Coal and Peat Fires: a Global Perspective Edited by Glenn B

Total Page:16

File Type:pdf, Size:1020Kb

Coal and Peat Fires: a Global Perspective Edited by Glenn B CHAPTER 23 ◆ ◆ The “Volcanoes” of Midwestern Venezuela CHAPTER CONTENTS 23.1 The “Volcanoes” of Midwestern Venezuela Introduction Geologic Setting The “Volcanoes” Discussion and Conclusions Acknowledgments References The main gas vent of “Volcán de Las Monas”, where the ammonium sulfates tschermigite, godovikovite, and mascagnite were identified by the authors. In 1994, the vent was 1.6 m wide and 0.25 m high at its widest point, and a thermocouple temperature of 225 °C was measured 40 cm inside. This coal-fire is located in a hillside in a remote region of northwest- ern Venezuela, with no coal-mining activity. According to local inhabitants, the coal-fire started in the 1950s, with the maximum activity in the late 1980s and early 1990s, when intermittent columns of smoke were visible up to a few kilometers away. In 1990, the vents were completely lined with sulfates. In 2012, the maximum temperature measured had decreased to 52 °C and there were no sulfate mineral deposits. Photo by Franco Urbani, 1990. Coal and Peat Fires: A Global Perspective Edited by Glenn B. Stracher, Anupma Prakash and Ellina V. Sokol 610 Copyright © 2015 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-444-59509-6.00023-5 23.1 The “Volcanoes” of Midwestern Venezuela Manuel David Soto Franco Urbani Coal-fire and ammonium sulfates at “Volcán de Las Monas”, Venezuela. Vent details are mentioned in the previous photo. Photo by Franco Urbani, 1990. Introduction Several sites with underground coal-fires, known locally as “volcán” (volcano), “volcancito” (little volcano) or “fumarola” (fumarole), have been reported in western Venezuela (Briceño-Méndez, 1876). During the last third of the sixteenth century, the Spanish Royal authorities distributed a questionnaire known as the “Geographical Rela- tions” to their colonies, with the goal of compiling a general description of all Spanish territories. On January 21, 1579, the principals of the city of El Tocuyo wrote “We declare that at eight leagues from this city (El Tocuyo), in the mountains located in the direction of the sunrise, there is a large volcano (Fumarola de Sanare) that has three mouths. It is always smoking and emits a sulfurous smell… When the weather changes its roars can be heard in this city, and sometimes after those roars, large earthquakes occur that alarm the Spaniards as well as the natives. Fur- thermore, at seven leagues in the same direction from this volcano, above the valley of Quíbor, and at seven leagues from this town, there was another smaller volcano (Volcancito de San Miguel) that used to smoke and blow ash, but it is now extinct because in the past four years it no longer smokes as it used to do for many years” (Ponce de León et al., 1579 and Urbani 1996). This was the first description of coal-fires in the Americas, although for this locality it took 410 years (Urbani et al., 1987) to be recognized as the result of coal-fire. Coal-fires are known in several regions of Venezuela such as the Perijá Cordillera near the border with Colombia, the southern part of the Mérida Andes, and also in eastern Venezuela; all are related to tertiary coal-bearing geologi- cal units that sporadically have been exploited commercially. In this chapter, we studied five coal-fires located in the northern half of Lara State (Figure 23.1.1), surrounding the towns of Quíbor and Quebrada Arriba. This study includes a description of the geology of the area of combustion, and identification and analysis of thermally altered rocks and minerals deposited in and around gas vents and ground fissures. Geologic Setting The study area is included in the Lara Nappes geological province (Stephan et al., 1985) that originated due to a southeast vergent nappe-piling event that occurred during the late Eocene—early Oligocene. The event was caused by the oblique convergence of the Caribbean plate on the northern portion of the South American plate, producing a complex tectonic imbrication of igneous and sedimentary units of Cretaceous age with Paleogene turbidites. Later, during mid-Tertiary times an extensional period with crustal thinning created a basin that was filled transgressively by several Miocene formations deposited unconformably over the previ- ous units. The “Volcanoes” of Midwestern Venezuela 611 Figure 23.1.1. Location map of coal-fires in midwestern Venezuela. The black dots mark the locations of current or burnt-out coal-fires with their local names. Polygons identify further detailed maps. Map coordinates are in kilometers, UTM zone P19, datum PSA56. Modified fromSoto (1997). The five coal-fires in the state of LaraFigure ( 23.1.1) occur in three different geological formations: 1. The area south of Quíbor (Figure 