Acoustic Waves, 87–91 Adams–Williamson Equation, 107–111
Total Page:16
File Type:pdf, Size:1020Kb
Index Acoustic waves, 87–91 Blanchard bone, 1 Adams–Williamson equation, Bolometric correction (solar), 73–74 107–111, 113 Boundary, core–mantle, 104, 105, Adiabatic conditions/processes, 141 115–116, 119, 142, 171, Aerobee rockets, 83 172–173 Albedo Brahe, Tycho, 2, 3, 228 bolometric, 129, 143, 145 Buddha, 197 geometric, 202, 229 Buffon, Georges-Louis Leclerc, 3 mean, 146, 229 visual, 198 Alfven, H. O. G., 5 Cameron, A. G. W., 5 ALH 84001 (Antarctic meteorite), Capella, Martianus, 1, 2 239–240, 243–244 Cell, diamond-anvil, 114, 118–119, 173 Anaxagoras of Clazomenae, 2 Chamberlain, T. C., 5 Andromeda galaxy (M31), 93 Chladni, Ernst Florenz Friedrich, 3 Anticline, 212, 232 Circle Apollonius of Perga, 2 great, 9–10, 11, 16, 89, 229 Ares, 228, 233 small, 9–11, 89, 159, 168 Argument of perihelion, 27, 36, 40 Coefficient Aristarchus of Samos, 2 absorption, 75–76 Arrhenius, S. A., 5 kinematic viscosity, 134 Aryabhata, 2 thermal Asteroids (minor planets) conduction, 118, 134, 138, 140, Ceres, 47, 96 141, 227 Eris, 6 expansion, 134, 141, 217–218 Greek and Trojan, 38 Communications satellite(s), 45 Icarus, 202 Convection, mantle Kirkwood gaps, 52 Earth, 135, 136 “rubble pile”, 123 Venus, 147 trans-Neptunian objects, 123 Coordinate system Astronomical Almanac, 40–41, altazimuth, 16, 17, 19 62–63, 202 ecliptic, 18, 19 Astronomical unit, 62, 208, 209 equatorial, 17, 18, 19, 21, 22 Atmospheric refraction, 17 horizon, 16–17, 18, 21 terrestrial, 16, 18 Berlage, H., 5 Coordinate transformations Bickerton, A. W., 5 ecliptic to equatorial, 19 Binary Maker software, 37–38 equatorial to ecliptic, 19 Birkeland, K. O. B., 5 equatorial to horizon Blagg–Richardson formulation, 6 (altazimuth), 18 250 Index Coordinate transformations (Cont.) interior, 113–122 horizon (altazimuth) to ionosphere, 66, 197, 245 equatorial, 18 lithosphere, 188, 225–227 rectilinear (x, y) to polar, 26 low velocity zone, 217 Copernicus, Nicholas, 2, 3 magnetic field, 114–115, 118 Crust, Earth magnetosphere, 245 composition, 150, 158 mantle, 114, 131, 168, 170–171 Crystal preliminary reference model, density, 155 119, 122 magnesiow¨ustite, 168 radiated power, 145 perovskite, 166–168 seafloor spreading, 113, 216 phase, 165–170 seismic waves, 90, 103–104, structure 106–107, 173 cubic close packing, 154 shadow zone, 103–106 face-centered packing, 151, 154, subduction, 113, 135, 163, 166, 168 213–214, 216 hexagonal close packing, 153 temperature gradient, interior, interstitial holes, 155–156 133, 136–138, 141 octahedral holes, 156 Effect on minor planets, 52 silicate tetrahedron, 156–157 Ellipse tetrahedral holes, 155–156 area, 27–28, 43 table salt, 165, 168 definition, 23–24 Curie point, 113–114 eccentricity, 24 equation, 23–24 D layer, 172–173 hyperbola, 27 Descartes, Ren´e, 3 parabola, 27 Devonian Period, 49 Elongation, 125, 197, 199, 201, 207 Differentiation, 61, 113, 121, 131–132 Energy equation (for orbits), 34 Digital Orrery, 47 Equilibrium, thermal, 139 Discontinuity Eris, 6 Mohoroviˇci´c, 170–171 Eudoxus of Cnidus, 2 seismic Eutectic mix(es), 204 Earth, 170–172 Moon, 186–187 Dwarf planets, 6, 47, 199 Faults and folds Dyce, R., 200 anticline, 212, 232 Dynamical migrations, 7 fossa(e), 233, 236 graben, 232 Earth monocline, 232 asthenosphere, 188 normal fault, 232 atmosphere, 17, 73, 81–82, 147 strike-slip fault, 212, 232 central