Article Is Available On- 1995

Total Page:16

File Type:pdf, Size:1020Kb

Article Is Available On- 1995 Eur. J. Mineral., 32, 67–75, 2020 https://doi.org/10.5194/ejm-32-67-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Raman spectroscopic identification of cookeite in the crystal-rich inclusions in spodumene from the Jiajika lithium pegmatite deposit, China, and its geological implications Xin Ding1, Jiankang Li2, I-Ming Chou3, Zhenyu Chen2, and Shenghu Li4 1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China 2MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China 3CAS Key Laboratory of Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China 4Shandong Institute of Geological Sciences, Ji’nan 250013, China Correspondence: Jiankang Li ([email protected]) Received: 1 January 2019 – Accepted: 18 September 2019 – Published: 16 January 2020 Abstract. Cookeite usually occurs as a late alteration product in lithium–cesium–tantalum-type granitic peg- matite. Consequently, cookeite-bearing crystal-rich inclusions (CIs) in pegmatite are considered to be of sec- ondary origin, which constrains our understanding of pegmatite formation. Thus far, no reported cookeite has produced a distinct Raman spectrum. However, the CIs hosted in spodumene in the Jiajika pegmatite de- posit, China, contain a cookeite-like hydrous lithium–aluminum–silicate phase, yielding a distinct Raman spec- trum. In electron microprobe analysis, focused ion beam scanning electron microscopy, and time-of-flight sec- ondary ion mass spectrometry (ToF-SIMS), the average composition of this hydrous phase was determined as Li1:005.Al3:997Fe0:018/.Si3:086Al0:914/O10:076OH7:902F0:098, close to the International Mineralogical Association (IMA) formula of cookeite, (Al, Li)3Al2(Si, Al)4O10(OH)8. The distinct Raman peaks at 98, 167, 219, 266, 342, 382, 457, 592, 710, and 3640 cm−1 were consistent with those of natural cookeite recrystallized in a hydrother- mal diamond-anvil cell. The peaks were ascribed to the crystallization of cookeite from the liquid trapped in the closed space during the spodumene crystallization, which occurred at relatively high temperature and pressure without incorporating the minor elements commonly present during alteration processes. These minor elements often obscure the Raman signals, primarily by fluorescence effects. This type of cookeite in CIs with distinct Raman signals is unusual and can indicate whether the cookeite crystallized from fluid trapped within the closed space of a primary inclusion. In such a case, the fluid can be considered a flux-rich hydrous melt in pegmatite formation models. 1 Introduction 1970; Heinrich, 1975; London and Burt, 1982; Bobos et al., 2007; Novák et al., 2015). Cookeite is occasionally found Cookeite is an uncommon member of the chlorite group, in hydrothermal veins or hydrothermally altered sedimen- tary rocks (Vidal and Goffé, 1991). It also occurs in crystal- with the IMA formula LiAl4(Si3Al)O10(OH)8 (Anthony et al., 1995). Most cookeite is a late hydrothermal alteration rich inclusions (CIs), which characterize the fluid inclusions product of spodumene, petalite, and other Li-rich minerals, in granitic pegmatites (Roedder, 1992). Because cookeite is which form in granite pegmatites at low temperatures (Cerný,ˇ conventionally thought to have formed in the late-stage al- Published by Copernicus Publications on behalf of the European mineralogical societies DMG, SEM, SIMP & SFMC. 68 X. Ding et al.: Raman spectrum of cookeite teration processes, its presence in CIs implies a secondary origin of the CIs (Anderson et al., 2001; Anderson and Mac- carron, 2011; Anderson, 2013). Despite its common occur- rence, no natural cookeite, including CI-enclosed cookeites in pegmatite environments, is known to produce distinct Ra- man signals. Consequently, no characteristic Raman spec- trum of cookeite has been reported. In the database of Ra- man spectra, X-ray diffraction, and chemical data (RRUFF), the Raman spectra of cookeite are very noisy, with no distinct peaks (Downs, 2006). Therefore, cookeite has been identified mainly by analyzing its composition or by semiquantitative X-ray spectroscopy (London, 1986; Anderson and Maccar- ron, 2011). However, the Jiajika pegmatite-type lithium deposit in western Sichuan, China, contains a cookeite-like hydrous solid phase within spodumene-hosted CIs, which yields a distinct Raman spectrum (Fig. 5 in Li and Chou, 2016). In the present study, this hydrous solid phase is