Палеонтологічний Збірник 2016. № 48. С. 19-27
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paleontology and Stratigraphy of Eocene Rocks at Pulali Point, Jefferson County, Eastern Olympic Peninsula, Washington
PALEONTOLOGY AND STRATIGRAPHY OF EOCENE ROCKS AT PULALI POINT, JEFFERSON COUNTY, EASTERN OLYMPIC PENINSULA, WASHINGTON by RICHARD L. SQUIRES, JAMES L. GOEDERT, and KEITH L. KALER WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES REPORT OF INVESTIGATIONS 31 1992 ., WASHINGTON STATE DEPARTMENT OF Natural Resources Brian Boyle • Commhstoner of Public Lands An Steo_r0$ - Superv1sor Division ol Geology and Earth Resources Raymond Lcmnanls. State Geologlsl PALEONTOLOGY AND STRATIGRAPHY OF EOCENE ROCKS AT PULALI POINT, JEFFERSON COUNTY, EASTERN OLYMPIC PENINSULA, WASHINGTON by RICHARD L. SQUIRES, JAMES L. GOEDERT, AND KEITH L. KALER WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES REPORT OF INVESTIGATIONS 31 1992 W>.SHING'TON STAT1r OEPARTMDIT or Natural Resources 8ncll) Bov,. · COmmmioner ot Pu!xk: tancb M $i.atni; S\lp$1'WOJ' DtY!llcn 01 Gtology ahCS £artti ~ Raymond l.mlMn.:I ~Geologist Cover: From left, ?Falsifusus marysvillensis; Pachycrommium clarki; large bivalve, Veneri cardia hornii s.s.; Delectopecten cf. D. vancouverensis sanjuanensis; Turritella uvasana hendoni. These specimens are shown at 150 percent of the dimensions on Plates 1 and 3. Use of trade, product, or firm names in this report is for descriptive purposes only and does not consitute endorsement by the Washington Division of Geology and Earth Resources. This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 1.85 Tax (Stale residenl.t only) .15 Total $ 2.00 Mail orders must be prepaid; please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. -
New Findings of Eocene Nautiloids from North Western Desert, Egypt
Journal of African Earth Sciences 159 (2019) 103580 Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci New findings of eocene nautiloids from north Western Desert, Egypt T ∗ Mohamed F. Aly , Sherief A. Sadek Geology Department, Faculty of Science, Cairo University, Giza, Egypt ARTICLE INFO ABSTRACT Keywords: The Tertiary marine succession of the north Western Desert, Egypt, is rich in vertebrates, molluscs and other Nautiloids invertebrates, but nautiloids are less abundant. Five nautiloid species, are reported herein: Eutrephoceras sp., Sharks Aturoidea parkinsoni, Aturia aturi, Aturia cf. alabamensis and, Aturia cf. gujaratensis. They are collected and Tertiary identified from the lowermost part of Gebel Minqar Tebaghbagh area. The studied section is located 90 km to the Siwa oasis east of Siwa Oasis at the south of western side of the Qattara Depression. The recovered specimens are mostly Western desert crushed, partially fragmented internal molds, mostly showing badly preserved suture lines and dorsal to sub- Egypt central siphuncles. The nautiloids occur in abundance in random orientation through a clastic-dominated suc- cession. They are mostly represented by middle-aged and mature specimens. Recently, the lower part of Gebel Tabaghbagh was assigned to Late Eocene. 1. Introduction southwest of Aswan city, south Western Desert, Hewaidy and Azzab, 2002 described and identified five nautiloid species of the Paleocene The north western Desert of Egypt is almost a plain area. The only age from the Kurkur Formation. Those are Deltoidonautilus polymorphus characteristic features are the Marmarica Limestone plateau and the Hewaidy and Azzab, Deltoidonautilus sp. 1, Deltoidonautilus sp. -
