in urban areas affect most sig- nificantly the magnitude of wind gustiness. Kato et al. (1992) An intense tropical cyclone, Typhoon Jebi (2018), landed the demonstrated that gust factors during typhoons exceed 2 within central part of Japan and caused severe damages. Quantitative the urban canopy from measurements in Tokyo and Yokohama. assessment of strong winds in urban districts under typhoon By combining mesoscale meteorological and large eddy simula- conditions is important to understand the underlying risks. As a tion (LES) models, Nakayama et al. (2012) successfully estimated preliminary study, we investigate the influences of densely built the instantaneous wind speeds with gust factors exceeding 2 in a urban environments on the occurrence of wind gusts in an urban business district of Tokyo during a typhoon landfall. As indicated district of Osaka City during Typhoon Jebi by merging mesoscale in Yoshida et al. (2018) and Yoshida and Takemi (2018), the meteorological and building-resolving large-eddy simulations variability of wind speed become more significant with a larger (LES). With the successful reproduction of the track and intensity variability of building height. These studies suggest that densely of the typhoon in meteorological simulations, the simulated winds built urban districts would be susceptible to typhoon-induced at the boundary-layer top of the LES model are used to quantita- stronger winds than previously thought from the past experiences tively estimate the wind gusts in the urban district. The maximum such as Muroto and Daini-Muroto Typhoons. Thus, quantitatively wind gust in the analysis area of Osaka was estimated as 60− estimating the strong winds in real urban districts by Typhoon Jebi 70 m s−1, which is comparable to the wind speed at the height of (2018) is a scientific challenge and is very important for assessing about 300 m. risks of strong winds in urban districts. (Citation: Takemi, T., T. Yoshida, S. Yamasaki, and K. Hase, As a preliminary study, we estimate quantitatively the strong 2018: Quantitative estimation of strong winds in an urban district winds within a business district of Osaka City during Typhoon during Typhoon Jebi (2018) by merging mesoscale meteorological Jebi (2018) by employing a mesoscale meteorological and an LES and large-eddy simulations. SOLA, 15, 22−27, doi:10.2151/sola. model. By explicitly representing real buildings and structures in 2019-005.) LES, this study examines complex/complicated characteristics of winds within the densely built urban environment. 1. Introduction 2. Procedure of numerical analysis Typhoons are one of the major extreme weather in the western North Pacific region, and sometimes become a great threat to This study used both a mesoscale meteorological model and our society. Recently Typhoon Haiyan (2013) made landfall over a building-resolving LES model. The meteorological model was the Philippines and caused devastating damages by storm surges intended to simulate the typhoon and its meteorological back- (Mori et al. 2014). Historically, Japan faced severe damages due ground, while the LES model simulated turbulent airflows within to strong winds by intense typhoons such as Vera (1959), Nancy a business district of Osaka. (1961), Mireille (1991), and Songda (2004). Most recently, Typhoon Jebi (2018) made landfall on the islands of Shikoku and 2.1 Meteorological model settings Honshu, crossing over the Osaka Bay, and spawned storm surges/ The meteorological model used was the Weather Research and high waves around the bay areas as well as strong winds over the Forecasting (WRF) model/the Advanced Research WRF (Skama- inland areas. Kansai International Airport (KIX) established on a rock et al. 2008) version 4.0. We set two-way-nested computational reclaimed island in the Osaka Bay in 1994 was seriously damaged domains (Fig. 1a): Domain 1 covers parts of the western North by storm surge. Furthermore, a large number of points observed Pacific and the Japanese islands at the 4.5-km horizontal grid, extreme winds, which caused severe damages to houses/buildings, and Domain 2 covers mainly the Kinki region at the 0.9-km grid trees/forests, power lines, etc. (Cabinet Office 2018). on the Lambert conformal projection. The both domains have 56 Typhoon Jebi obtained the lifetime minimum central pressure vertical levels, with the interval extended with height up to the top of 915 hPa (according to Regional Specialized Meteorological at the 20-hPa level. The model topography was created from the Center Tokyo) and took a track very similar to Typhoon