Evolutionary Paleontology and the Science of Form A

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Paleontology and the Science of Form A Earth-Science Reviews - Elsevier Publishing Company, Amsterdam - Printed in The Netherlands EVOLUTIONARY PALEONTOLOGY AND THE SCIENCE OF FORM STEPHEN JAY GOULD Mttseum of Comparative Zoology, Harvard University, Cambridge, Mass. (U.S.A.) SUMMARY A science of form is now being forged within evolutionary theory. It studies adaptation by quantitative methods, using the organism-machine analogy as a guide; it seeks to reduce complex form to fewer generating factors and causal influences. If a function can be postulated for a structure, then its optimum form, or paradigm (RuDwtCK, 1961), can be specified on mechanical grounds. The approach of a structure to its paradigm provides the elusive criterion of relative efficiency that any science of adaptation requires. Physical laws and forces also specify that form be adapted to the requirements of size (surface/volume relation- ships) and space (close packing criteria). When we cannot establish paradigms on deductive criteria, an experimental approach to form is appropriate. Idealized models are favored over actual specimens because they can be built to test pre- determined factors. Paleontology need not remain solely a descriptive science based on observational methods, but may adopt the experimental techniques of explanatory procedures. It is inconceivable that each aspect of a complex form is the direct product of an individual genetic instruction. We can simplify, and thereby understand, the generation of apparent complexity by recognizing that physical forces directly influence shape and that a few simple rules can fashion some very intricate final products. These rules can be programmed; computers have simulated structures that bear remarkable correspondence to actual forms; the geometry of genetic instruction need be no more complex. The rules can be used to generate a range of potential form available to such structures as the coiled shell (RAuP, 1966). Actual forms fill only a part of the total spectrum; their basic adaptation may be grasped when we realize why unoccupied areas are not utilized. Among inductive studies of ontogeny and phylogeny, univariate techniques display trends and rates of change for single characters; they have been applied recently to the periodic growth lines of fossil shells, providing thereby a paleon- tological input to geophysics. Bivariate procedures, as the inevitable Gryphaea story illustrates, have been plagued by errors of method. When properly applied, they serve well in the separation of species and sexual dimorphs; they are the standard tool of quantitative description. Multivariate methods are based on the Earth-Sci. Rev., 6 (1970) 77-119 78 s.J. GOULD more satisfactory premise that an organism grows and evolves as a set of inter- acting parts; interactions should be considered together, not abstracted as pairs. In the R-mode, these methods may detect interrelated character clusters, reduce the high dimensionality of a system to few interpretable directions of variation, and eliminate redundant variables. In the Q-mode, they provide an objective picture of phenetic differences among samples and specify how the measured characters produce these differences. The importance of a new methodology can be gauged by its impact on ideas of life's history. A quantitative and functional science of form suggests that parallelism and convergence are dominant phenomena, not mere taxonomic nuisances. Early in their history, most phyla display great diversity at high taxonomic levels. These are not classic adaptive radiations, but sets of competing experiments in basic design. Early experimentation is followed by standardization of the best mechanical designs. These are often improved in similar ways by many independent lineages. Standardization and improvement provide invertebrate life with a history; the Phanerozoic has not been a time of endless ecological variation on a static set of basic structures. THE SHAPE OF THINGS TO COME Form and diversity are the two great subjects of natural history. Although we now think of speciation and adaptation where we spoke once of plenitude and design, it is only the terminology and not our concerns that have changed. Sys- tematics, the study of diversity, has been advanced by such thinkers as SIMPSON (1961) and MAYR (1963) to a level at which SYLVESTER-BRADLEY (1968) can justly christen a "science of diversity". Until recently, the study of form