temperature, 141 syncline, 232 core thrust fault, 232 inner, 117–118 Filar micrometry, 96 outer, 114–115 Formula(e) core-mantle interface, 134–135 analogue, 16 crust four-parts, 16 composition, 158 Fossa(e), 233, 236 D layer, 172–173 Frequency geotherm(s), 141–142 Brunt–V¨ais¨al¨a, 90 heat flux, 129–141 Buoyant, 90 impact craters, 219–220 Function, Planck, 70–72 Index 251 Galileo, G., 175 Jeans, J. H., 5 Gauss, K. F., 40 Jeffreys, H., 5 Geochemical cycle, 150 Jupiter, 37–38, 50–52, 61, 95, 123, 197, Geo-synchronous satellite(s), 46 226, 228 Giant molecular clouds, 7 Jupiter–Saturn long-period inequality, Gradient, temperature, 136–137, 138, 50–51 141–142 Gravity waves, 87–88, 90 Kant, Immanuel, 3 Greenhouse gases, 147, 238–239 Kepler, Johannes, 2, 3 Gutenberg–Richter earthquake Kepler’s equation, 41–45, 57 magnitude, 184 Kirkwood gaps, 52 Kuiper, G., 5 H− ion(s), 80 Kuiper Belt, 123 Hayashi, C., 5 Heat Lagrangian points, 37–38 accretional, 130 De Laplace, P.-S., 3, 50 from differentiation, 131–132 Law(s) gravitational, 133 cosine, 11, 15, 19 latent, 133 Kepler’s primordial, 130 first, 27 radiogenic, 131 second, 34 transfer third, 36–37, 41, 63, 229 conductive, 225, 227 Newton’s convective, 134, 137 gravitational, 31–32, 33 radiative, 66, 73–74, 85, 129, 198 laws of motion transport second, 33 advection, 226, 227 third, 31–32 lithospheric conduction, Schr¨oter’s, 183 226–227 sine, 9–11, 16, 19, 42, 44, 125 plate tectonics, 227 Snell’s, 103 Helioseismology, 87–92 Stefan–Boltzmann, 70–71 Hellenic and Hellenistic times, 1 Titius–Bode Hesperus, 207–208 Blagg–Richardson formulation, 6 Hipparchus, 2 Wien’s,70 Holes Legendre polynomials coronal, 84 associated, 126–127 interstitial, 155–156 Leverrier, Urbain, 200 octahedral, 156 Light curves, 79 tetrahedral, 155–156 Lowell, Percival, 209, 228 Horus, 197 Lyttleton, R. A., 5 “Hot Jupiters”, 7 Hoyle, F., 5 Hydrostatic equilibrium, 107 Macroturbulence, 65 Magnetograms, 65–66 Magnitude Impact(s) absolute, 73–74 energy per unit mass, 122–123 bolometric, 73–74 heating, 131 visual, 73 Inanna, 207–208 Mars Inertia, moment of, 63, Alba Patera, 231 111–112 albedo, 229 Ishtar, 207–208 ALH 84001, 239–240, 243–244 252 Index Mars (Cont.) physical and orbital properties, 198 Apsus Valley, 234 polar cap(s), 239 Argyre impact basins, 236 quadrupole moment, 100, 229 Arsia Mons, 230 rotation, 228 Ascraeus Mons, 230 Sabis Vallis, 235 Aureum chaos, 235, 237 satellites, 239 “blueberries”, blueberry concretions, South Pole impact basin, 190, 206 239, 241 surface features, 235, 236, 238–243 brightness, 228 Syria Planum, 237 canali, 228 tear-drop shaped islands, 233 “canals”, 228 Terby Crater, 243 canyons and channels, 231–235 Tharsis bulge (Ridge), 230, 232 Cerberus Fossae, 236 Tithonius Chasma, 232 chaotic terrain, 233, 235 Valles Marineris, 232, 233, 238–239 Chasma Boreale, 242 volcanoes, 229–231 Chryse impact basin, 236 water, ancient, 233–235 Chryse Plain, 239 Martianus Capella, 1, 2 Claritas Rupes, 237 Mercury climate change, 238–243 albedo, 202–203, 206 Coprates Chasma, 232 apsidal motion, 199 craters, 238–239 brightness, 197, 200, 202 dendritic channels, 233–235 Caloris Basin, 202–203 dunes, 234, 236, 238 color, 202, 203, 211 eccentricity, 228 contraction, 204 Endurance Crater, 241 core, 204 etched plains, 235 Discovery Rupes, 205 flattening, 229 eccentricity, 207 global dichotomy, 229 elongations, 197, 199, 201 “green wave”, 228 ice, 206 heat transport, 226, 227 