Nancy 30-arc-seconds elevation data from the United States Geological (1961) (i.e., Daini-Muroto Typhoon) and Muroto Typhoon in Survey, while the land-use characteristics were determined by the 1934. In Osaka City, the 1st, 2nd, and 3rd highest record of in- MODIS-based 21-category data. stantaneous wind speed is 60.0 m s−1 in September 1934 (Muroto), We set the physics parameterizations similar to those em- 50.6 m s−1 in September 1961 (Daini-Muroto), and 47.4 m s−1 in ployed in Takemi et al. (2016a, 2016b) and Nayak and Takemi September 2018 (Jebi), respectively, suggesting that a typhoon (2019): e.g, the 6-category single-moment microphysics scheme has been the most threatening windstorm in the area. Considering of Hong and Lim (2006); the Yonsei University boundary-layer the time period spanning from 1934 to 2018, the influences of scheme (Hong et al. 2006), and a Monin-Obukhov similarity- urbanization and global warming should be taken into account to based surface-flux scheme (Jiménez et al. 2012). No cumulus assess the disaster risks by typhoons. This study focuses on the parameterization was used. influences of urban buildings and structures on the development The 6-hourly Global Spectral Model analyses of Japan Mete- orological Agency were used to prescribe the initial and boundary Corresponding author: Tetsuya Takemi, Disaster Prevention Research conditions for the atmospheric and surface states. Merged Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. E-mail: satellite and in situ data Global Daily Sea Surface Temperatures [email protected]. ©The Author(s) 2019. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license (http://creativecommons.org/license/by/4.0). Takemi et al., Strong Winds in an Urban District during Typhoon Jebi (2018) 23 shown). Thus, the assumption of no mean vertical motion, neutral condition, and southerly inflow in LES is validated. The time integration was conducted for 5400 seconds; the out- puts during the last 1800 seconds were used for the analysis. The wind speeds were normalized by the reference wind speed U¥ de- fined as the wind at the boundary-layer top, i.e., the 326-m height (z¥) which was chosen as the height at which the maximum of the mean horizontal winds appeared (see Fig. 5). Note here that this boundary-layer height is different from the actual one under the typhoon condition. The idea for this normalization was to use the WRF outputs as a reference to obtain quantitative values for wind speeds within urban canopy, as described in Section 3.2. Ahmad et al. (2017) demonstrated the usefulness of this normalization to assess gust intensities within urban canopies at different locations. 2.3 Merging meteorological and LES models Fig. 1. The computational domains for (a) the WRF model and (b) the LES There are some approaches in merging meteorological and model. In (a), two nested domains (D01: Domain 1; D02: Domain 2) were LES models (e.g. Mayor et al. 2002; Mochida et al. 2011; Nakaya- exhibited. In (b), the main computational domain is indicated by white sol- ma et al. 2012; Muñoz-Esparza et al. 2014; Li et a. 2017; Huang id box, having a 3 km (south-north) by 2 km (west-east) area within Osaka et al. 2018): the outputs of a meteorological model are somehow City. The color denotes the height of the buildings and structures obtained directly imposed as the inflow conditions of an LES model. In from the 2-m-mesh DSM data. this preliminary study, we employed a simple approach to use winds only at a certain height from the meteorological model as a reference for airflows simulated in LES (Takemi et al. 2006). The idea for this analysis is to combine the advantages of the both (MGDSST) data were used for prescribing SSTs. To accelerate WRF and LES models: the WRF simulation provides the meteo- the development of the typhoon from the analyses, we added an rologically driven wind speeds UWRF at z¥, while the LES defines initial vortex from a typhoon-bogus scheme. With the initial times the ratio of wind speed Uz within urban canopy layer against U¥. changed from 1200 UTC 31 August to 1200 UTC 2 September Thus, wind speed at height z within the urban canopy is deter- 2018 at the 6-hour interval, time integration was done until 1800 mined as follows: UTC 4 September and totally conducted 9 simulations. The sim- U ulated outputs for Domain 2 were done at 10-minute interval and () z Uz= UWRF . (1) used for the following analysis. U∞ 2.2 Building-resolving LES modeling Normalized wind speed from LES is dimensionalized with the aid We used the LES model developed by Yoshida et al.