23.1.2) is crossed by the Boconó Fault (the major seismogenic fault of western Venezuela) and one of its branches, the Río Turbio Fault. Three coal-fire sites occur south of the Boconó fault in the Villanueva Formation (Figure 23.1.2): Volcancito de San Miguel (VSM), the Fumarola de Sanare (FS), both known since 1579, and the Volcán de Gusama (VG), which started in 1990 after a large landslide. The Vil- lanueva Formation is a Late Cretaceous unit composed of black shale with minor amounts of sandstone, lime- stone, and chert that have been affected by a very low-grade (subgreen schist facies) metamorphism (Von der Osten and Zozaya, 1957). This is an allocthonous unit emplaced during the mid-Tertiary nappe-piling event of the Caribbean realm. No coal-bed outcrops are described in the literature and none were found during our fieldwork. 2. Outcrops south of Quíbor, but in the north side of the Boconó Fault, are composed of unconsolidated beds of sand and clay with minor lignite inliers of the Pliocene Pegón Formation (Jefferson, 1964). The coal-fire in the “Mina de Yay” (MY, Figure 23.1.2) started in 1985 when a lignite seam, 70 cm thick, ignited spontaneously after it was exposed by mining white clays used in the ceramic industry. 3. The Volcán de Las Monas (Figure 23.1.1), located north of the town of Quebrada Arriba, is a smoldering coal bed in the Miocene Cerro Pelado Formation. This formation unconformably overlies the pre-Neogene nappes. The unit is composed of thick packages of sandstone, intercalated with shale and scattered lignite beds (Liddle, 1928). 612 Soto and Urbani Figure 23.1.2. Location map of coal-fire sites south of Quíbor, Lara State, Venezuela. Abbreviations of coal-fire sites: VSM, Volcancito de San Miguel; VG, Volcán de Gusama; FS, Fumarola de Sanare; and MY, Mina de Yay. Rectangles around the sites locate more detailed maps. Geological units: K, Villanueva Formation, Late Creta- ceous. Tp, Morán Formation, Paleogene. Tn, Pegón Formation, Neogene. Map coordinates are in kilometers, UTM zone P19, datum PSA56. Modified from Soto (1997). The “Volcanoes” A summary of location, geological context, temperature, and probable origin of the five coal-fires sites is presented in Table 23.1.1. Samples richest in carbon were collected and analyzed in each locality (Table 23.1.2). All of the mineral samples collected were identified by X-ray diffraction (XRD) and with an electron microprobe-scanning electron microscope (EMP-SEM). The sample data are summarized in Table 23.1.3. At Volcancito de San Miguel, Fumarola de Sanare, and Volcán de Gusama (all within the Villanueva Formation) only dark (carbon-rich) slates were available for sampling. No coal beds have been found at either of these locali- ties, neither by previous regional–geological surveys nor in our own work. Therefore, the source of combustion is open to further research. On the contrary, at Mina de Yay and Volcán de Las Monas, lignite was sampled. Volcancito de San Miguel At this site (Figure 23.1.3) there are several vents that emanate hot humid gas with an acrid and pungent smell, at the top of a landslide with many ground fissures opened in the weathered slates of the Villanueva Formation ( Figures 23.1.4 and 23.1.5). The highest temperature measured in 1990 was 95 °C, about 60 cm inside the main vent at that time. However, the temperature recorded in 2012 was only 45 °C. The elders of nearby towns say that they have never seen emissions of smoke or vapor. The secondary minerals deposited in and around the gas vents are Ca, Fe, and Mg sulfates. Gypsum (CaSO4·2H2O) is dominant and can be found covering and agglutinating the ground surface up to a few square meters around the vents. In places exposed to rainfall gypsum shows groove dissolution while in niches protected from the rain 3+ appears with magnesiocopiapite (MgFe 4(SO4)6(OH)2·20(H2O)) which forms pale green and yellowish efflores- cence (Figure 23.1.6). In addition, anhydrite (CaSO4) is present along the foliation planes of thermally altered slates and found inside and around hot gas vents (Figure 23.1.7). The “Volcanoes” of Midwestern Venezuela 613 Table 23.1.1 General data for five coal-fires in Midwestern Venezuela. Site Location Geological Unit, Lithology Origin Observations Volcancito de 5.9 km S of San Villanueva Formation Coal bed or dark Known since 1579 San Miguel Miguel 1425 m of (Late Cretaceous). carbonaceous slates, 1986: 83 °C elevation above sea Dark carbonaceous exposed by landslides 1990: 95 °C at 60 cm level (easl) slates, probably with in steep mountain below the surface 69°30′25″W coal or carbon-rich side 1994: 85 °C 9°49′52″N inliers. Very low grade 2012: 45 °C metasediments Volcán de 4.3 km SE of Ditto. Ditto. Started in 1990 Gusama Cubiro 1991: 281 °C at 70 cm 1520 m easl inside the vent 69°32′56″W 1994: 27 °C inactive 9°45′54″N Volcán de 4.2 km NEE of Ditto.