could make no such claim. It had, to be sure, its locus classicus -- D'ARcY THOMPSON (1917, second ed. 1942) -- but Thompson's treatise stood more as an awesome monument than a living work, its insights unnoted and its implications undeveloped. If paleontologists can now, as I believe, baptize a "science of form", it is because two approaches are beginning to unite under a common concept. The approaches are functional and quantitative; the concept is a mild mechanistic reductionism: an organism is a physical object subject to the laws of mechanics; its complexity can often be generated by a few, simple geometric instructions; its adaptation can be analyzed mechanically, often as an engineer would judge the efficiency of a machine built to perform a specific task i. In defending a concept that would seem crude or outdated in many physical sciences, I assert that alternative proposals offer no comparable access to the 1 I shall, if I may be permitted a literary barbarism, refer to this way of studying form as the quantifunctional approach. That it is, indeed, emerging as a fruitful strategy can be seen in the numerous papers of the recent Paleontological Society symposium entitled "Paleobiologieal Aspects of Growth and Development" (MACURDA, 1968). Earth-Sci. Rev., 6 (1970) 77-119 EVOLUTIONARY PALEONTOLOGY AND THE SCIENCE OF FORM 79 evolutionary problem of form, to the question of adaptation. Just as experimental physiology once needed Claude Bernard's determinism as a "specific conceptual tool" (COLEMAN, 1967, p.23), paleontology now requires a new strategy to found a science of adaptation. RUDWlCK understood this when he wrote (1961, p.450): "Although adaptation stands at the center of the modern debate on the mechanisms of evolutionary change, the problem of the recognition of adaptation in fossils, or the inference of function from structure has received surprisingly little attention." And later (1964b, pp.34-35): "The detection of any adaptation in a fossil organism must be based on a perception of the machine-like character of its parts and on an appreciation of their mechanical fitness to perform some function in the presumed interest of the organism." It is one of the ironies of history that the impact of evolutionary theory upon paleontology tended first to discourage the approach to adaptation we now advocate. Cuvier's functional morphology was the first triumph of biological paleontology, but it "suffered a spectacular eclipse" with the acceptance of evolu- tion (RuDWlCK, 1964b, p.38). Speculative phylogeny, based on pure morphology (PANTIN, 1951) and the supposed "laws" of its evolutionary modification, marked the paleontological approach to the history of life (GouLD, 1969b). HIS (1888, in COLEMAN, 1967; 1894), a great experimental embryologist, lamented the decline of functional studies and their replacement with a game of lineage building by "rigid morphological diagrams, abstracted by merely logical operations" (1888, in COLEMAN, 1967, p.175). Despite its later disenchantment with phylogenetic laws and parlor-room phylogenizing, paleontology has never dealt successfully with adaptation. Isolated men have had great insight -- Kovalevsky (STRELNIKOV and HECKER, 1968) and Dollo (GouLD, 1970) in particular. Neo-Lamarckists exploited the machine analogy (COPE, 1896, on kinetogenesis and JACKSON, 1891), but erred in assuming that mechanical optima implied direct mechanical pro- duction. The German school of experimental functionalists, particularly RICHTER (1929) and his followers (e.g., ZEUNER, 1933) studded the pages of Senckenbergiana and Paleobiologica with their work, but it had little outside impact and established no successful synthesis with modern evolutionary theory. Moreover, the worst features of speculative phylogeny are still with us, however reduced in frequency and impact, e.g., HOEEHAUS' suggested homology of comatulid pinnules with eurypterid walking legs (1963, p.460) -- as if a flexible structure built of hard parts could be constructed without jointing! But the conflict of functional and phylogenetic schools had no basis in necessity; any evolutionary theory must, in fact, deal with both questions. Yet since functional morphology had been the historical bailiwick of anti-evolutionists, it was degraded in the formulation of evolutionary theory. "The synthetic theory, despite its great verbal emphasis on function, tends to dissolve genuine adaptation into the non-morphological concepts of gene-pool, genetica[ fitness, adaptive zone, etc." (RuDWICK, 1964b, p.39). Our science of form must analyze adaptation Earth-Sci. Rev., 6 (1970) 77-119 80 S.J. GOULD without contradicting modern views of ontogeny and phylogeny. Moreover, it should provide new insights into paleontology's unique domain, i.e., transspecific evolution and major patterns in the history of life. This paper is written in the belief that such a science of form is now being forged. THE MECHANICS AND EXPERIMENTAL STUDY OF ADAPTATION IN FOSSILS All changes in the extremities [of fossil horses] are of course occasioned by mechanical conditions of movement and we really see that the