Recommended publications
  • Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR Sitrep 2014‐001 ‐ Updated July 8, 2014, 10:00 CET
    Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR sitrep 2014‐001 ‐ updated July 8, 2014, 10:00 CET Summary Report Ongoing typhoon situation The storm had lost strength early Tuesday July 8, going from the equivalent of a Category 5 hurricane to a Category 3 on the Saffir‐Simpson Hurricane Wind Scale, which means devastating damage is expected to occur, with major damage to well‐built framed homes, snapped or uprooted trees and power outages. It is approaching Okinawa, Japan, and is moving northwest towards South Korea and the Philippines, bringing strong winds, flooding rainfall and inundating storm surge. Typhoon Neoguri is a once‐in‐a‐decade storm and Japanese authorities have extended their highest storm alert to Okinawa's main island. The Global Assessment Report (GAR) 2013 ranked Japan as first among countries in the world for both annual and maximum potential losses due to cyclones. It is calculated that Japan loses on average up to $45.9 Billion due to cyclonic winds every year and that it can lose a probable maximum loss of $547 Billion.2 What are the most devastating cyclones to hit Okinawa in recent memory? There have been 12 damaging cyclones to hit Okinawa since 1945. Sustaining winds of 81.6 knots (151 kph), Typhoon “Winnie” caused damages of $5.8 million in August 1997. Typhoon "Bart", which hit Okinawa in October 1999 caused damages of $5.7 million. It sustained winds of 126 knots (233 kph). The most damaging cyclone to hit Japan was Super Typhoon Nida (reaching a peak intensity of 260 kph), which struck Japan in 2004 killing 287 affecting 329,556 people injuring 1,483, and causing damages amounting to $15 Billion.
    [Show full text]
  • Atmospheric Sampling of Supertyphoon Mireille with NASA DC-8 Aircraft on September 27,1991, During PEM-West A
    UC Irvine UC Irvine Previously Published Works Title Atmospheric sampling of Supertyphoon Mireille with NASA DC-8 aircraft on September 27,1991, during PEM-West A Permalink https://escholarship.org/uc/item/3c03j813 Journal Journal of Geophysical Research: Atmospheres, 101(D1) ISSN 2169-897X Authors Newell, RE Hu, W Wu, ZX et al. Publication Date 1996 DOI 10.1029/95JD01374 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101,NO. D1, PAGES 1853-1871,JANUARY 20, 1996 Atmospheric sampling of SupertyphoonMireille with NASA DC-8 aircraft on September 27, 1991, during PEM-West A R. E. Newell,1 W. Hu,1 Z-X. Wu,1 Y. Zhu,1 H. Akimoto,2 B. E. Anderson,3 E. V. Browell,3 G. L. Gregory,3 G. W. Sachse,3 M. C. Shipham,3 A. S.Bachmeier, 4 A.R. Bandy, 5 D.C. Thornton,5 D. R. BlakefiF. S.Rowland, 6 J.D. Bradshaw,7 J. H. Crawford,7 D. D. Davis,7 S. T. Sandholm,7 W. Brockett,8 L. DeGreef,8 D. Lewis,8 D. McCormick,8 E. Monitz,8 J. E. CollinsJr., 9 B. G. Heikes,1ø J. T. Merrill,1ø K. K. Kelly,11 S.C. Liu,• 1 y. Kondo,12 M. Koike,12 C.-M. Liu, 13 F. Sakamaki,TM H. B. Singh,15 J. E. Dibb,16 and R. W. Talbot 16 Abstract. The DC-8 missionof September27, 1991,was designed to sampleair flowing intoTyphoon Mireille in theboundary layer, air in the uppertropospheric eye region, and air emergingfrom the typhoon and ahead of the system,also in the uppertroposphere.
