Tectonic Evolution of the Cascades Crystalline Core 113
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seismicity in Cascadia
Lithos 332–333 (2019) 55–66 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Seismicity in Cascadia Michael G. Bostock ⁎, Nikolas I. Christensen, Simon M. Peacock Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Canada article info abstract Article history: We examine spatio-geometric patterns in the density of seismicity within the Cascadia forearc to gain insight into Received 11 July 2018 controls on seismogenesis. Tremor epicenters exhibit the most regular distribution defining a 40–80 km wide 27 December 2018 band extending along almost the entire convergent margin from the southern terminus of Gorda plate subduc- Accepted 23 February 2019 tion in northern California to the central Explorer plate below northern Vancouver Island. Based on prior charac- Available online 26 February 2019 terization of constituent low-frequency earthquakes, the up- and down-dip limits of tremor are assumed to fl Keywords: represent slab isodepth contours at nominal values of 28 and 45 km, between which uids at near-lithostatic Seismicity overpressures are trapped within the subducting slab. Epicenters of earthquakes within the North American Tremor crust are anticorrelated with those of tremor, and concentrated in Washington and northern California where Cascadia they are sandwiched between tremor and the Cascade volcanic arc. Seismicity within the subducting plate Fluids possesses the most limited epicentral distribution. Seismicity is confined to shallow depths off Vancouver Island Subduction and in northern California, and projects to greater depths beneath Washington and southern British Columbia. Forearc Comparison of seismicity patterns with long-wavelength slab geometry and thermo-petrologic constraints sug- Serpentinization gests that seismicity occurrence in Cascadia is governed by an interplay between slab strain, metamorphic dehy- Eclogitization dration within the subducting oceanic plate, and a plate boundary seal that controls where fluids enter the Volcanism overriding plate. -
Washington Division of Geology and Earth Resources Open File Report
RECONNAISSANCE SURFICIAL GEOLOGIC MAPPING OF THE LATE CENOZOIC SEDIMENTS OF THE COLUMBIA BASIN, WASHINGTON by James G. Rigby and Kurt Othberg with contributions from Newell Campbell Larry Hanson Eugene Kiver Dale Stradling Gary Webster Open File Report 79-3 September 1979 State of Washington Department of Natural Resources Division of Geology and Earth Resources Olympia, Washington CONTENTS Introduction Objectives Study Area Regional Setting 1 Mapping Procedure 4 Sample Collection 8 Description of Map Units 8 Pre-Miocene Rocks 8 Columbia River Basalt, Yakima Basalt Subgroup 9 Ellensburg Formation 9 Gravels of the Ancestral Columbia River 13 Ringold Formation 15 Thorp Gravel 17 Gravel of Terrace Remnants 19 Tieton Andesite 23 Palouse Formation and Other Loess Deposits 23 Glacial Deposits 25 Catastrophic Flood Deposits 28 Background and previous work 30 Description and interpretation of flood deposits 35 Distinctive geomorphic features 38 Terraces and other features of undetermined origin 40 Post-Pleistocene Deposits 43 Landslide Deposits 44 Alluvium 45 Alluvial Fan Deposits 45 Older Alluvial Fan Deposits 45 Colluvium 46 Sand Dunes 46 Mirna Mounds and Other Periglacial(?) Patterned Ground 47 Structural Geology 48 Southwest Quadrant 48 Toppenish Ridge 49 Ah tanum Ridge 52 Horse Heaven Hills 52 East Selah Fault 53 Northern Saddle Mountains and Smyrna Bench 54 Selah Butte Area 57 Miscellaneous Areas 58 Northwest Quadrant 58 Kittitas Valley 58 Beebe Terrace Disturbance 59 Winesap Lineament 60 Northeast Quadrant 60 Southeast Quadrant 61 Recommendations 62 Stratigraphy 62 Structure 63 Summary 64 References Cited 66 Appendix A - Tephrochronology and identification of collected datable materials 82 Appendix B - Description of field mapping units 88 Northeast Quadrant 89 Northwest Quadrant 90 Southwest Quadrant 91 Southeast Quadrant 92 ii ILLUSTRATIONS Figure 1. -
The Wild Cascades