Recommended publications
  • Rowan C. Martindale Curriculum Vitae Associate Professor (Invertebrate Paleontology) at the University of Texas at Austin
    ROWAN C. MARTINDALE CURRICULUM VITAE ASSOCIATE PROFESSOR (INVERTEBRATE PALEONTOLOGY) AT THE UNIVERSITY OF TEXAS AT AUSTIN Department of Geological Sciences E-mail: [email protected] Jackson School of Geosciences Website: www.jsg.utexas.edu/martindale/ 2275 Speedway Stop C9000 Orchid ID: 0000-0003-2681-083X Austin, TX 78712-1722 Phone: 512-475-6439 Office: JSG 3.216A RESEARCH INTERESTS The overarching theme of my work is the connection between Earth and life through time, more precisely, understanding ancient (Mesozoic and Cenozoic) ocean ecosystems and the evolutionary and environmental events that shaped them. My research is interdisciplinary, (paleontology, sedimentology, biology, geochemistry, and oceanography) and focuses on: extinctions and carbon cycle perturbation events (e.g., Oceanic Anoxic Events, acidification events); marine (paleo)ecology and reef systems; the evolution of reef builders (e.g., coral photosymbiosis); and exceptionally preserved fossil deposits (Lagerstätten). ACADEMIC APPOINTMENTS Associate Professor, University of Texas at Austin September 2020 to Present Assistant Professor, University of Texas at Austin August 2014 to August 2020 Postdoctoral Researcher, Harvard University August 2012 to July 2014 Department of Organismic and Evolutionary Biology; Mentor: Dr. Andrew H. Knoll. EDUCATION Doctorate, University of Southern California 2007 to 2012 Dissertation: “Paleoecology of Upper Triassic reef ecosystems and their demise at the Triassic-Jurassic extinction, a potential ocean acidification event”. Advisor: Dr. David J. Bottjer, degree conferred August 7th, 2012. Bachelor of Science Honors Degree, Queen’s University 2003 to 2007 Geology major with a general concentration in Biology (Geological Sciences Medal Winner). AWARDS AND RECOGNITION Awards During Tenure at UT Austin • 2019 National Science Foundation CAREER Award: Awarded to candidates who are judged to have the potential to serve as academic role models in research and education.
    [Show full text]
  • Some Philosophical Questions About Paleontology and Their Practica1 Consequences
    ACTA GEOLOGICA HISPANICA. Concept and method in Paleontology. 16 (1981) nos 1-2, pags. 7-23 Some philosophical questions about paleontology and their practica1 consequences by Miquel DE RENZI Depto. de Geología, Facultad de Ciencias Biológicas, Universidad de Valencia. Burjassot (Valencia). This papcr attempts to objectively discuss the actual state ofpaleontology. The En aquest treball s'ha intentat fer un balanc d'alguns aspectes de I'estat de la progress of this science stood still somewhat during the latter part of the last paleontologia. La historia de la paleontologia mostra un estancarnent a les century which caused it to develop apart from the biological sciences. an area to darreries del segle passac aquest estancament va Fer que la nostra ciencia s'anes which it is naturally tied. As aconsequence, this bruought a long-term stagnation, allunyant cada cop mes de I'area de les ciencies bii~logiques,amb les qualsestava because biology, dunng this century, has made great progress and paleontology lligada naturalment AixO va portar, com a conseqüencia, un important has not During the last 20 years paleontology as a science hasrecuperatedsome endarreriment, car la biologia, durant aquest segle, ha donat un gran pas of this loss, but we as scientists need to be careful in various aspects of its endavant, mentre que aquest no ha estat el cas de lapaleontologia Al nostre pais development -i possiblement a molts d'altres- la paleontologia es, fonamentalment, un estn per datar estrats. Tanmateix, un mal estri, car la datació es basadaen les especies fossils i la seva determinació es fonamenta en el ccncepte d'especie biolbgica; els fossils pero en moltes ocasions, són utilitzats mes aviat com si fossin segells o monedes.