    [Show full text]
  • The 14Th Asia Pacific Conference on Disaster Medicine in Kobe, Japan: a Brief Overview and a Proposal
    Abstracts of Poster-Presentations-WADEM Congress on Disaster and Emergency Medicine 2019 POSTER PRESENTATIONS 2018 Natural Disaster Response in Japan The 14th Asia Pacific Conference on Disaster Medicine in Dr. Hisayoshi Kondo, Dr. Yuichi Koido, Dr. Hirotaka Uesgi, Kobe, Japan: A Brief Overview and a Proposal Dr. Yoshitaka Kohayagawa, Dr. Ayako Takahashi, Dr. Shinichi Nakayama1, Dr. Takashi Ukai1, Dr. Yuzuru Kawashima, Dr. Miho Misaki, Ms Kayako Chishima, Dr. Shuichi Kozawa1, Dr. Tetsunori Kawase1, Mr. Yoshiki Toyokuni Dr. Satoshi Ishihara1, Dr. Soichiro Kai Kai1, Dr. Ryoma Kayano2, National Disaster Medical Center of Japan, Tachikawa, Japan Dr. Tatsuro Kai3 1. Hyogo Emergency Medical Center, Kobe, Japan Introduction: Japan experienced several major disasters in 2. The WHO Center for Health Development (WHO Kobe 2018. Center), Kobe, Japan Aim: Evaluation of medical response was conducted and prob- 3. Osaka Saiseikai Senri Hospital, Osaka lems determined to solve for future response. Methods: An evaluation conducted on DMAT responding Introduction: The Asia Pacific Conference on Disaster report of Northern Osaka Earthquake, West Japan Torrential Medicine (APCDM) started in 1988 in Osaka, Japan, and the Rain Disaster, Typhoon Jebi, and Hokkaido Iburi East 14th conference was held from October 16-182, 2018, in Kobe. Earthquake. Aim: To give a rundown of the 14th APCDM and a proposal Results: DMAT responded 58 teams for Osaka Northern for WADEM. Earthquake, 119 teams for West Japan Torrential Rain Methods: Retrospective analysis of participants, the category of Disaster, 17 teams for Typhoon Jebi, 67 teams for Hokkaido presentations, and deliverables. Iburi East Earthquake. At the Osaka Northern Earthquake, Results: With “Building Bridges for Disaster Preparedness and by comparing the report of seismic diagnosis, results and, a Response” as its main theme, the 14th APCDM was held near magnitude of each region, hospital damage was evaluated.
    [Show full text]
  • Nearshore Dynamics of Storm Surges and Waves Induced by the 2018
    Journal of Marine Science and Engineering Article Nearshore Dynamics of Storm Surges and Waves Induced by the 2018 Typhoons Jebi and Trami Based on the Analysis of Video Footage Recorded on the Coasts of Wakayama, Japan Yusuke Yamanaka 1,* , Yoshinao Matsuba 1,2 , Yoshimitsu Tajima 1 , Ryotaro Shibata 1, Naohiro Hattori 1, Lianhui Wu 1 and Naoko Okami 1 1 Department of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan; [email protected] (Y.M.); [email protected] (Y.T.); [email protected] (R.S.); [email protected] (N.H.); [email protected] (L.W.); [email protected] (N.O.) 2 Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan * Correspondence: [email protected] Received: 30 September 2019; Accepted: 11 November 2019; Published: 13 November 2019 Abstract: In this study, field surveys along the coasts of Wakayama Prefecture, Japan, were first conducted to investigate the coastal damage due to storm surges and storm-induced waves caused by the 2018 Typhoons Jebi and Trami. Special focus was placed on the characteristic behavior of nearshore waves through investigation of observed data, numerical simulations, and image analysis of video footage recorded on the coasts. The survey results indicated that inundation, wave overtopping, and drift debris caused by violent storm-induced waves were the dominant factors causing coastal damage. Results of numerical simulations showed that heights of storm-induced waves were predominantly greater than storm surge heights along the entire coast of Wakayama in both typhoons.