THE WILD CASCADES April-May 1969 2 THE WILD CASCADES MORE (BUT NOT THE LAST) ABOUT ALPINE LAKES We recently carried in these pages an article by Brock Evans, Northwest Conservation Representative, on Alpine Lakes: Stepchild of the North Cascades. Mr. L. O. Barrett, Supervisor of Snoqualmie National Forest, feels the article contained "some rather significant misinterpretations" and has asked the opportunity to respond. Following are Mr. Barrett's comments on portions of Mr. Evans' article, together with Mr. Evans' rejoinders. Barrett: The Alpine Lakes Area is still wilderness quality in part because of the nature of the land, and in part because the Forest Service has managed it as wilderness type area since 1946. We will continue to protect it from timber harvesting, mining and excessive recreation use until Congress makes a decision about its suitability for inclusion in the National Wilderness Preservation System. Evans: The wilderness parts of the Alpine Lakes region that are being lost are those which the Forest Service has chosen not to manage as wilderness. The 1946 date referred to is the date of the establishment of the Alpine Lake Limited Area. This designation granted a measure of administrative protection to a substantial part of the region; but much was left out. The logging in the Miller River, Foss River, Deception Creek, Cooper Lake, and Eight Mile Creek valleys all took place in wilderness-type areas which we proposed for protection which were outside the limited area. The Forest Service cannot protect its lands from mineral prospecting or, ulti mately, from mining operations of some types — because of the mining laws. -
Snowmobiles in the Wilderness
Snowmobiles in the Wilderness: You can help W a s h i n g t o n S t a t e P a r k s A necessary prohibition Join us in safeguarding winter recreation: Each year, more and more people are riding snowmobiles • When riding in a new area, obtain a map. into designated Wilderness areas, which is a concern for • Familiarize yourself with Wilderness land managers, the public and many snowmobile groups. boundaries, and don’t cross them. This may be happening for a variety of reasons: many • Carry the message to clubs, groups and friends. snowmobilers may not know where the Wilderness boundaries are or may not realize the area is closed. For more information about snowmobiling opportunities or Wilderness areas, please contact: Wilderness…a special place Washington State Parks and Recreation Commission (360) 902-8500 Established by Congress through the Wilderness Washington State Snowmobile Association (800) 784-9772 Act of 1964, “Wilderness” is a special land designation North Cascades National Park (360) 854-7245 within national forests and certain other federal lands. Colville National Forest (509) 684-7000 These areas were designated so that an untouched Gifford Pinchot National Forest (360) 891-5000 area of our wild lands could be maintained in a natural Mt. Baker-Snoqualmie National Forest (425) 783-6000 state. Also, they were set aside as places where people Mt. Rainier National Park (877) 270-7155 could get away from the sights and sounds of modern Okanogan-Wenatchee National Forest (509) 664-9200 civilization and where elements of our cultural history Olympic National Forest (360) 956-2402 could be preserved. -
1922 Elizabeth T
co.rYRIG HT, 192' The Moootainetro !scot1oror,d The MOUNTAINEER VOLUME FIFTEEN Number One D EC E M BER 15, 1 9 2 2 ffiount Adams, ffiount St. Helens and the (!oat Rocks I ncoq)Ora,tecl 1913 Organized 190!i EDITORlAL ST AitF 1922 Elizabeth T. Kirk,vood, Eclttor Margaret W. Hazard, Associate Editor· Fairman B. L�e, Publication Manager Arthur L. Loveless Effie L. Chapman Subsc1·iption Price. $2.00 per year. Annual ·(onl�') Se,·ent�·-Five Cents. Published by The Mountaineers lncorJ,orated Seattle, Washington Enlerecl as second-class matter December 15, 19t0. at the Post Office . at . eattle, "\Yash., under the .-\0t of March 3. 1879. .... I MOUNT ADAMS lllobcl Furrs AND REFLEC'rION POOL .. <§rtttings from Aristibes (. Jhoutribes Author of "ll3ith the <6obs on lltount ®l!!mµus" �. • � J� �·,,. ., .. e,..:,L....._d.L.. F_,,,.... cL.. ��-_, _..__ f.. pt",- 1-� r�._ '-';a_ ..ll.-�· t'� 1- tt.. �ti.. ..._.._....L- -.L.--e-- a';. ��c..L. 41- �. C4v(, � � �·,,-- �JL.,�f w/U. J/,--«---fi:( -A- -tr·�� �, : 'JJ! -, Y .,..._, e� .,...,____,� � � t-..__., ,..._ -u..,·,- .,..,_, ;-:.. � --r J /-e,-i L,J i-.,( '"'; 1..........,.- e..r- ,';z__ /-t.-.--,r� ;.,-.,.....__ � � ..-...,.,-<. ,.,.f--· :tL. ��- ''F.....- ,',L � .,.__ � 'f- f-� --"- ��7 � �. � �;')'... f ><- -a.c__ c/ � r v-f'.fl,'7'71.. I /!,,-e..-,K-// ,l...,"4/YL... t:l,._ c.J.� J..,_-...A 'f ',y-r/� �- lL.. ��•-/IC,/ ,V l j I '/ ;· , CONTENTS i Page Greetings .......................................................................tlristicles }!}, Phoiitricles ........ r The Mount Adams, Mount St. Helens, and the Goat Rocks Outing .......................................... B1/.ith Page Bennett 9 1 Selected References from Preceding Mount Adams and Mount St. -