Geologic Map of Washington - Northwest Quadrant
GEOLOGIC MAP OF WASHINGTON - NORTHWEST QUADRANT by JOE D. DRAGOVICH, ROBERT L. LOGAN, HENRY W. SCHASSE, TIMOTHY J. WALSH, WILLIAM S. LINGLEY, JR., DAVID K . NORMAN, WENDY J. GERSTEL, THOMAS J. LAPEN, J. ERIC SCHUSTER, AND KAREN D. MEYERS WASHINGTON DIVISION Of GEOLOGY AND EARTH RESOURCES GEOLOGIC MAP GM-50 2002 •• WASHINGTON STATE DEPARTMENTOF 4 r Natural Resources Doug Sutherland· Commissioner of Pubhc Lands Division ol Geology and Earth Resources Ron Telssera, Slate Geologist WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Ron Teissere, State Geologist David K. Norman, Assistant State Geologist GEOLOGIC MAP OF WASHINGTON NORTHWEST QUADRANT by Joe D. Dragovich, Robert L. Logan, Henry W. Schasse, Timothy J. Walsh, William S. Lingley, Jr., David K. Norman, Wendy J. Gerstel, Thomas J. Lapen, J. Eric Schuster, and Karen D. Meyers This publication is dedicated to Rowland W. Tabor, U.S. Geological Survey, retired, in recognition and appreciation of his fundamental contributions to geologic mapping and geologic understanding in the Cascade Range and Olympic Mountains. WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES GEOLOGIC MAP GM-50 2002 Envelope photo: View to the northeast from Hurricane Ridge in the Olympic Mountains across the eastern Strait of Juan de Fuca to the northern Cascade Range. The Dungeness River lowland, capped by late Pleistocene glacial sedi ments, is in the center foreground. Holocene Dungeness Spit is in the lower left foreground. Fidalgo Island and Mount Erie, composed of Jurassic intrusive and Jurassic to Cretaceous sedimentary rocks of the Fidalgo Complex, are visible as the first high point of land directly across the strait from Dungeness Spit. -
Cephalopods from the Late Eocene Hoko River Formation, Northwestern Washington Richard L
Oi<~e2> K A.. Natural History Museum ifiCl^i Of Los Angeles County IVooCL Invertebrate Paleontology J. Vakom.. 62(1). 1988. pp. 76-82 Copyright 1488. The- Paleontologual Society 0022-3360,88/0062-0076S03.00 CEPHALOPODS FROM THE LATE EOCENE HOKO RIVER FORMATION, NORTHWESTERN WASHINGTON RICHARD L. SQUIRES Department of Geological Sciences, California State University, Northridge 91330 ABSTRACT—Rare specimens of the nautiloids Nautilus and Aturia and extremely rare specimens of a sepiamorph sepiid are described from the late Eocene Hoko River Formation, northern Olympic Peninsula, Washington. The well-preserved partial phragmocones are from channel-fill clastics deposited on the inner and middle slopes of a submarine-fan system. The Nautilus specimen is allied to N. cookanum Whitfield from middle Eocene strata, New Jersey, and is probably conspecific with Nautilus sp. (Miller) from late Eocene strata, northwestern Oregon, both of which were previously assigned to Eutrephoceras. This is the first record of Nautilus in the northeastern Pacific. The Aturia specimen is tentatively identified as A. cf. A. alabamensis (Morton), a species previously only known from late Eocene strata in the Atlantic-Gulf Coastal area and northeastern Mexico. Aturia alabamensis may be the same as numerous Eocene North American aturiid species. The two sepiamorph sepiid specimens resemble Belosepia Voltz but are probably generically distinct. They are only the second record of sepiids in the Eocene of the northeastern Pacific. INTRODUCTION rizian Stage (late Eocene). He also inferred, based on the benthic ATE EOCENE cephalopods are rare in the northeastern Pacific. foraminifers, that the formation was deposited in relatively cool, L moderately shallow ocean waters between lower neritic and up- The occurrence of three genera at a locality in northwestern permost bathyal depths. -