    [Show full text]
  • Japan's Insurance Market 2020
    Japan’s Insurance Market 2020 Japan’s Insurance Market 2020 Contents Page To Our Clients Masaaki Matsunaga President and Chief Executive The Toa Reinsurance Company, Limited 1 1. The Risks of Increasingly Severe Typhoons How Can We Effectively Handle Typhoons? Hironori Fudeyasu, Ph.D. Professor Faculty of Education, Yokohama National University 2 2. Modeling the Insights from the 2018 and 2019 Climatological Perils in Japan Margaret Joseph Model Product Manager, RMS 14 3. Life Insurance Underwriting Trends in Japan Naoyuki Tsukada, FALU, FUWJ Chief Underwriter, Manager, Underwriting Team, Life Underwriting & Planning Department The Toa Reinsurance Company, Limited 20 4. Trends in Japan’s Non-Life Insurance Industry Underwriting & Planning Department The Toa Reinsurance Company, Limited 25 5. Trends in Japan's Life Insurance Industry Life Underwriting & Planning Department The Toa Reinsurance Company, Limited 32 Company Overview 37 Supplemental Data: Results of Japanese Major Non-Life Insurance Companies for Fiscal 2019, Ended March 31, 2020 (Non-Consolidated Basis) 40 ©2020 The Toa Reinsurance Company, Limited. All rights reserved. The contents may be reproduced only with the written permission of The Toa Reinsurance Company, Limited. To Our Clients It gives me great pleasure to have the opportunity to welcome you to our brochure, ‘Japan’s Insurance Market 2020.’ It is encouraging to know that over the years our brochures have been well received even beyond our own industry’s boundaries as a source of useful, up-to-date information about Japan’s insurance market, as well as contributing to a wider interest in and understanding of our domestic market. During fiscal 2019, the year ended March 31, 2020, despite a moderate recovery trend in the first half, uncertainties concerning the world economy surged toward the end of the fiscal year, affected by the spread of COVID-19.
    [Show full text]
  • Consecutive Extreme Flooding and Heat Wave in Japan: Are They Becoming a Norm?
    Received: 17 May 2019 Revised: 25 June 2019 Accepted: 1 July 2019 DOI: 10.1002/asl.933 EDITORIAL Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm? In July 2018, Japan experienced two contrasting, yet consec- increases (Chen et al., 2004). Putting these together, one could utive, extreme events: a devastating flood in early July argue that the 2018 sequential events in southern Japan indicate followed by unprecedented heat waves a week later. Death a much-amplified EASM lifecycle (Figure 1a), featuring the tolls from these two extreme events combined exceeded strong Baiu rainfall, an intense monsoon break, and the landfall 300, accompanying tremendous economic losses (BBC: July of Super Typhoon Jebi in early September. 24, 2018; AP: July 30, 2018). Meteorological analysis on The atmospheric features that enhance the ascent and insta- these 2018 events quickly emerged (JMA-TCC, 2018; bility of the Baiu rainband have been extensively studied Kotsuki et al., 2019; Tsuguti et al., 2019), highlighting sev- (Sampe and Xie, 2010); these include the upper-level westerly eral compound factors: a strengthened subtropical anticy- jet and traveling synoptic waves, mid-level advection of warm clone, a deepened synoptic trough, and Typhoon Prapiroon and moist air influenced by the South Asian thermal low, and that collectively enhanced the Baiu rainband (the Japanese low-level southerly moisture transport associated with an summer monsoon), fostering heavy precipitation. The com- enhanced NPSH. These features are outlined in Figure 1b as prehensive study of these events, conducted within a month (A) the NPSH, and particularly its western extension; (B) the and released by the Japan Meteorological Agency (JMA) western Pacific monsoon trough; (C) the South Asian monsoon; (JMA-TCC, 2018), reflected decades of knowledge of the (D) the mid-latitude westerly jet and quasistationary short Baiu rainband and new understanding of recent heat waves waves, as well as the Baiu rainband itself; these are based on in southern Japan and Korea (Xu et al., 2019).