inclination, 199 Hecate Tholus, 230 libration, 204 Hellas impact basin, 236 magnetic field, 204 Hydaspis chaos, 235 mass, 200, 202, 205 impact basins/craters, 219–220, 230, mean solar day, 207 236, 238–239 as morning/evening star, 197 Isidis impact basin, 236 oblateness, 202 Ius Chasma, 232 orbit, 199–200 layered terrain, 235 origin, 204–207 life, possible ancient, 228, 231, physical and orbital properties, 233–235 200–203 lobate ejecta, 239, 240 scarp, 205 Lunae Planum, 233 solar visibility, 207 magnetite, 243–244 South Pole, 206 Maja Vallis, 233 “spider”, 203 mass, 229 spin–orbit coupling, 201 meanders, 233–234 visibility, 197–199 Meridiani Planum, 241 Minerals Newton crater, 244 α-phase (olivine), 169 Nix Olympica, 231 amphibole, 162–163 north celestial pole, 18, 19 andesine, 181 Olympus Mons, 231, 240 andesite, 163, 164, 225 Pavonis Mons, 230 anorthite, 160, 180–181 Index 253 anorthositic gabbro, 177, 187 spinel (silicate), 158 anorthositic plagioclase feldspar, stishovite, 160 180–181, 187 w¨ustite, 168 basalt, 163, 164, 171, 176, 177, Minerals, density, 170 181, 182 Minor planets, see Asteroids β-phase (olivine), 170–172 Mission(s) bytownite, 181 Apollo, 177 corundum, 166, 171, 172 Clementine, 179, 180 diopside, 160, 165, 167 Luna, 176 dunite, 164 Magellan, 210, 219–220 eclogite, 163, 164 Mariner 10, 202–203, 204, 206 enstatite, 160, 161, 165 Mars Global Surveyor, 231, 235, 239, fayalite, 157, 161, 168, 169 243, 244 feldspar Mars Odyssey, 230, 233, 234, 235, orthoclase, 160 236, 237, 238 plagioclase, 160 Mars Reconnaisance Orbiter, 242 ferrosilite, 160–161, 165 Messenger, 203 forsterite, 157, 161, 168, 169 Opportunity, 239, 241 gabbro, 164, 177, 187 SkyLab, 83–84 gabbroic anorthosite, 177 Spirit, 239 γ-phase (olivine), 170 Vega, 69, 223 garnet (silicate), 165–166 Venera, 223, 224–226 “ghost” craters, 183 Modulus granite, 164 bulk, 108 ilmenite (FeTiO ), 181 3 elastic, 108 ilmenite (silicate), 166 shear, 108 iron (core), 157, 159, 164 Young’s, 108 KREEP basalts, 181 Mohoroviˇci´c discontinuity, 170 labradorite, 181 magnesiow¨ustite, 168 Monocline, 232 magnetite, 243–245 Moon/lunar majorite, 166 60-km discontinuity, 187 norite, 177 accretion, 189 olivine albedo map, 179 phase transitions, 168–170 angular size variation, 192 orange glass, 182, 189 asthenosphere, 188 pegmatite, 163 breccias, 178–179 periclase, 168 compositional variation, peridotite, 164 177, 191 perovskite (silicate), 157, 161, core, 187, 188 166–168 craters, 178, 179, 182–184 pyrolite, 164 dynamical history, 192–194 pyrope, 166 eccentricity, 192 pyroxene flattening, 177, 229 clinopyroxene, 161 formation hypotheses, 194 orthopyroxene, 161 fractionation, 189 phase diagram, 168 highlands, 177 quartz, 149, 159, 160, 164 impact basins, 177 rhyolite, 164 inclination, 192 serpentinite, 164 initial fractionation, 189 silica, 159, 164 KREEP basalt, 181 silicates, 156–157, 159–162, 166, 167 lithosphere, 188 254 Index Moon/lunar (Cont.) obliquity of the ecliptic, 40 lowlands, 177 osculating, 38 magma ocean, 189 perturbation(s) mantle, 188 acceleration, 53 Mare Imbrium, 190 variations, 53–58 Maria, 181–182 Origen, 2 mean distance, 192 Orogenesis, 113–114 minerals, 149–173 nodal regression, 192 origin, 181, 192–194 Paleolithic period, 1 perigee advance, 192 Paleomagnetism, 118 regolith, 178 Pettingill, G., 200 rotation, 192 Phase seismic results, 184–188 angle (for observing planets), terrae (highlands), 180–181 124–126 Moulton, F.