Periodically Spaced Anticlines of the Columbia Plateau
Geological Society of America Special Paper 239 1989 Periodically spaced anticlines of the Columbia Plateau Thomas R. Watters Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, D. C. 20560 ABSTRACT Deformation of the continental flood-basalt in the westernmost portion of the Columbia Plateau has resulted in regularly spaced anticlinal ridges. The periodic nature of the anticlines is characterized by dividing the Yakima fold belt into three domains on the basis of spacings and orientations: (1) the northern domain, made up of the eastern segments of Umtanum Ridge, the Saddle Mountains, and the Frenchman Hills; (2) the central domain, made up of segments of Rattlesnake Ridge, the eastern segments of Horse Heaven Hills, Yakima Ridge, the western segments of Umtanum Ridge, Cleman Mountain, Bethel Ridge, and Manastash Ridge; and (3) the southern domain, made up of Gordon Ridge, the Columbia Hills, the western segment of Horse Heaven Hills, Toppenish Ridge, and Ahtanum Ridge. The northern, central, and southern domains have mean spacings of 19.6,11.6, and 27.6 km, respectively, with a total range of 4 to 36 km and a mean of 20.4 km (n = 203). The basalts are modeled as a multilayer of thin linear elastic plates with frictionless contacts, resting on a mechanically weak elastic substrate of finite thickness, that has buckled at a critical wavelength of folding. Free slip between layers is assumed, based on the presence of thin sedimentary interbeds in the Grande Ronde Basalt separating groups of flows with an average thickness of roughly 280 m. -
"Erosion,' Surfaces Of" ' '" '"
· . ,'.' . .' . ' :' ~ . DE L'INSTITUTNATIONAL ' /PQi[JRJl.'El'UDJiAC;RO,NU1VII,QlUE, DU CONGO BELGE , , (I. N. E.A: C.) "EROSION,' SURFACES OF" ' '" '""",,,U ,,"GENTRALAFRICANINTERIOR' ,HIGH PLATEAUS" 'T.OCICAL SURVEYS ,BY Robert V. RUHE Geomorphologist ECA ' INEAC Soil Mission Belgian Congo. , SERIE SCIENTIFIQUE N° 59 1954 BRITISH GEOLOGICAL SURVEY 11111' IIII II IIIJ '11 III If II I 78 0207537 9 EROSION SURF ACES OF CENTRAL AFRICAN INTERIOR HIGH PLATEAUS I PUBLICATIONS DE L'INSTITUT NATIONAL POUR L'ETUDE AGRONOMIQUE DU CONGO BELGE I I (1. N. E.A. C.) ! I EROSION SURFACES OF CENTRAL AFRICAN INTERIOR HIGH PLATEAUS BY Robert V. RUHE Gcomorphologist ECA ' INEAC Soil Mission Belgian Congo. Ij SERIE SCIENTIFIQUE N° 59 1954 CONTENTS Abstract 7 'Introduction 9 Previous work. 12 Geographic Distribution of Major Erosion Surfaces 12 Ages of the Major Erosion Surfaces 16 Tertiary Erosion Surfaces of the Ituri, Belgian Congo 18 Post-Tertiary Erosion Surfaces of the Ituri, Belgian Congo 26 Relations of the Erosion Surfaces of the Ituri Plateaus and the Congo Basin 33 Bibliography 37 ILLUSTRATIONS FIG. 1. Region of reconnaissance studies. 10 FIG. 2. Areas of detailed and semi-detailed studies. 11 FIG. 3. Classification of erosion surfaces by LEPERsONNE and DE HEINZELlN. 14 FIG. 4. Area-altitude distribution curves of erosion surfaces of Loluda Watershed. 27 FIG. 5. Interfluve summit profiles and adjacent longitudinal stream profiles in Loluda Watershed . 29 FIG. 6. Composite longitudinal stream profile in Loluda Watershed. 30 FIG. 7. Diagrammatic explanation of cutting of Quaternary surfaces- complex (Bunia-Irumu Plain) . 34 PLATES I Profiles of end-Tertiary erosion surface. -
Geologic History of Siletzia, a Large Igneous Province in the Oregon And
Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
1967, Al and Frances Randall and Ramona Hammerly