    [Show full text]
  • Sigma 1/2008
    sigma No 1/2008 Natural catastrophes and man-made disasters in 2007: high losses in Europe 3 Summary 5 Overview of catastrophes in 2007 9 Increasing flood losses 16 Indices for the transfer of insurance risks 20 Tables for reporting year 2007 40 Tables on the major losses 1970–2007 42 Terms and selection criteria Published by: Swiss Reinsurance Company Economic Research & Consulting P.O. Box 8022 Zurich Switzerland Telephone +41 43 285 2551 Fax +41 43 285 4749 E-mail: [email protected] New York Office: 55 East 52nd Street 40th Floor New York, NY 10055 Telephone +1 212 317 5135 Fax +1 212 317 5455 The editorial deadline for this study was 22 January 2008. Hong Kong Office: 18 Harbour Road, Wanchai sigma is available in German (original lan- Central Plaza, 61st Floor guage), English, French, Italian, Spanish, Hong Kong, SAR Chinese and Japanese. Telephone +852 2582 5691 sigma is available on Swiss Re’s website: Fax +852 2511 6603 www.swissre.com/sigma Authors: The internet version may contain slightly Rudolf Enz updated information. Telephone +41 43 285 2239 Translations: Kurt Karl (Chapter on indices) CLS Communication Telephone +41 212 317 5564 Graphic design and production: Jens Mehlhorn (Chapter on floods) Swiss Re Logistics/Media Production Telephone +41 43 285 4304 © 2008 Susanna Schwarz Swiss Reinsurance Company Telephone +41 43 285 5406 All rights reserved. sigma co-editor: The entire content of this sigma edition is Brian Rogers subject to copyright with all rights reserved. Telephone +41 43 285 2733 The information may be used for private or internal purposes, provided that any Managing editor: copyright or other proprietary notices are Thomas Hess, Head of Economic Research not removed.
    [Show full text]
  • H2o Retailing Corporation Financial Report 2020
    H2O RETAILING CORPORATION FINANCIAL REPORT 2020 Contents FINANCIAL REPORT for the 101st fiscal term I. Overview of the Company .........................................................................................................................................2 1. Summary of business results ............................................................................................................................................. 2 2. History ............................................................................................................................................................................... 4 3. Description of business ...................................................................................................................................................... 6 4. Overview of subsidiaries and associates............................................................................................................................ 9 5. Information about employees .......................................................................................................................................... 12 II. Overview of Business .............................................................................................................................................14 1. Management policies, management environment and issues to be resolved, etc. ......................................................14 2. Business risk ......................................................................................................................................................15
    [Show full text]
  • Climate Change Impact on Precipitations Associated with Typhoons Nancy and Jebi Over Western Japan
    B31 Climate change impact on precipitations associated with Typhoons Nancy and Jebi over Western Japan 〇Sridhara NAYAK , Tetsuya TAKEMI Introduction: present climate and two simulations for future The Typhoons are one of the major life-threatening climate). For future climate simulations, we used weather-related disasters that cause various MRI-AGCM3.2 climate simulations and computed the socio-economic damages over landfall region (e.g., warming increments by taking 25-year mean Takemi et al., 2016; Chen et al., 2018). Recent studies difference between the present-day simulation suggest that the typhoons in future climate may (1979-2003) and the future projection (2075-2099). become more intense and carry heavy precipitations The warming increments are added to present JRA55 (e.g., Nayak and Takemit, 2019). In September of fields before performing future climate simulations. 1961 and 2018, two very strong Typhoons known as This is hereafter referred as Pseudo Global Warming “Typhoon Nancy” and “Typhoon Jebi” respectively (PGW) experiments. We compared the results of made landfall over Western Japan with strong winds typhoon track and intensities with the Regional and extensive precipitation amounts and caused Specialized Meteorological Center (RSMC) best track significant damages over target regions. Interestingly, datasets. both typhoons made landfall around same region of Western Japan with a difference of 57 years. However, Preliminary Results: it is uncertain that whether the precipitation amounts Figure 1 shows the typhoon tracks as obtained from associated with Typhoon Jebi is a future projection of the model simulations and RSMC best track datasets. that of with Typhoon Nancy under warmer It indicates that Typhoon Nancy and Typhoon Jebi environment? If so, then what will be the future made landfall over same region (highlighted as red projection of precipitation amounts linked to Typhoon colored circle) and well reproduced by WRF model.