2019 Science Olympiad Fossils Test SSSS By
2019 Science Olympiad Fossils Test SSSS By: Elizaveta Koroza Station 1 1) Genus Exogyra 2) Jurassic and Cretaceous periods 3) True 4) Genus Pecten 5) A comb or rake 6) True 7) Genus Gryphaea 8) The “Toenail” 9) Devil's toenails 10) Phylum Mollusca Station 2 1) Genus Basilosaurus 2) False 3) United States 4) Genus Mammuthus 5) 22 months 6) 12 tonnes (13.2 short tons) 7) Genus Equus 8) North America 9) Carl Linnaeus 10) Class Mammalia Station 3 1) Genus Acer 2) Asia 3) Opposite leaf arrangement 4) Genus Populus 5) True 6) 50 m or 164 ft 7) Genus Platanus 8) Planes or plane trees 9) False 10) Carbon Film Fossils Station 4 1) Genus Lingula 2) Body Fossil 3) Jean Guillaume Bruguière 4) Genus Composita 5) Carboniferous to Permian period 6) Class Articulata 7) Genus Platystrophia 8) Marine lime mud and sands 9) False 10) No Station 5 1) Genus Allosaurus 2) Different lizard 3) Greek 4) Genus Parasaurolophus 5) Herbivore 6) Alberta 7) Genus Dracorex 8) True 9) True 10) True Station 6: 1) Genus Heliophyllum 2) Horn Corals 3) Devonian 4) Genus Halysites 5) Plankton 6) Found in the sediments of Canada, United States, Poland and Australia 7) Genus Favosites 8) Honeycomb coral 9) Warm sunlit seas 10) False Station 7: 1) Genus Nautilus 2) Late Eocene Hoko River Formation 3) False 4) Genus Platyceras 5) Crinoids 6) True 7) Genus Worthenia 8) Devonian to Triassic periods 9) Amos Henry Worthen 10) Fossil A Station 8: 1) Genus Astraeospongia 2) Basket Sponge 3) The spicules 4) Genus Hydnoceras 5) Silica Spicules 6) True 7) Genus Hexagonaria 8) True 9) Petoskey Stone 10) Station 9: 1) Genus Eldredgeops 2) 11 segments 3) Schizochroal eyes 4) Genus Isotelus 5) False 6) Churchill, Manitoba 7) Genus Elrathia 8) Cambrian period 9) True 10) Fossil C Station 10: 1) Genus Eurypterida 2) Sea Scorpions 3) True 4) Genus Bothriolepis 5) Likely a bottom-feeder 6) True 7) Genus Dunkleosteus 8) The Devonian period 9) David Dunkle 10) False . -
Open File Report 2003-6, Geologic Map of the Washington Portion Of
WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES OPEN FILE REPORT 2003-6 Division of Geology and Earth Resources Ron Teissere - State Geologist R. 3 W. 123°00¢ 48°30¢ Qgd Qgd Qgd Tertiary Sedimentary and Volcanic Rocks Pre-Tertiary Marine Metasedimentary Rocks JŠmco KJmmc KJmmc Qgt Qgd Qgdmes ROCKS OF THE CRESCENT TERRANE OF BABCOCK AND OTHERS (1994) KJmmc Constitution Formation (Cretataceous–Jurassic)—Poorly to moderately Qgdmes Qgt T. 35 N. KJmmc ROS sorted volcaniclastic sandstone, cherty sandstone, mudstone, and conglomer- Qf Qgd Twin River Group—Divided into: ate with less-abundant ribbon chert, green tuff, and basalt and dacite pillows; A RIO Qb MOm Pysht Formation (Miocene–Oligocene)—Massive, poorly indurated includes rare limestone. Clastic rock types are commonly massive and locally Qgd „…m p p marine mudstone, claystone, and sandy siltstone; also contains beds of graded; sandstone is commonly turbiditic; mudstone is commonly massive. THRUST very thick calcareous sandstone (1–20 ft thick). Unweathered mud- Conglomerate contains rounded to angular volcanic, chert, metaplutonic, and KJmmc Geologic Map of the Washington Portion of the Port Angeles 1:100,000 Quadrangle stone, claystone, and siltstone are medium gray to dark greenish gray, schistose clasts in a siltstone matrix; rhythmically bedded ribbon chert is JŠmco Qp Qgdmes pale yellowish brown where weathered. Mudstone locally contains thin commonly interbedded with clastic rocks throughout the unit but more abun- Qgdme T. 34 N. beds of calcareous claystone; argillaceous rocks commonly contain dant near the base. Green tuff occurs near base of section and is commonly fine grained and indurated; pillow lava is interlayered with clastic rocks; by Henry W. -
The Petrography and Tectonic Significance of the Blue Mountain
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Summer 1987 The etrP ography and Tectonic Significance of the Blue Mountain Unit, Olympic Peninsula, Washington Jon M. Einarsen Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Einarsen, Jon M., "The eP trography and Tectonic Significance of the Blue Mountain Unit, Olympic Peninsula, Washington" (1987). WWU Graduate School Collection. 840. https://cedar.wwu.edu/wwuet/840 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. MASTER'S THESIS In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western Washington University, I agree that the Library shal’l make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without my written permission. Signature Date Bellingham, Washington 98Z25 □ (206) 676-3000 THE PETEDGRAPHY AND TECTCNIC SIGNIFICANCE OF THE BLUE MOUNTAIN UNIT, OLYMPIC PENINSULA, WASHINGTON A Thesis Presented -
Tectonic Evolution of the Cascades Crystalline Core 113
TECTONIC EVOLUTION OF THE CASCADES CRYSTALLINE CORE 113 Mineral compositions (continued) 174-8a 174-24 174-33a 174-36c B G M p G H p B G M p G H p Si 5.95 5.95 6.88 - 5.86 6.39 - 5.93 5.95 6.53 - 5.93 6.53 - Al4 2.05 - 1.12 -- 1.61 - 2.07 - 1.47 -- 1.47 - Al6 1.60 3.96 4.34 - 4.03 1.01 - 1.76 3.97 4.89 - 4.03 0.94 - Ti 0.20 - 0.02 -- 0.08 - 0.24 - 0.05 - - 0.10 - Fe 3.32 3.55 0.43 - 3.95 2.01 - 2.74 4.41 0.11 - 3.85 1.89 - Mg 1.72 0.31 0.37 - 0.73 2.00 - 2.27 0.83 0.13 - 1.01 2.14 - Mn 0.02 0.22 -- 0.37 0.03 - 0.01 0.14 - - 0.20 0.02 - Ca - 2.08 - 0.37 1.18 1.87 0.38 - 0.24 - 0.34 1.02 1.79 0.36 Na 0.04 - 0.09 0.63 - 0.34 0.65 0.11 - 0.38 0.68 - 0.49 0.64 K 2.06 - 2.09 0.01 - 0.10 0.01 1.68 - 1.77 -- 0.10 - 174-45b 174-118a OHM20 0DM22 RT48A58 B G M p B G M p B G p B G p B G M p Si 5.96 5.91 6.67 - 5.91 5.98 7.05 - 5.47 5.98 - 5.55 6.00 - 5.87 6.00 6.75 - Al4 2.04 - 1.33 - 2.09 - 0.95 - 2.53 -- 2.45 - - 2.13 - 1.25 - Al6 1.69 4.03 4.81 - 1.67 3.99 0.83 - 0.86 3.96 - 0.89 3.95 - 1.71 3.98 4.85 - Ti 0.24 - 0.05 - 0.21 - 0.02 - 0.24 - - 0.14 - - - - 0.05 - Fe 2.21 4.35 0.10 - 2.40 4.18 1.78 - 1.97 4.22 - 1.64 4.07 - 2.70 4.38 0.17 - Mg - 0.84 0.18 - 2.75 1.04 2.69 - 2.66 0.97 - 3.08 1.29 - 2.25 0.41 0.22 - Mn - 0.06 - - 0.01 0.19 0.02 - 0.01 0.44 - O.Ql 0.05 - O.Ql 0.11 - - Ca - 0.89 - 0.40 - 0.61 1.83 0.25 - 0.44 0.28 - 0.66 0.38 - 1.12 - 0.27 Na 0.07 - 0.40 0.59 0.03 - 0.33 0.76 O.Q7 - 0.70 0.07 - 0.62 0.08 - 0.14 0.74 K 1.71 - 1.73 - 1.91 - 0.03 - 1.64 -- 1.65 -- 1.88 - 1.59 - B. -
Aui Geologie
Available online at http://geology.uaic.ro/auig/ AUI Analele Stiintifice ale Universitatii “Al. I. Cuza” din Iasi Seria Geologie 63 (1–2) (2017) 51–63 GEOLOGIE First report of the genus Euciphoceras (Nautiloidea, Mollusca) from the latest Eocene rocks of the North-western Thrace Basin (Bulgaria) Paul Țibuleac1, George Ajdanlijsky2 1 “Alexandru Ioan Cuza” University of Iaşi, Department of Geology, 20A Carol I Blv, 700505 Iaşi, Romania 2 “St. Ivan Rilski” University, Department of Geology and Geoinformatics, Student Town, “Prof. Boyan Kamenov” Str., Sofia, 1700, Bulgaria Abstract The unique nautiloid specimen recorded so far from the latest Eocene marl bed of Durhana Quarry (DQ), Haskovo County (North-western Thrace Basin, Bulgaria) is described and dis- cussed herein. It represents a phragmocone mould collected from the bench of level 103 of DQ. In the outcrop, one lateral side was exposed to the weathering process and the other was embedded in the rocks of the so-called “Tuff-Limestone Package” Member (“First Acidic Volcanic” Formation). The host-beds were previously documented as latest Eocene by a larger foraminifer and echinoid assemblage. The specimen belongs to the genus Euciphoceras Shultz, 1976. The attempt to assign a species name failed because the nautiloid has been compressed and slightly deformed by the diagenetic processes within the host-rocks. The general overview of the Eocene nautiloid records from the surrounding areas suggests a continuity of the same genera from Western Europe to South-central Asia (Tethyan Realm). Keywords: Durhana, phragmocone, Priabonian, paleogeographical overview. 1. Introduction although they were documented in the widespread occurrences on all continents. -
[Italic Page Numbers Indicate Major References] Abajo Mountains, 314
Index [Italic page numbers indicate major references] Abajo Mountains, 314 andesite, 70, 82, 86, 267, 295, 297, terranes, 36, 644 Abert Lake-Goose Lake area, 343 299, 303, 305, 308, 310, 343, volcanic. See volcanic arcs Abert Rim area, 303, 377 345, 350, 371, 375, 483, 527, volcanism, 74, 81, 89, 299, 300, Absaroka Range, 290, 354 543, 644, 654 320, 385, 482, 491, 642 Absaroka system, 592 Aneth Formation, 45 waning, 643 Absaroka thrust, 172, 219, 594, 599, Angora Peak member, 316 See also specific arcs 601 Angustidontus, 34 Archean, 629, 632, 651, 652 Absaroka volcanic field, 218, 297, Anita Formation, 275 arches, 15, 46 300, 486, 491 anorthosite, 412, 633 archipelago, volcanic, 453 accretion, 36, 111, 127, 128, 131, Antelope Mountain Quartzite, 38, 40, arenite, 142 141, 168, 242, 252, 254, 262, 420 argillite, 11, 16, 31, 34, 38, 41, 62, 265, 273, 450, 468, 534, 545, Antelope Range Formation, 28 70, 81, 85, 87, 89, 111, 128, 555, 636, 646, 664, 677, 693 Antelope Valley Limestone, 22, 23, 24 130, 133, 136, 138, 141, 160, accretionary prism, 37, 127, 141, 241, anticlines, 213, 319, 340 162, 164, 281, 434, 543, 547, 281, 422, 423, 432, 436, 468, antimony, 643, 644 635, 658, 663, 671, 676 471, 621, 654, 676 Antler allochthon, 422, 431 Argus Range, 365, 600 actinolite, 528, 637 Antler assemblage, 419, 422, 450 Arikaree Formation, 286 Adams Mine, 632 Antler foredeep basin, 35, 61, 62, 74, Arizona, 140, 597 Adaville Formation, 219 94, 96, 420, 425, 430, 471 south-central, 323 Adel Mountain volcanic field, 218, Antler foreland basin, 28, 42, -
Maastrichtian Ceratisepia and Mesozoic Cuttlebone Homeomorphs
Maastrichtian Ceratisepia and Mesozoic cuttlebone homeomorphs ROGER A. HEWITT and JOHN W.M. JAGT Hewitt, R.A. & Jagt, J.W.M. 1999. Maastrichtian Ceratisepia and Mesozoic cuttlebone homeomorphs. -Acta Palaeontologica Polonica 44,3,305-326. The phylogenetics of potential Mesozoic ancestors of cuttlefish of a restricted order Sepiida von Zittel, 1895 (superorder Decabrachia Boettger, 1952) is reviewed. Micro- structural studies of Mesozoic homeomorphs of cuttlebones (Pearceiteuthis gen. n., Loligosepia, Trachyteuthis, Actinosepia) are consistent with their assignement to the superorder Octobrachia Fioroni, 1981. The discovery of an embryonic Ceratisepia shell in the upper Maastrichtian of the Netherlands, indicates that true Sepiida did have a pre-Cenozoic origin. Cretaceous decabrachs of the order Spirulida Stolley, 1919 do not show evidence of the dorso-anterior shell growth vectors seen in Cenozoic spirulids, sepiids and octobrachs. Separate origins of the Sepiida and Spirulida within Cretaceous diplobelinid belemnites is still the most attractive hypothesis. Ceratisepia vanknippen- bergi sp. n. from the upper Maastrichtian of the Netherlands and Pearceiteuthis buyi gen. et sp. n. from the Callovian of England are described. Key words : Cephalopods, cuttlefish, ontogeny, biornineralization, Mesozoic. Roger A. Hewitt, 12 Fairj-leld Road, Eastwood, Leigh-on-Sea, Essex SS9 5SB, United Kingdom. John W.M. Jagt [[email protected]], Natuurhistorisch Museum Maastricht, P.O. Box 882, NL-6200 AW Maastricht, the Netherlands. Introduction Cuttlebones are those dorsally hard and spherulitic, but ventrally soft and septate, aragonitic shells that invade beaches (Cadee 1997) and can be seen being sold to the owners of caged birds in pet shops. They are the expanded and highly modified inter- nal phragmocones of cephalopods (Bandel & von Boletzky 1979) and belong to a di- verse group of cuttlefish that appeared in the Rupelian (Szordnyi 1934; Hewitt & Pedley 1978; Engeser 1990). -
A Petition to List Chambered Nautilus (Nautilus Pompilius) As Endangered Or Threatened Species Under the Endangered Species Act
CENTER for BIOLOGICAL DIVERSITY Because life is good. A Petition to List Chambered Nautilus (Nautilus pompilius) as Endangered or Threatened Species Under the Endangered Species Act Photo: Gregory J. Barord Submitted to the U.S. Secretary of Commerce acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service May 31, 2016 Center for Biological Diversity 1212 Broadway Suit 800, Oakland, CA 94612 Phone: 510-844-7103 [email protected] 1 Alaska . Arizona . California . Florida . Minnesota . Nevada . New Mexico . New York . Oregon . Vermont . Washington, DC Abel Valdivia, PhD, Ocean Scientist, Oceans Program . 1212 Broadway, Suite 800 . Oakland, CA 94612 Phone: 510-844-7100 x 303 . Fax: 919-932-0199 . Twitter@AbelValdivia . [email protected] Petition to list chambered nautilus under the ESA ____________________________________________________________________________________ Notice of Petition Penny Pritzker Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave, NW Washington, D.C. 20230 Email: [email protected] Dr. Kathryn Sullivan Acting Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator Office of Administrator National Oceanographic and Atmospheric Administration 1401 Constitution Ave. NW Washington, DC 20230 Email: [email protected] Eileen Sobeck Assistant Administrator for NOAA Fisheries National Marine Fisheries Service 1315 East West Highway Silver Spring, MD 20910 Email: [email protected] Petitioners Dr. Abel Valdivia on behalf of the Center for Biological Diversity 1212 Broadway #800, Oakland, CA 94612 Phone: 510-844-7103 [email protected] 2 Petition to list chambered nautilus under the ESA ____________________________________________________________________________________ Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C.