    [Show full text]
  • The Paleontology Synthesis Project and Establishing a Framework for Managing National Park Service Paleontological Resource Archives and Data
    Lucas, S.G. and Sullivan, R.M., eds., 2018, Fossil Record 6. New Mexico Museum of Natural History and Science Bulletin 79. 589 THE PALEONTOLOGY SYNTHESIS PROJECT AND ESTABLISHING A FRAMEWORK FOR MANAGING NATIONAL PARK SERVICE PALEONTOLOGICAL RESOURCE ARCHIVES AND DATA VINCENT L. SANTUCCI1, JUSTIN S. TWEET2 and TIMOTHY B. CONNORS3 1National Park Service, Geologic Resources Division, 1849 “C” Street, NW, Washington, D.C. 20240, [email protected]; 2National Park Service, 9149 79th Street S., Cottage Grove, MN 55016, [email protected]; 3National Park Service, Geologic Resources Division, 12795 W. Alameda Parkway, Lakewood, CO 80225, [email protected] Abstract—The National Park Service Paleontology Program maintains an extensive collection of digital and hard copy documents, publications, photographs and other archives associated with the paleontological resources documented in 268 parks. The organization and preservation of the NPS paleontology archives has been the focus of intensive data management activities by a small and dedicated team of NPS staff. The data preservation strategy complemented the NPS servicewide inventories for paleontological resources. The first phase of the data management, referred to as the NPS Paleontology Synthesis Project, compiled servicewide paleontological resource data pertaining to geologic time, taxonomy, museum repositories, holotype fossil specimens, and numerous other topics. In 2015, the second phase of data management was implemented with the creation and organization of a multi-faceted digital data system known as the NPS Paleontology Archives and NPS Paleontology Library. Two components of the NPS Paleontology Archives were designed for the preservation of both park specific and servicewide paleontological resource archives and data. A third component, the NPS Paleontology Library, is a repository for electronic copies of geology and paleontology publications, reports, and other media.
    [Show full text]
  • SVP's Letter to Editors of Journals and Publishers on Burmese Amber And
    Society of Vertebrate Paleontology 7918 Jones Branch Drive, Suite 300 McLean, VA 22102 USA Phone: (301) 634-7024 Email: [email protected] Web: www.vertpaleo.org FEIN: 06-0906643 April 21, 2020 Subject: Fossils from conflict zones and reproducibility of fossil-based scientific data Dear Editors, We are writing you today to promote the awareness of a couple of troubling matters in our scientific discipline, paleontology, because we value your professional academic publication as an important ‘gatekeeper’ to set high ethical standards in our scientific field. We represent the Society of Vertebrate Paleontology (SVP: http://vertpaleo.org/), a non-profit international scientific organization with over 2,000 researchers, educators, students, and enthusiasts, to advance the science of vertebrate palaeontology and to support and encourage the discovery, preservation, and protection of vertebrate fossils, fossil sites, and their geological and paleontological contexts. The first troubling matter concerns situations surrounding fossils in and from conflict zones. One particularly alarming example is with the so-called ‘Burmese amber’ that contains exquisitely well-preserved fossils trapped in 100-million-year-old (Cretaceous) tree sap from Myanmar. They include insects and plants, as well as various vertebrates such as lizards, snakes, birds, and dinosaurs, which have provided a wealth of biological information about the ‘dinosaur-era’ terrestrial ecosystem. Yet, the scientific value of these specimens comes at a cost (https://www.nytimes.com/2020/03/11/science/amber-myanmar-paleontologists.html). Where Burmese amber is mined in hazardous conditions, smuggled out of the country, and sold as gemstones, the most disheartening issue is that the recent surge of exciting scientific discoveries, particularly involving vertebrate fossils, has in part fueled the commercial trading of amber.
    [Show full text]
  • Abhandlungen Der Geologischen Bundesanstalt in Wien
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Abhandlungen der Geologischen Bundesanstalt in Wien Jahr/Year: 2002 Band/Volume: 57 Autor(en)/Author(s): Sprey Anton Martin Artikel/Article: Early Ontogeny of three Callovian Ammonite Genera (Binatisphinctes, Kosmoceras (Spinikosmoceras) and Hecticoceras) from Ryazan (Russia) 225-255 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh. Geol. B.-A. ISSN 0016–7800 ISBN 3-85316-14-X Band 57 S. 225–255 Wien, Februar 2002 Cephalopods – Present and Past Editors: H. Summesberger, K. Histon & A. Daurer Early Ontogeny of three Callovian Ammonite Genera (Binatisphinctes, Kosmoceras (Spinikosmoceras) and Hecticoceras) from Ryazan (Russia) ANTON MARTIN SPREY*) 15 Text-Figures, 3 Tables and 8 Plates Callovian Ammonoidea Shell Structure Early Ontogeny Micro-ornament Contents Zusammenfassung ...................................................................................................... 225 Abstract ................................................................................................................. 226 1. Introduction ............................................................................................................. 226 2. Material and Methods .................................................................................................... 226 2.1. Examined Taxa and Their Source ...................................................................................
    [Show full text]
  • Systematics in Palaeontology
    Systematics in palaeontology THOMAS NEVILLE GEORGE PRESIDENT'S ANNIVERSARY ADDRESS 1969 CONTENTS Fossils in neontological categories I98 (A) Purpose and method x98 (B) Linnaean taxa . x99 (e) The biospecies . 202 (D) Morphology and evolution 205 The systematics of the lineage 205 (A) Bioserial change 205 (B) The palaeodeme in phyletic series 209 (e) Palaeodemes as facies-controlled phena 2xi Phyletic series . 2~6 (A) Rates of bioserial change 2~6 (B) Character mosaics 218 (c) Differential characters 222 Phylogenetics and systematics 224 (A) Clade and grade 224 (a) Phylogenes and cladogenes 228 (e) Phylogenetic reconstruction 23 I (D) Species and genus 235 (~) The taxonomic hierarchy 238 5 Adansonian methods 240 6 References 243 SUMMARY A 'natural' taxonomic system, inherent in evolutionary change, pulses of biased selection organisms that themselves demonstrate their pressure in expanded and restricted palaeo- 'affinity', is to be recognized perhaps only in demes, and permutations of character-expres- the biospecies. The concept of the biospecies as sion in the evolutionary plexus impose a need a comprehensive taxon is, however, only for a palaeontologically-orientated systematics notional amongst the vast majority of living under which (in evolutionary descent) could organisms, and it is not directly applicable to be subsumed the taxa of the neontological fossils. 'Natural' systems of Linnaean kind rest moment. on assumptions made a priori and are imposed Environmentally controlled morphs, bio- by the systematist. The graded time-sequence facies variants, migrating variation fields, and of the lineage and the clade introduces factors typological segregants are sources of ambiguity into a systematics that cannot well be accommo- in a distinction between phenetic and genetic dated under pre-Darwinian assumptions or be fossil grades.
    [Show full text]
  • GEOS 33000/EVOL 33000: Winter 2006 Course Outline Page 1
    GEOS 33000/EVOL 33000: Winter 2006 Course Outline Page 1 Meetings: Tuesdays and Thursdays, 10:30-12:00, HGS 180 Nature of the course: This course is an introduction to mathematical modeling as applied to problems in paleobiology and evolutionary biology. Topics include: basic probability theory; general approaches to modeling; model comparison using likelihood and other criteria; forward modeling of branching processes; sampling models; and inverse methods. A series of programming exercises and a term project are required. Programming in R or C is recommended, but any language may be used. Requirements: 1. Short exercises 2. Readings to be assigned 3. Term paper: Original research, relevant to topics covered in course. Publication length and quality. Brief presentation of research. Prerequisites: Mathematics through first-year calculus; basic computer programming skills (or willingness to learn) URL for course materials: http://geosci.uchicago.edu/∼foote/MODEL Reading General Reference Works Burnham, K.P., and D. R. Anderson. 1998. Model selection and inference: a practical information-theoretic approach. Springer, New York. Edwards, A.W.F. 1992. Likelihood. Johns Hopkins U. Press. Efron, B. and R.J. Tibshirani. 1993. An introduction to the bootstrap. Chapman and Hall, N.Y. Feller, W. 1968 (and other editions). An introduction to probability theory and its applications (two volumes). John Wiley and Sons, N.Y. Gilinsky, N.L., and P.W. Signor, eds. 1991. Analytical paleobiology. Short Courses in Paleontology Number 4. Paleontological Society, Knoxville, Tenn. Gumbel, E.J. 1958. Statistics of extremes. Columbia University Press, N.Y. Press, W.H., S.A. Teukolsky, W.T. Vetterling, B.P.
    [Show full text]
  • Danise Et Al 2020 Gondwana Research.Docx.Pdf
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences 2020-06 Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean Danise, S http://hdl.handle.net/10026.1/15995 10.1016/j.gr.2019.12.011 Gondwana Research Elsevier BV All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Please cite as: Danise, S., Price, G.D., Alberti, M., Holland S.M. 2020 Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean. Gondwana Research, 82, 97–107. Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean Silvia Danise a,b,⁎, Gregory D. Price a, Matthias Alberti c, Steven M. Holland d a School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK b Dipartimento di Sicenze della Terra, Università degli Studi di Firenze, via La Pira 4, 50121 Firenze, Italy c Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany d Department of Geology, University of Georgia, Athens, GA 30602-2501, USA a b s t r a c t Article history: Received 21 October 2019 Received in revised form 20 December 2019 Accepted 20 December 2019 Available online 30 January 2020 Handling Editor: A.
    [Show full text]
  • Scientific BIOGRAPHY and the CASE of GEORGES CUVIER
    Hist. Sci.) xiv (1976), 101-137 1976HisSc..14..101O SCIENTIFic BIOGRAPHY AND THE CASE OF GEORGES CUVIER: WITH A CRITICAL BIBLIOGRAPHY Dorinda OutralU University of Reading The purpose of this introduction is to provide some interpretative tools for the reader of the body of secondary literature on Georges Cuvier which is examined in the attached critical bibliography. Criticism and analysis of existing work is therefore emphasized, and the problems in­ volved in constructing a positive biography of Cuvier are only briefly examined. Not only strictly biographical studies, but also work on all aspects of Cuvier's achievement, have been so strongly informed by pre­ suppositions about his character, that a knowledge of this bias and its characteristic expressions is nece.<;sary before previous work on Cuvier can be properly interp'reted. This bibliography is thus also intended as a necessary clearing of the ground before further study of Cuvier's career can be undertaken. This is true not only because it is necessary to discover the precise extent of factual inadequacy in our knowledge of Cuvier's life and achievement, but also because we need to increase our awareness of the role which biographical inquiry has played in the history of science, for without this awareness, the full implications of the adoption of the form cannot be assessed. Interest in Georges Cuvier has increased considerably during the last decade, but so far almost no account has been taken of the extraordinary biographical tradition through which we view him. Almost every presen­ tation of Cuvier since his death in 1832 has been dominated by emphases which were established very soon afterwards, and which have continued to monopolize the attention of historians of the life-sciences until very recently.
    [Show full text]
  • GEOLOGY THEME STUDY Page 1
    NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.
    [Show full text]
  • Mesozoic and Cenozoic Sequence Stratigraphy of European Basins
    Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 MESOZOIC AND CENOZOIC SEQUENCE STRATIGRAPHY OF EUROPEAN BASINS PREFACE Concepts of seismic and sequence stratigraphy as outlined in To further stress the importance of well-calibrated chronos- publications since 1977 made a substantial impact on sedimen- tratigraphic frameworks for the stratigraphic positioning of geo- tary geology. The notion that changes in relative sea level shape logic events such as depositional sequence boundaries in a va- sediment in predictable packages across the planet was intui- riety of depositional settings in a large number of basins, the tively attractive to many sedimentologists and stratigraphers. project sponsored a biostratigraphic calibration effort directed The initial stratigraphic record of Mesozoic and Cenozoic dep- at all biostratigraphic disciplines willing to participate. The re- ositional sequences, laid down in response to changes in relative sults of this biostratigraphic calibration effort are summarized sea level, published in Science in 1987 was greeted with great, on eight charts included in this volume. albeit mixed, interest. The concept of sequence stratigraphy re- This volume also addresses the question of cyclicity as a ceived much acclaim whereas the chronostratigraphic record of function of the interaction between tectonics, eustasy, sediment Mesozoic and Cenozoic sequences suffered from a perceived supply and depositional setting. An attempt was made to estab- absence of biostratigraphic and outcrop documentation. The lish a hierarchy of higher order eustatic cycles superimposed Mesozoic and Cenozoic Sequence Stratigraphy of European on lower-order tectono-eustatic cycles.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]