The Mountaineer I L � I The Mountaineer 1968 Cover photo: Mt. Baker from Table Mt. Bob and Ira Spring Entered as second-class matter, April 8, 1922, at Post Office, Seattle, Wash., under the Act of March 3, 1879. Published monthly and semi-monthly during March and April by The Mountaineers, P.O. Box 122, Seattle, Washington, 98111. Clubroom is at 719Y2 Pike Street, Seattle. Subscription price monthly Bulletin and Annual, $5.00 per year. The Mountaineers To explore and study the mountains, forests, and watercourses of the Northwest; To gather into permanent form the history and traditions of this region; To preserve by the encouragement of protective legislation or otherwise the natural beauty of North west America; To make expeditions into these regions m fulfill ment of the above purposes; To encourage a spirit of good fellowship among all lovers of outdoor life. EDITORIAL STAFF Betty Manning, Editor, Geraldine Chybinski, Margaret Fickeisen, Kay Oelhizer, Alice Thorn Material and photographs should be submitted to The Mountaineers, P.O. Box 122, Seattle, Washington 98111, before November 1, 1968, for consideration. Photographs must be 5x7 glossy prints, bearing caption and photographer's name on back. The Mountaineer Climbing Code A climbing party of three is the minimum, unless adequate support is available who have knowledge that the climb is in progress. On crevassed glaciers, two rope teams are recommended. Carry at all times the clothing, food and equipment necessary. Rope up on all exposed places and for all glacier travel. Keep the party together, and obey the leader or majority rule. Never climb beyond your ability and knowledge. -
GEOLOGIC MAP of the MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE of SOUTHERN WASHINGTON by Wes Hildreth and Judy Fierstein
U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2460 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE OF SOUTHERN WASHINGTON By Wes Hildreth and Judy Fierstein When I climbed Mount Adams {17-18 August 1945] about 1950 m (6400') most of the landscape is mantled I think I found the answer to the question of why men by dense forests and huckleberry thickets. Ten radial stake everything to reach these peaks, yet obtain no glaciers and the summit icecap today cover only about visible reward for their exhaustion... Man's greatest 2.5 percent (16 km2) of the cone, but in latest Pleis experience-the one that brings supreme exultation tocene time (25-11 ka) as much as 80 percent of Mount is spiritual, not physical. It is the catching of some Adams was under ice. The volcano is drained radially vision of the universe and translating it into a poem by numerous tributaries of the Klickitat, White Salmon, or work of art ... Lewis, and Cis pus Rivers (figs. 1, 2), all of which ulti William 0. Douglas mately flow into the Columbia. Most of Mount Adams and a vast area west of it are Of Men and Mountains administered by the U.S. Forest Service, which has long had the dual charge of protecting the Wilderness Area and of providing a network of logging roads almost INTRODUCTION everywhere else. The northeast quadrant of the moun One of the dominating peaks of the Pacific North tain, however, lies within a part of the Yakima Indian west, Mount Adams, stands astride the Cascade crest, Reservation that is open solely to enrolled members of towering 3 km above the surrounding valleys. -
Paleontology and Stratigraphy of Eocene Rocks at Pulali Point, Jefferson County, Eastern Olympic Peninsula, Washington
PALEONTOLOGY AND STRATIGRAPHY OF EOCENE ROCKS AT PULALI POINT, JEFFERSON COUNTY, EASTERN OLYMPIC PENINSULA, WASHINGTON by RICHARD L. SQUIRES, JAMES L. GOEDERT, and KEITH L. KALER WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES REPORT OF INVESTIGATIONS 31 1992 ., WASHINGTON STATE DEPARTMENT OF Natural Resources Brian Boyle • Commhstoner of Public Lands An Steo_r0$ - Superv1sor Division ol Geology and Earth Resources Raymond Lcmnanls. State Geologlsl PALEONTOLOGY AND STRATIGRAPHY OF EOCENE ROCKS AT PULALI POINT, JEFFERSON COUNTY, EASTERN OLYMPIC PENINSULA, WASHINGTON by RICHARD L. SQUIRES, JAMES L. GOEDERT, AND KEITH L. KALER WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES REPORT OF INVESTIGATIONS 31 1992 W>.SHING'TON STAT1r OEPARTMDIT or Natural Resources 8ncll) Bov,. · COmmmioner ot Pu!xk: tancb M $i.atni; S\lp$1'WOJ' DtY!llcn 01 Gtology ahCS £artti ~ Raymond l.mlMn.:I ~Geologist Cover: From left, ?Falsifusus marysvillensis; Pachycrommium clarki; large bivalve, Veneri cardia hornii s.s.; Delectopecten cf. D. vancouverensis sanjuanensis; Turritella uvasana hendoni. These specimens are shown at 150 percent of the dimensions on Plates 1 and 3. Use of trade, product, or firm names in this report is for descriptive purposes only and does not consitute endorsement by the Washington Division of Geology and Earth Resources. This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 1.85 Tax (Stale residenl.t only) .15 Total $ 2.00 Mail orders must be prepaid; please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources.