<<

Index

Acoustic waves, 87–91 bone, 1 –Williamson equation, Bolometric correction (solar), 73–74 107–111, 113 Boundary, core–mantle, 104, 105, Adiabatic conditions/processes, 141 115–116, 119, 142, 171, Aerobee rockets, 83 172–173 Brahe, , 2, 3, 228 bolometric, 129, 143, 145 Buddha, 197 geometric, 202, 229 Buffon, Georges-Louis Leclerc, 3 mean, 146, 229 visual, 198 Alfven, H. O. G., 5 , A. G. W., 5 ALH 84001 (Antarctic meteorite), , Martianus, 1, 2 239–240, 243–244 Cell, diamond-anvil, 114, 118–119, 173 of Clazomenae, 2 Chamberlain, T. C., 5 Andromeda galaxy (M31), 93 , Ernst Florenz Friedrich, 3 Anticline, 212, 232 Circle of Perga, 2 great, 9–10, 11, 16, 89, 229 Ares, 228, 233 small, 9–11, 89, 159, 168 Argument of perihelion, 27, 36, 40 Coefficient of Samos, 2 absorption, 75–76 , S. A., 5 kinematic viscosity, 134 , 2 thermal (minor planets) conduction, 118, 134, 138, 140, Ceres, 47, 96 141, 227 Eris, 6 expansion, 134, 141, 217–218 Greek and Trojan, 38 Communications (s), 45 Icarus, 202 Convection, mantle Kirkwood gaps, 52 , 135, 136 “rubble pile”, 123 , 147 trans-Neptunian objects, 123 Coordinate system Astronomical Almanac, 40–41, altazimuth, 16, 17, 19 62–63, 202 ecliptic, 18, 19 , 62, 208, 209 equatorial, 17, 18, 19, 21, 22 Atmospheric refraction, 17 horizon, 16–17, 18, 21 terrestrial, 16, 18 , H., 5 Coordinate transformations Bickerton, A. W., 5 ecliptic to equatorial, 19 Binary Maker software, 37–38 equatorial to ecliptic, 19 , K. O. B., 5 equatorial to horizon –Richardson formulation, 6 (altazimuth), 18 250 Index

Coordinate transformations (Cont.) interior, 113–122 horizon (altazimuth) to ionosphere, 66, 197, 245 equatorial, 18 lithosphere, 188, 225–227 rectilinear (x, y) to polar, 26 low velocity zone, 217 Copernicus, Nicholas, 2, 3 magnetic field, 114–115, 118 Crust, Earth magnetosphere, 245 composition, 150, 158 mantle, 114, 131, 168, 170–171 Crystal preliminary reference model, density, 155 119, 122 magnesiow¨ustite, 168 radiated power, 145 perovskite, 166–168 seafloor spreading, 113, 216 phase, 165–170 seismic waves, 90, 103–104, structure 106–107, 173 cubic close packing, 154 shadow zone, 103–106 face-centered packing, 151, 154, subduction, 113, 135, 163, 166, 168 213–214, 216 hexagonal close packing, 153 temperature gradient, interior, interstitial holes, 155–156 133, 136–138, 141 octahedral holes, 156 Effect on minor planets, 52 silicate tetrahedron, 156–157 Ellipse tetrahedral holes, 155–156 area, 27–28, 43 table salt, 165, 168 definition, 23–24 point, 113–114 eccentricity, 24 equation, 23–24 D layer, 172–173 hyperbola, 27 , Ren´e, 3 parabola, 27 Devonian Period, 49 Elongation, 125, 197, 199, 201, 207 Differentiation, 61, 113, 121, 131–132 Energy equation (for orbits), 34 Digital Orrery, 47 Equilibrium, thermal, 139 Discontinuity Eris, 6 Mohoroviˇci´c, 170–171 of Cnidus, 2 seismic Eutectic mix(es), 204 Earth, 170–172 , 186–187 Dwarf planets, 6, 47, 199 Faults and folds Dyce, R., 200 anticline, 212, 232 Dynamical migrations, 7 fossa(e), 233, 236 graben, 232 Earth monocline, 232 asthenosphere, 188 normal fault, 232 atmosphere, 17, 73, 81–82, 147 strike-slip fault, 212, 232 central temperature, 141 syncline, 232 core thrust fault, 232 inner, 117–118 Filar micrometry, 96 outer, 114–115 Formula(e) core-mantle interface, 134–135 analogue, 16 crust four-parts, 16 composition, 158 Fossa(e), 233, 236 D layer, 172–173 Frequency geotherm(s), 141–142 Brunt–V¨ais¨al¨a, 90 heat flux, 129–141 Buoyant, 90 impact craters, 219–220 Function, Planck, 70–72 Index 251