Recommended publications
  • Phase Evolution of Ancient and Historical Ceramics
    EMU Notes in Mineralogy, Vol. 20 (2019), Chapter 6, 233–281 The struggle between thermodynamics and kinetics: Phase evolution of ancient and historical ceramics 1 2 ROBERT B. HEIMANN and MARINO MAGGETTI 1Am Stadtpark 2A, D-02826 Go¨rlitz, Germany [email protected] 2University of Fribourg, Department of Geosciences, Earth Sciences, Chemin du Muse´e 6, CH-1700 Fribourg, Switzerland [email protected] This contribution is dedicated to the memory of Professor Ursula Martius Franklin, a true pioneer of archaeometric research, who passed away at her home in Toronto on July 22, 2016, at the age of 94. Making ceramics by firing of clay is essentially a reversal of the natural weathering process of rocks. Millennia ago, potters invented simple pyrotechnologies to recombine the chemical compounds once separated by weathering in order to obtain what is more or less a rock-like product shaped and decorated according to need and preference. Whereas Nature reconsolidates clays by long-term diagenetic or metamorphic transformation processes, potters exploit a ‘short-cut’ of these processes that affects the state of equilibrium of the system being transformed thermally. This ‘short-cut’ is thought to be akin to the development of mineral-reaction textures resulting from disequilibria established during rapidly heated pyrometamorphic events (Grapes, 2006) involving contact aureoles or reactions with xenoliths. In contrast to most naturally consolidated clays, the solidified rock-like ceramic material inherits non-equilibrium and statistical states best described as ‘frozen-in’. The more or less high temperatures applied to clays during ceramic firing result in a distinct state of sintering that is dependent on the firing temperature, the duration of firing, the firing atmosphere, and the composition and grain-size distribution of the clay.
    [Show full text]
  • Preprint American Mineralogist 407
    This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2012.4189 7/11 1 Semi-quantitative determination of the Fe/Mg ratio in synthetic cordierite using 2 Raman spectroscopy 3 REVISION 1 4 Authors: Udo Haefeker1, Reinhard Kaindl2, Peter Tropper1 5 6 1Institute of Mineralogy and Petrography, University Innsbruck, Innrain 52, A-6020 7 Innsbruck, Austria. 8 E-mail: [email protected] 9 2Present address: MATERIALS – Institute for Surface Technologies and Photonics, 10 Functional Surfaces, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 11 Leobner Straße 94, A-8712 Niklasdorf, Austria. 12 13 ABSTRACT 14 Investigations of H2O-bearing synthetic well-ordered Mg-Fe-cordierites (XFe = 0-1) 15 with micro-Raman spectroscopy revealed a linear correlation between the Fe/Mg 16 ratio and the position of certain Raman peaks. In the range between 100 and 1250 17 cm-1 all peaks except for three peaks shift towards lower wavenumbers with 18 increasing XFe as a consequence of the substitution of the lighter Mg by the heavier 19 Fe atom on the octahedral sites and the associated structural changes. Selected 20 medium and strong peaks show a shift of 5 to 13 cm-1, respectively. Based on recent 21 quantum-mechanicalPreprint calculations American (Kaindl et al. 2011) Mineralogist these shifts can be attributed to 22 specific vibrational modes in the cordierite structure, thus showing that the Mg-Fe 23 exchange affects the vibrational modes of tetrahedral, octahedral and mixed sites.
    [Show full text]
  • Andalusite and Na- and Li-Rich Cordierite in the La Costa Pluton, Sierras Pampeanas, Argentina: Textural and Chemical Evidence for a Magmatic Origin
    Andalusite and Na- and Li-rich cordierite in the La Costa pluton, Sierras Pampeanas, Argentina: textural and chemical evidence for a magmatic origin Pablo H. Alasino . Juan A. Dahlquist . Carmen Galindo · Cesar Casquet · Julio Saavedra Abstraet The La Costa pluton in the Sierra de Velasco Keywords Andalusite· Na- and Li-rich cormerite . (NW Argentina) consists of S-type granitoids that can be S-type granite . La Costa pluton . Sierras Pampeanas grouped into three igneous facies: the alkali-rich Santa Cruz facies (SCF, Si02 ",67 wt%) mstinguished by the presence of andalusite and Na- and Li-rich cormerite Introduetion (Na20 = 1.55-1.77 wt% and LhO = 0.14---0.66 wt%), the Anillaco facies (Si02 '" 74 wt%) with a significant pro­ Andalusite and cormerite are important and common rock­ portion of Mn-rich garnet, and the Anjullón facies (Si02 forming mineral s in metapelitic rocks and may also be '" 7 5 wt%) with abundant albitic plagioc1ase. The petrog­ abundant in felsic peralurninous igneous rocks such as raphy, mineral chemistry and whole-rock geochemistry of granites, pegmatites, aplites and rhyolites. A fundamental the SCF are compatible with magmatic crystallization of question conceming the presence of andalusite and corm­ Na- and Li-rich cormerite, andalusite and muscovite from erite in peraluminous rocks is how they formed, i.e. whe­ the peraluminous magma under moderate P-T conditions ther they crystallized from the magma or were trapped as ('" 1.9 kbar and ca. 735°C). The high Li content of cor­ xenocrysts (e.g. Flood and Shaw 1975 ; Clarke et al. 1976, merite in the SCF is unusual for granitic rocks of inter­ 2005; Bellido and Barrera 1979; Phillips et al.
    [Show full text]
  • Structural Characteristics of Gas Hydrates Within the Framework of Generalized Crystallography A
    Crystallography Reports, Vol. 48, No. 3, 2003, pp. 347–350. Translated from Kristallografiya, Vol. 48, No. 3, 2003, pp. 391–394. Original Russian Text Copyright © 2003 by Talis. THEORY OF CRYSTAL STRUCTURES Structural Characteristics of Gas Hydrates within the Framework of Generalized Crystallography A. L. Talis Russian Institute of Synthesis of Mineral Raw Materials, Aleksandrov, Vladimir oblast, 601650 Russia e-mail: [email protected] Received September 16, 2002 Abstract—It is shown that the symmetry of the {5, 3, 3} polytope (four-dimensional dodecahedron) embedded into E4 enables one to derive all the polyhedra–cavities that make up gas hydrates from the {5, 3} dodecahedron. Consideration is given to the allomorphic embedding of the {5, 3} subgraph into the incidence graph of the Desargues configuration 103, which determines the mechanism of incorporation of guest molecules into the polyhedra–cavities of gas hydrates and their escape from these polyhedra at the symmetry level. The relation- ships obtained may be considered as a basis for an a priori derivation of the determined (periodic and aperiodic) structures of gas hydrates. © 2003 MAIK “Nauka/Interperiodica”. The impossibility of dividing the three-dimensional pentagonal “cap” of the icosahedron into a hexagonal Euclidean space E3 into regular tetrahedra determines 2π one (if a wedge with an angle ------ is inserted), with the the structural characteristics of tetrahedrally coordi- 5 nated aqueous frameworks of gas hydrates that cannot disclination interactions being determined by the prod- be adequately reflected within the framework of classi- uct of the corresponding elements of group Y'. The cal crystallography. For example, the polyhedra–cavi- 2π introduction of two, three, and four Ð------ disclinations ties D, T, P, and H (dodecahedron, tetra-, penta-, and 5 hexadecahedra), the constituent fragments of the struc- into an icosahedron along its fivefold axes results in the tures of gas hydrates, are determined as dual to the Z12, formation of the Z14, Z15, and Z16 polyhedra [2].
    [Show full text]
  • Mid-Infrared (2.1-25 Urn) Spectra of Minerals: First Edition
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Mid-Infrared (2.1-25 urn) Spectra of Minerals: First Edition by John W. Salisbury . U.S. Geological Survey1 Louis S. Walter NASA Goddard Space Flight Center2 Norma Vergo U.S. Geological Survey1 Open-File Report 87-263 This report 1s preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Stop 927 laboratory for Terrestrial Physics Reston, VA 22092 Greenbelt, MD 20771 Contents 1.0 Abstract 2.0 Introduction 3.0 Experimental Technique 3.1 Sample Acquisition and Preparation 3.2 Sample Characterization 3.3 Acquisition of Spectra 3.4 Data Storage and Retrieval 4.0 Discussion of Spectra 4.1 Major Spectral Features of Minerals 4.2 Effect of Particle Size 4.21 Role of surface and volume scattering 4.22 Changes in spectral contrast 4.23 Transparency peaks 4.24 Christiansen frequency 4.3 Effect of Crystal!ographic Orientation 4.4 Effect of Packing 4.5 Effect of Atmospheric Gases 4.6 Effect of Impurities 4.7 Using Laboratory Spectra to Predict Remote Sensing Measurements 5.0 Acknowledgements 6.0 Appendix 1: Mineral spectra and description sheets are presented in alphabetical order. Minerals are listed alphabetically and by mineral class, subclass and group at the beginning of the appendix. 7.0 Appendix 2. Making a KBr Pellet 1.0 ABSTRACT Almost all libraries of mineral spectra 1n the mid-Infrared are 1n the form of transmittance spectra. Although useful In a laboratory setting, such spectra are of limited benefit for Interpreting remote sensing observations because they do not include the effects of scattering.
    [Show full text]
  • Foitite: Formation During Late Stages of Evolution of Complex Granitic Pegmatites at Dobrá Voda, Czech Republic, and Pala, California, U.S.A
    1399 The Canadian Mineralogist Vol. 38, pp. 1399-1408 (2000) FOITITE: FORMATION DURING LATE STAGES OF EVOLUTION OF COMPLEX GRANITIC PEGMATITES AT DOBRÁ VODA, CZECH REPUBLIC, AND PALA, CALIFORNIA, U.S.A. MILAN NOVÁK§ Department of Mineralogy, Petrology and Geochemistry, Masaryk University, Kotláøská 2, CZ-611 37 Brno, Czech Republic MATTHEW C. TAYLOR¶ Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Zoned crystals of tourmaline (elbaite–foitite) were found in pockets of the lepidolite-subtype granitic pegmatites at Dobrá Voda, western Moravia, Czech Republic, and the White Queen mine, Pala, San Diego County, California. Zoned crystals consist of pale pink, colorless and greenish Fe-poor elbaite, blue, violet or green Fe-rich elbaite, and dark violet to black foitite. Elbaite– foitite is associated with quartz, cookeite, albite and apatite at Dobrá Voda, and with albite, quartz, K-feldspar, beryl, and musco- vite at the White Queen mine. Chemical compositions of foitite and associated Fe-poor to Fe-rich elbaite are similar at both localities, and exhibit an X-site vacancy (≤0.78 apfu, in foitite), and variable amounts of Ca (≤0.05 apfu), Mn (≤0.47 apfu) and F (≤0.75 apfu, in elbaite), in contrast to foitite that in many cases is F-free. Two distinct stages of late Fe-enrichment in tourmaline were recognized, in contrast to Fe-depletion, noted in many granitic pegmatites. The first stage is generally characterized by increasing Fe and Na, and decreasing Al and Li contents; three substages show the following substitutions: (i) R2 (LiAl)–1, NaR2(OH) X ( ⅪAl2O)–1 and (OH) F–1 for elbaite containing <0.3 Fe apfu at Dobrá Voda (R = Fetot + Mn + Mg + Zn); (ii) Na R2(OH) X X ( ⅪAl2O)–1 or NaR ( ⅪAl)–1 and F (OH)–1 for Fe-rich elbaite with 0.5–1.0 Fe apfu; (iii) AlO2 [Li(OH)2]–1 and (OH) F–1, perhaps combined with R2 (LiAl)–1 for Fe-rich elbaite with 1.0–1.3 Fe apfu at the White Queen mine.
    [Show full text]
  • Lithium in Sekaninaite from the Type Localitv, Dolni Bory. Czech Republic
    167 Thz Canadian M incralo gist Vol. 35, pp.1,67-173(1997) LITHIUMIN SEKANINAITEFROM THE TYPE LOCALITV, DOLNIBORY. CZECH REPUBLIC PETR dERNfI anp RON CHAPMAN Departrnentof GeolagicalSciences, University of Manitoba, Winnipeg,Manitoba R3T2N2 WERNERSCHREYER Irutitut fir Mincralogie, Ruh.r-Uni'ttersitiltBoclun D44801 Bochwa Germary LIIISA OTTOLINI AND PIERO BOTTAZZI CNRCentro d.i Studio per la Cristallochimicae la Cristall.ografia I-27100 Pnia ltaly CATIIERINEA. MoCAMMON BayerischzsGeoinstitw, UniversbAtBayreutfu D-95440 Bayreuth. Germany ABSTRACI The (Si,Al)-orderedFe end-memberof the cordieritegroup, sekaninaite, from its type locality at Dohl Bory, CzechRepublic, was analyze4 and found to contain0.04 - 0.2ALi ard0,1.l -0,2-6Na apfu; (Fe + Mn)/(Mg + Fe + 1!tn) (at.) rangesfrom 0.74 to 0.97.Lithium is incorporatedby the substitutionchNavlli0\4gFe)-r . This sekaninaiteis the first memberof the cordieritegroup reportedto have substantialLi but negligible Be. All samplesof Na,Be-, NaJ-i'Be- and Nati-bearing cordierite-sekadnaite examinedto date show a minor deficit in the tetrahedralsite (0,237 in the literature, 0.036 in our data) and a slight excessof channelcations (NaKCa) over the proportion of (BeIi) (at.). The Li-bearing sekaninaitecomes from ralher simple granitic pegmatites,in which the only Li-bearing minerals are rare tiphylite and cookeite.Thus cordierite-groupminerals are crystal- 'Ihis chemicalsinks for U. ffnding stressesthe needto analyzefor tracelight elements,even in mineralsfrom poorly fractionated andrare-element-depleted environnents, provided the crystal chemistryis favorable. Keyvvords:sekaninaite, cordierite group, lithium, beryllium, CzechRepublic. SoMraans Nous avonsanalysd la sekaninalte,p61e ferrifbre ordonn6en Al,Si du groupede la cordi6rite,provenaat de sa localit6 type, i Dolnl Bory, en R6publiqueTch{ue.
    [Show full text]
  • Boromullite, Al9bsi2o19, a New Mineral from Granulite-Facies Metapelites, Mount Stafford, Central Australia: a Natural Analogue of a Synthetic “Boron-Mullite”
    Eur. J. Mineral. Fast Track Article Fast Track DOI: 10.1127/0935-1221/2008/0020-1809 This paper is dedicated to the memory of Werner Schreyer Boromullite, Al9BSi2O19, a new mineral from granulite-facies metapelites, Mount Stafford, central Australia: a natural analogue of a synthetic “boron-mullite” Ian S. BUICK1,Edward S. GREW2,*, Thomas ARMBRUSTER3,Olaf MEDENBACH4,Martin G. YATES2, Gray E. BEBOUT5 and Geoffrey L. CLARKE6 1 Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia 2 Department of Earth Sciences, University of Maine, 5790 Bryand Research Center, Orono, Maine 04469-5790, USA *Corresponding author, e-mail: [email protected] 3 Institut für Geologie, Gruppe Mineralogie-Kristallographie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland 4 Institut für Geowissenschaften/Mineralogie, Ruhr-Universität Bochum, 44780 Bochum, Germany 5 Department of Earth & Environmental Sciences, Lehigh University, 31 Williams Drive, Bethelem, PA 18015, USA 6 School of Geosciences, University of Sydney, NSW 2006, Australia Abstract: Boromullite is a new mineral corresponding to a 1:1 polysome composed of Al5BO9 and Al2SiO5 modu- les. Electron-microprobe analysis of the holotype prism is SiO2 19.01(1.12), TiO2 0.01(0.02), B2O3 6.52(0.75), Al2O3 74.10(0.95), MgO 0.07(0.03), CaO 0.00(0.02), MnO 0.01(0.04), FeO 0.40(0.08), Sum 100.12 wt.%, which gives Mg0.01Fe0.03Al8.88Si1.93B1.14O18.94 (normalised to 12 cations), ideally Al9BSi2O19. Overall, in the type specimen, it ranges in composition from Mg0.01Fe0.03Al8.72Si2.44B0.80O19.20 to Mg0.01Fe0.03Al9.22Si1.38B1.35O18.67.
    [Show full text]
  • Sekaninaite (Fe ; Mg)2Al4si5o18 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Orthorhombic
    2+ Sekaninaite (Fe ; Mg)2Al4Si5O18 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: 2=m 2=m 2=m: As poorly developed crystals, to 70 cm. Twinning: Commonly twinned on 110 and 310 , simulating hexagonal symmetry. f g f g Physical Properties: Cleavage: 100 , imperfect; parting on 001 . Hardness = 7{7.5 f g f g D(meas.) = 2.76{2.77 D(calc.) = 2.78 Optical Properties: Transparent to translucent. Color: Blue to blue-violet. Luster: Vitreous. Optical Class: Biaxial ({). Pleochroism: X = colorless; Y = blue; Z = pale blue. Orientation: X = c; Y = b; Z = a. Dispersion: r < v; moderate. Absorption: Y > Z > X. ® = 1.561 ¯ = 1.572 ° = 1.576 2V(meas.) = 66± Cell Data: Space Group: Cccm: a = 17.230(5) b = 9.835(3) c = 9.314(3) Z = 4 X-ray Powder Pattern: Doln¶³ Bory, Czech Republic. 8.583 (100), 3.386 (100), 3.376 (100), 4.081 (83), 3.076 (74), 3.143 (64), 3.043 (57) Chemistry: (1) SiO2 45.10 TiO2 0.04 Al2O3 30.63 Fe2O3 0.91 FeO 17.85 MnO 0.92 MgO 1.69 CaO 0.39 Na2O 0.68 K2O 0.03 + H2O 1.84 H2O¡ 0.12 Total 100.20 2+ (1) Doln¶³ Bory, Czech Republic; corresponding to (Fe1:63Mg0:28Na0:14Mn0:09Ca0:05)§=2:19 3+ (Al3:94Fe0:08)§=4:02Si4:93O18 ² 0:67H2O: Polymorphism & Series: Forms a series with cordierite. Occurrence: In the albite zone of pegmatites in granulites and gneisses (Doln¶³ Bory, Czech Republic); in bauxitic lithomarge intensely altered by a diabase plug (Brockley, Ireland).
    [Show full text]
  • Appendix 1 Calculation of a Chemical Formula from a Mineral Analysis
    Appendix 1 Calculation of a chemical formula from a mineral analysis Appendix 1 Magnesiohornblende analysis 3 4 2 Atomic proportion No. of anions on 1 Molecular of oxygen from basis of 24 (O,OH) 5 Wt.% of oxides proportion of oxides each molecule i.e. col. 368.3735 No. of ions in formula SiO 51.63 0.8594 1.7188 14.392 Si 7.196 2 8.00 0.804 } Al2O3 7.39 0.0725 0.2175 1.821 Al 1.214 0.410 3+ Fe2O3 2.50 0.0157 0.0471 0.394 Fe 0.263 FeO 5.30 0.0738 0.0738 0.618 Fe2+ 0.618 5.07 MnO 0.17 0.0024 0.0024 0.020 Mn 0.020 } MgO 18.09 0.4489 0.4489 3.759 Mg 3.759 CaO 12.32 0.2197 0.2197 1.840 Ca 1.840 2.00 Na2O 0.61 0.0098 0.0098 0.082 Na 0.164 } H2O+ 2.31 0.1282 0.1282 1.073 OH 2.146 2.15 Total 100.32 2.8662 24 = 8.3735 2.8662 The procedure for calculating a chemical formula is Column 5 gives the number of cations associated described by means of the above example, a with the oxygens in column 4. Thus for SiO2 there is magnesiohornblende. one silicon for two oxygens so the column 4 entry is divided by 2. For A12O3 there are two aluminiums for Column 1 lists the composition of the mineral every three oxygens so the column 4 entry is multiplied expressed in the usual manner as weight percentages by ~˜.
    [Show full text]
  • Characterization of Low-Temperature Coal Ash Behaviors at High Temperatures Under Reducing Atmosphere
    Available online at www.sciencedirect.com Fuel 87 (2008) 583–591 www.fuelfirst.com Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere Jin Bai a,b, Wen Li a,*, Baoqing Li a a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China b Graduate University of Chinese Academy of Sciences, Beijing 100039, China Received 23 November 2006; received in revised form 12 January 2007; accepted 7 February 2007 Available online 9 March 2007 Abstract The coal ash obtained at 815 °C under oxidizing atmosphere was further treated at 1300 °C and 1400 °C under reducing atmosphere. The resultant ashes were examined by XRD, SEM/EDX and FTIR. The results show that the residence time of coal ash at high tem- peratures has considerable influences on the compositions of coal ash and little effect on the amounts of unburned carbon. The amor- phous phase of mineral matters increases with the increasing temperature. The FTIR peaks due to presence of different functional groups of minerals support the findings of XRD, and supply additional information of amorphous phase which cannot be detected in XRD. The ash samples generated from a fixed bed reactor during char gasification were also studied with FTIR. The temperatures of char prep- aration are responsible for the different transformation of minerals during high temperature gasification. Ó 2007 Elsevier Ltd. All rights reserved. Keywords: Coal ash; High temperature; Residence time 1. Introduction transformation under oxidizing and reducing atmospheres. They found that the ash melting behavior was controlled Coal consists of organic components and a range of by iron rich corner in a reducing atmosphere.
    [Show full text]
  • List of Mineral Symbols
    THE CANADIAN MINERALOGIST LIST OF SYMBOLS FOR ROCK- AND ORE-FORMING MINERALS (January 1, 2021) ____________________________________________________________________________________________________________ Ac acanthite Ado andorite Asp aspidolite Btr berthierite Act actinolite Adr andradite Ast astrophyllite Brl beryl Ae aegirine Ang angelaite At atokite Bll beryllonite AeAu aegirine-augite Agl anglesite Au gold Brz berzelianite Aen aenigmatite Anh anhydrite Aul augelite Bet betafite Aes aeschynite-(Y) Ani anilite Aug augite Bkh betekhtinite Aik aikinite Ank ankerite Aur auricupride Bdt beudantite Akg akaganeite Ann annite Aus aurostibite Beu beusite Ak åkermanite An anorthite Aut autunite Bch bicchulite Ala alabandite Anr anorthoclase Aw awaruite Bt biotite* Ab albite Atg antigorite Axn axinite-(Mn) Bsm bismite Alg algodonite Sb antimony Azu azurite Bi bismuth All allactite Ath anthophyllite Bdl baddeleyite Bmt bismuthinite Aln allanite Ap apatite* Bns banalsite Bod bohdanowiczite Alo alloclasite Arg aragonite Bbs barbosalite Bhm böhmite Ald alluaudite Ara aramayoite Brr barrerite Bor boralsilite Alm almandine Arf arfvedsonite Brs barroisite Bn bornite Alr almarudite Ard argentodufrénoysite Blt barylite Bou boulangerite Als alstonite Apn argentopentlandite Bsl barysilite Bnn bournonite Alt altaite Arp argentopyrite Brt baryte, barite Bow bowieite Aln alunite Agt argutite Bcl barytocalcite Brg braggite Alu alunogen Agy argyrodite Bss bassanite Brn brannerite Amb amblygonite Arm armangite Bsn bastnäsite Bra brannockite Ams amesite As arsenic
    [Show full text]