    [Show full text]
  • DATA and MONITORING
    WORLD CLIMATE PROGRAMME DATA and MONITORING MEETING OF EXPERTS ON THE CLIMATE OF THE 20TH CENTURY (Geneva, Switzerland, 26-30 April 1999) WCDMP-No. 42 WMO-TD No. 972 * m World Meteorological Organization (Geneva, September 1999) The WCP implemented by WMO in conjunction with other international organizations consists of four major components: The World Climate Data and Monitoring Programme (WCDMP) The World Climate Applications and Services Programme (WCASP) The World Climate Impact Assessment and Response Strategies Programme (WCIRP) The World Climate Research Programme (WCRP) World Meteorological Organization Case postale N° 2300 1211 Geneva Switzerland World Climate Data and Monitoring Programme Telephone: (+41-22)730 81 11 Telefax: (+41-22)730 80 42 Telex: 414199 Email : [email protected] World Wide Web:http://www.wmo.ch/web/wcp/wcdmp/wcdmp.html NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secreta­ riat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Editorial note: This report has for the greater part been produced without editorial revision by the WMO Secretariat. It is not an official publication and its distribution in this form does not imply endorsement by the Organization of the ideas expressed. MEETING OF EXPERTS ON THE CLIMATE OF THE 20TH CENTURY (Geneva, Switzerland,
    [Show full text]
  • The St·Ructural Evolution Oftyphoo S
    NSF/ NOAA ATM 8418204 ATM 8720488 DOD- NAVY- ONR N00014-87-K-0203 THE ST·RUCTURAL EVOLUTION OFTYPHOO S by Candis L. Weatherford SEP 2 6 1989 Pl.-William M. Gray THE STRUCTURAL EVOLUTION OF TYPHOONS By Candis L. Weatherford Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 September, 1989 Atmospheric Science Paper No. 446 ABSTRACT A three phase life cycle characterizing the structural evolution of typhoons has been derived from aircraft reconnaissance data for tropical cyclones in the western North Pacific. More than 750 aircraft reconnaissance missions at 700 mb into 101 northwest Pacific typhoons are examined. The typical life cycle consists of the fol­ lowing: phase 1) the entire vortex wind field builds as the cyclone attains maximum intensity; phase 2) central pressure fills and maximum winds decrease in association with expanding cyclone size and strengthening of outer core winds; and phase 3) the wind field of the entire vortex decays. Nearly 700 aircraft radar reports of eyewall diameter are used to augment anal­ yses of the typhoon's life cycle. Eye characteristics and diameter appear to reflect the ease with which the maximum wind field intensifies. On average, an eye first appears with intensifying cyclones at 980 mb central pressure. Cyclones obtaining an eye at pressures higher than 980 mb are observed to intensify more rapidly while those whose eye initially appears at lower pressures deepen at slower rates and typ­ ically do not achieve as deep a central pressure. The eye generally contracts with intensification and expands as the cyclone fills, although there are frequent excep­ tions to this rule due to the variable nature of the eyewall size.
    [Show full text]
  • Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-Enclosed Osaka Bay, Japan
    Pure Appl. Geophys. 176 (2019), 4139–4160 Ó 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00024-019-02295-0 Pure and Applied Geophysics Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-enclosed Osaka Bay, Japan 1 1 2 1 1 TUAN ANH LE, HIROSHI TAKAGI, MOHAMMAD HEIDARZADEH, YOSHIHUMI TAKATA, and ATSUHEI TAKAHASHI Abstract—Typhoon Jebi made landfall in Japan in 2018 and hit 1. Introduction Osaka Bay on September 4, causing severe damage to Kansai area, Japan’s second largest economical region. We conducted field surveys around the Osaka Bay including the cities of Osaka, Annually, an average of 2.9 tropical cyclones Wakayama, Tokushima, Hyogo, and the island of Awaji-shima to (from 1951 to 2016) have hit Japan (Takagi and evaluate the situation of these areas immediately after Typhoon Esteban 2016; Takagi et al. 2017). The recent Jebi struck. Jebi generated high waves over large areas in these regions, and many coasts were substantially damaged by the Typhoon Jebi in September 2018 has been the combined impact of high waves and storm surges. The Jebi storm strongest tropical cyclone to come ashore in the last surge was the highest in the recorded history of Osaka. We used a 25 years since Typhoon Yancy (the 13th typhoon to storm surge–wave coupled model to investigate the impact caused by Jebi. The simulated surge level was validated with real data hit Japan, in 1993), severely damaging areas in its acquired from three tidal stations, while the wave simulation results trajectory.
    [Show full text]