Galileo, G., 175 , J. H., 5 Gauss, K. F., 40 Jeffreys, H., 5 Geochemical cycle, 150 Jupiter, 37–38, 50–52, 61, 95, 123, 197, Geo-synchronous satellite(s), 46 226, 228 Giant molecular clouds, 7 Jupiter–Saturn long-period inequality, Gradient, temperature, 136–137, 138, 50–51 141–142 Gravity waves, 87–88, 90 Kant, Immanuel, 3 Greenhouse gases, 147, 238–239 , Johannes, 2, 3 Gutenberg–Richter earthquake Kepler’s equation, 41–45, 57 , 184 Kirkwood gaps, 52 , G., 5 H− ion(s), 80 Kuiper Belt, 123 Hayashi, C., 5 Heat Lagrangian points, 37–38 accretional, 130 De Laplace, P.-S., 3, 50 from differentiation, 131–132 Law(s) gravitational, 133 cosine, 11, 15, 19 latent, 133 Kepler’s primordial, 130 first, 27 radiogenic, 131 second, 34 transfer third, 36–37, 41, 63, 229 conductive, 225, 227 ’s convective, 134, 137 gravitational, 31–32, 33 radiative, 66, 73–74, 85, 129, 198 laws of motion transport second, 33 advection, 226, 227 third, 31–32 lithospheric conduction, Schr¨oter’s, 183 226–227 sine, 9–11, 16, 19, 42, 44, 125 plate tectonics, 227 Snell’s, 103 Helioseismology, 87–92 Stefan–, 70–71 Hellenic and Hellenistic times, 1 Titius– , 207–208 Blagg–Richardson formulation, 6 Hipparchus, 2 Wien’s,70 Holes Legendre polynomials coronal, 84 associated, 126–127 interstitial, 155–156 Leverrier, Urbain, 200 octahedral, 156 Light curves, 79 tetrahedral, 155–156 , Percival, 209, 228 Horus, 197 Lyttleton, R. A., 5 “Hot Jupiters”, 7 Hoyle, F., 5 Hydrostatic equilibrium, 107 Macroturbulence, 65 Magnetograms, 65–66 Magnitude Impact(s) absolute, 73–74 energy per unit mass, 122–123 bolometric, 73–74 heating, 131 visual, 73 Inanna, 207–208 Inertia, moment of, 63, Alba Patera, 231 111–112 albedo, 229 Ishtar, 207–208 ALH 84001, 239–240, 243–244 252 Index

Mars (Cont.) physical and orbital properties, 198 Apsus Valley, 234 polar cap(s), 239 Argyre impact basins, 236 quadrupole moment, 100, 229 , 230 rotation, 228 , 230 Sabis Vallis, 235 , 235, 237 , 239 “blueberries”, blueberry concretions, Pole impact basin, 190, 206 239, 241 surface features, 235, 236, 238–243 brightness, 228 , 237 canali, 228 tear-drop shaped islands, 233 “canals”, 228 Crater, 243 canyons and channels, 231–235 bulge (Ridge), 230, 232 Fossae, 236 Tithonius , 232 chaotic terrain, 233, 235 , 232, 233, 238–239 , 242 volcanoes, 229–231 Chryse impact basin, 236 water, ancient, 233–235 Chryse Plain, 239 Martianus Capella, 1, 2 Claritas Rupes, 237 Mercury climate change, 238–243 albedo, 202–203, 206 , 232 apsidal motion, 199 craters, 238–239 brightness, 197, 200, 202 dendritic channels, 233–235 Caloris Basin, 202–203 dunes, 234, 236, 238 color, 202, 203, 211 eccentricity, 228 contraction, 204 Crater, 241 core, 204 etched plains, 235 Discovery Rupes, 205 flattening, 229 eccentricity, 207 global dichotomy, 229 elongations, 197, 199, 201 “ wave”, 228 ice, 206 heat transport, 226, 227 inclination, 199 Hecate , 230 , 204 Hellas impact basin, 236 magnetic field, 204 , 235 mass, 200, 202, 205 impact basins/craters, 219–220, 230, mean solar day, 207 236, 238–239 as morning/evening star, 197 Isidis impact basin, 236 oblateness, 202 , 232 orbit, 199–200 layered terrain, 235 origin, 204–207 life, possible ancient, 228, 231, physical and orbital properties, 233–235 200–203 lobate ejecta, 239, 240 scarp, 205 Lunae Planum, 233 solar visibility, 207 magnetite, 243–244 South Pole, 206 Maja Vallis, 233 “spider”, 203 mass, 229 spin–orbit coupling, 201 meanders, 233–234 visibility, 197–199 , 241 Newton crater, 244 α-phase (), 169 Nix Olympica, 231 amphibole, 162–163 north celestial pole, 18, 19 andesine, 181 , 231, 240 andesite, 163, 164, 225 , 230 anorthite, 160, 180–181 Index 253 anorthositic gabbro, 177, 187 spinel (silicate), 158 anorthositic , stishovite, 160 180–181, 187 w¨ustite, 168 basalt, 163, 164, 171, 176, 177, Minerals, density, 170 181, 182 Minor planets, see Asteroids β-phase (olivine), 170–172 Mission(s) bytownite, 181 , 177 corundum, 166, 171, 172 , 179, 180 diopside, 160, 165, 167 Luna, 176 dunite, 164 , 210, 219–220 eclogite, 163, 164 10, 202–203, 204, 206 enstatite, 160, 161, 165 Mars Global Surveyor, 231, 235, 239, fayalite, 157, 161, 168, 169 243, 244 feldspar Mars Odyssey, 230, 233, 234, 235, orthoclase, 160 236, 237, 238 plagioclase, 160 Mars Reconnaisance Orbiter, 242 ferrosilite, 160–161, 165 Messenger, 203 forsterite, 157, 161, 168, 169 Opportunity, 239, 241 gabbro, 164, 177, 187 SkyLab, 83–84 gabbroic , 177 , 239 γ-phase (olivine), 170 Vega, 69, 223 garnet (silicate), 165–166 , 223, 224–226 “ghost” craters, 183 Modulus granite, 164 bulk, 108 ilmenite (FeTiO ), 181 3 elastic, 108 ilmenite (silicate), 166 shear, 108 iron (core), 157, 159, 164 Young’s, 108 KREEP basalts, 181 Mohoroviˇci´c discontinuity, 170 labradorite, 181 magnesiow¨ustite, 168 Monocline, 232 magnetite, 243–245 Moon/lunar majorite, 166 60-km discontinuity, 187 norite, 177 accretion, 189 olivine albedo map, 179 phase transitions, 168–170 angular size variation, 192 orange glass, 182, 189 asthenosphere, 188 pegmatite, 163 breccias, 178–179 periclase, 168 compositional variation, peridotite, 164 177, 191 perovskite (silicate), 157, 161, core, 187, 188 166–168 craters, 178, 179, 182–184 pyrolite, 164 dynamical history, 192–194 pyrope, 166 eccentricity, 192 pyroxene flattening, 177, 229 clinopyroxene, 161 formation hypotheses, 194 orthopyroxene, 161 fractionation, 189 phase diagram, 168 highlands, 177 quartz, 149, 159, 160, 164 impact basins, 177 rhyolite, 164 inclination, 192 serpentinite, 164 initial fractionation, 189 silica, 159, 164 KREEP basalt, 181 silicates, 156–157, 159–162, 166, 167 lithosphere, 188 254 Index

Moon/lunar (Cont.) obliquity of the ecliptic, 40 lowlands, 177 osculating, 38 magma ocean, 189 (s) mantle, 188 acceleration, 53 , 190 variations, 53–58 Maria, 181–182 Origen, 2 mean distance, 192 Orogenesis, 113–114 minerals, 149–173 nodal regression, 192 origin, 181, 192–194 Paleolithic period, 1 perigee advance, 192 Paleomagnetism, 118 regolith, 178 Pettingill, G., 200 rotation, 192 Phase seismic results, 184–188 angle (for observing planets), terrae (highlands), 180–181 124–126 Moulton, F. R., 5 function, 126–127 Phase diagram olivine, 168–170 n-Body analyses, 37 pyroxene, 168 Neolithic (New Stone Age), 1, 192 Phase transition(s) Neptune, 6–7, 61 olivine component, 168–170 Newton, Isaac, 3 pyroxene component, 165–168 Nicholas of Cusa, 3 , 2 Numerical integration, 109–110, 111 Phosphorus (Lucifer), 207–208 Planetary Obliquity of the ecliptic, 18–19, 40 angular momentum, 61 Oort Cloud, 123 cores, 48–49 Optical depth, 75–76, 77, densities, 98 81–82, 85 elongation, 125 Orbit–orbit couplings and interiors, 125 resonances, 50 internal heat, 130–133 Orbits/orbital magnetic fields, 91 anomaly moment(s) of inertia, 111–112 eccentric, 37, 39, 42–43, 57 potential, 98–101 mean, 37–39, 43 pressures, 95, 114, 124 true, 37, 39, 43, 53 quadrature, 126 argument surface temperatures, 129, 141 of latitude, 39 Planets of perihelion, 27, 36, 39, 40 dwarf, 6, 47, 199 elements exterior (superior), 125 argument of perihelion giant, 37, 95, 147 (pericenter), 36 interior (inferior), 125 eccentricity, 36 rocky/terrestrial epoch, 36 types of crust, 220–221 inclination, 36 Pluto longitude of ascending node, 36 Charon resonance, 52, 96 period, 36–37 Polycyclic aromatic hydrocarbons, semi-major axis, 36 243–244 energy equation, 41 Potential, gravitational, 98–101 longitude Potential energy, 98–99, 131 mean, 39 Primordial heat, 130–132 of perihelion, 36 , R. A., 5 true, 39 Protostellar disks, 7 Index 255

Ptolemy, Claudius, 2 lava, 149, 212, 227 Pythagoras, 2 mafic, 164 magma, 149, 189, 238–239 metamorphic, 150 Quadrature(s), 35, 126, 183 pegmatite, 163 Quadrupole moment, 100, 229 plutonic, 149, 163, 164, 187 pyrolite, 164 Radiation rhyolite, 164, 225 absorption sedimentary, 150 coefficient, 75–76 serpentinite, 164 lines, 83, 85, 86 tholeiitic basalts, 224 limit, 69 ultrabasic, 164 -body, 62, 67, 70–72 ultramafic, 164 emission volcanic, 149, 163, 164 lines, 85–86 waves, 87–88 emissivity, 76, 85 , H. N., 5 exitance, 67–68 flux, 66–67, 71–73 illuminance, 124–125, 202, 206 Safronov, V. S., 5 intensity, 67, 71–73 Satellite(s) irradiance, 67 commensurabilities, 50–52 line absorption and emission, 85–86 Galilean, 50, 96, 226 local thermodynamic equilibrium Saturn, 50–52, 96, 97, 129 (LTE), 70, 86 Satyricon, 1–2 luminance, 69 Schiaparelli, Giovanni, 200–201, 202, , 66–69, 73, 129, 142–143 209, 228, 231 opacity, 69, 74, 75–76 , O. I., 5 optical depth, 75–76 Seismic efficiency, 184 power, 66–68, 69, 129, 143–147 Seismology radiance, 67–69 solar, 66, 87–92 transfer equation, 72–73, 85 terrestrial, 102–107 , 79, 81–84 Sidereal time, 17–18 x-ray, 4, 175–176, 177, 224 Solar constant, 73, 129, 142 Ratio of specific heats, 89–90 Solar heating, 142–147 Raulineya, 197 Solarization, 84 Rayleigh number, 133–134 Solar system properties, 65–66, 73–74, Refraction, 17, 101–102, 103–104 95–127 Resonance Spectrum/spectra orbit–orbit, 50, 51 Balmer jump, 69, 83 spin–orbit, 50 Balmer lines, 69, 83 Reynold’s number, 134 Ca II H and K lines, 83, 213 Rigidity, 103–104, 108 forbidden lines, 85 Rocket ultraviolet, 82–83 He λ304 line, 84 Rocks Lyman α line, 84 acidic, 164 metastable levels, 85 alkaline basalts, 224 Mg II h and k lines, 83 basalt, KREEP, 181 Spherical basic, 157, 159, 164 , 9–22 breccia, 178–179 harmonic(s), 89, 91, 99, 100, 229 eclogite, 163, 164, 218 triangle(s), 9–16, 18, 19, 20–22 felsic, 164 trigonometry, 9–10, 16–22 granite, 103, 164, 225 Spin–orbit coupling(s) and igneous, 149 resonances(s), 47–52 256 Index

Stars Tectonics α Canis Majoris (Sirius), 21 blob model, Venus, 221–222 α Cygni (Deneb), 21, 229 convergence model, Venus, 222–223 α Lyrae (Vega), 69, 87 core, Earth, 212, 216 β Pictoris, 7 forces, 238 Subduction, 113–114, 135, 163, Mars, 238–239, 240 213–214, 216, 217, 218, plate, 214–219, 227 219, 221 Temperature /solar effective, 64, 67, 68, 70, 73, 93, active regions, 66, 81–84 146, 198 bolometric correction, 73–74 equilibrium center-to-limb variation, local, 64, 70, 86, 143–147 76–79 rapid rotator, 146, 228 chromosphere, 81–84 slow rotator, 198 chromospheric network, 82 gradient, 64, 136–138, 141, 142 convection zone, 79–80 mean, 73 corona(e) subsolar, 143–144, 145, 198 E-corona, 84, 85 ter Haar, D., 5 F-corona, 84, 85 Tesserae, 210, 212 K-corona, 84, 85 Tetrahedron, 155–157, 159, 161, facula(e), 81, 87 162–163, 165–166 flare(s), 81, 84 Thermal equilibrium, 139 granulation, 79–80 Three-body problem, restricted, limb-brightening, 79 37–38, 46 limb-darkening, 72, 75–79 Tidal luminosity, 66–69 braking, 49 magnetic fields, 79, 81, 82 bulges, 48–49, 192 mean intensity, 67, 69, 71–73 forces, 192 neutrino(s) friction problem, 66 effect on orbits, 49–50 oblateness, 64, 200, 202 effect on rotations, 47–49 opacity, 75–76 Two-body problem, 31–35 oscillations, 66, 87–88, 90–92 photosphere, 74–81 Uranus/Uranian plages, 81, 82 satellite and ring resonances, 51–52 spectrum emission, 82–83 spicules, 82 Venus spots, 65–66, 74, 80, 81, 87 crater, 220 supergranulation, 65 , 213–214, 219, 221, surface brightness, 66–69, 72, 73, 222, 227 87, 200 arachnoids, 214–215 surges, 82 Corona, 213 temperature astronomical unit, 62, 208, 209 effective, 64, 67, 68, 70, 73 , 213, 219, 223 mean, 73 brightness, 207 minimum, 79, 81–82, 90 chemical composition, 223 reversal, 79 coronae (ovoids), 213–214, 219 transition zone, 81, 142 cratering ages, 219, 227 ultraviolet radiation, 81 crust, 220–221 Sunspot cycles, 65, 81 eccentricity, 208 Syncline, 212, 232 flow channel(s), 225, 226 Index 257

Fortuna arachnoids, 214, 215 rotation, 209 heat budget, interior, 225 secular cooling, 225 heat loss, 225–227 Summerville crater, 219 highlands, 210, 220, 222 surface gravity, 209 impact craters, 219–220 tectonics, 212–214 Latona Corona, 214 temperature, 209, 216, 217, 233 lava plains, 212 tesserae, 210, 212 lithosphere, 225–227 transits, 208 mass, 209, 225 volcanoes, 209, 212–214 , 210, 211, 212, 214 Venus of Laussel, 1 as morning/evening star, 207–208 Equinox, 17–18, 36, 55, 199–200 mountain belts, 212 Vis-viva equation, 41, 123 orbital properties, 228–229 von Weizs¨acker, C. F., 5 , 221–222 Vulcan, 96, 200 ovoids, 213–214 pancake domes, 225 Whipple, F., 5 Parga Chasma, 221 physical properties, 207–210 X-ray fluorescence, 175–176, 177, 224 radar maps, 211 regiones, 213 ridge belts, 213 Zodiacal light, 85