confirmed as be- ing cookeite by further analyses, including with an electron Figure 1. Photomicrographs of spodumene-hosted crystal-rich in- microprobe (EMP), focused ion beam scanning electron mi- clusions (CIs) in the Jiajika deposit, showing one fluid inclusion croscope (FIB-SEM), and time-of-flight secondary ion mass assembly (FIA) of CIs with a uniform composition and the crys- spectrometer (ToF-SIMS); its Raman signals are compared tal/fluid proportion. Crt – cristobalite; Spd – spodumene; Zab – with those of a natural cookeite recrystallized in a hydrother- zabuyelite; Cal – calcite, Qz – quartz; Ck – cookeite. mal diamond-anvil cell (HDAC). Given the unusual Raman feature of the cookeite in the CIs from the Jiajika pegmatite, Mn)PO ). The spodumene crystals are white or off-white we infer an origin different from those of secondary CIs (An- 4 euhedral plates 5–10 cm in length and 1–5 cm in width and derson et al., 2001; Anderson and Maccarron, 2011; Ander- are clearly in contact with quartz and albite crystals (Li and son, 2013). The cookeite might have formed from fluid origi- Chou, 2016). The late alteration is relatively weak in the nally trapped during the crystallization of spodumene. There- spodumene pegmatite, and occasionally spodumene was re- fore, this fluid can be considered to be a primary flux-rich placed by albite in myrmekitic texture at the contact face with hydrous melt in pegmatite formation models (London, 1999, microcline. Currently, cookeite crystals, formed through late 2008, 2018; Thomas et al., 2000, 2009, 2011a, b). In this hydrothermal alteration of spodumene at low temperature, paper, we suggest that cookeite in CIs with distinct Raman were not observed in the pegmatite dikes. signals is a viable indicator of the primary nature of CIs in In the spodumene pegmatite in the Jiajika deposit, the CIs pegmatite. of the spodumene often contain a hydrous solid phase that has been identified and imaged with Raman spectroscopy (Figs. 1, 2; Li and Chou, 2016). Electron microprobe (EMP) 2 Features of cookeite-like phases within the analyses suggest a cookeite composition of this phase (Li and crystal-rich inclusions in the Jiajika pegmatite Chou, 2016). The CIs, which often occur as isolated indi- deposit viduals or in-fluid inclusion assemblages (FIAs) with similar composition and crystal/fluid proportion, are considered to The Jiajika granitic pegmatite in western Sichuan, China, is be primary in origin (Fig. 1). The exceptions are FIAs of CIs the largest lithium deposit in Asia (Li et al., 2013a). In this that are cross-cut by late stage CO –H O–NaCl and aqueous deposit, the pegmatite dikes radiate horizontally and verti- 2 2 fluid inclusions (Li and Chou, 2016, 2017). The primary CIs cally around the two-mica granite intrusion. With increas- are 20–100 µm long and 10–20 µm wide and have a subhedral ing distance from the granite, the mineralogy of pegmatite to euhedral negative spodumene crystal shape. Within the dikes change from microcline pegmatite, to microcline-albite CIs, the cookeite-like phase is commonly accompanied by pegmatite, albite pegmatite, spodumene pegmatite, and lep- semi-euhedral crystals of zabuyelite, cristobalite, and quartz idolite (muscovite) pegmatite. The two-mica granite and (Fig. 2; Li and Chou, 2016). It coexists with a CO phase, pegmatites are hosted in schists formed by metamorphic 2 and occasionally coexists with an aqueous phase (Figs. 1 overprint of early Triassic mudstones and sandstones (Li and 2). In CI heating experiments, the cookeite-like phase, et al., 2007). The spodumene pegmatite dikes are the main zabuyelite, cristobalite, and quartz dissolve and melt at 400– lithium ore bodies; they are mainly composed of spodumene, 600 ◦C, and the CIs are homogenized into a carbonate-rich quartz, albite, muscovite, and a few rare metal minerals aqueous fluid at 500–700 ◦C (Li and Chou, 2017). of columbite, beryl, tantalite, thorite, and sicklerite ((Li, Eur. J. Mineral., 32, 67–75, 2020 www.eur-j-mineral.net/32/67/2020/ X. Ding et al.: Raman spectrum of cookeite 69 mounted on a TESCAN LYRA instrument platform (TOFW- ERK AG, CNNC Beijing Research Institute of Uranium Ge- ology). In this analysis, the ion beam energy and current were set to 15 keV and 200 pA, respectively. The staying time and milling depth on the crystal surface were 10 µs and ∼ 0:2 µm, respectively, over an area of approximately (10 × 10) µm2. To prove that the hydrous solid phase in CIs is indeed cookeite, we recrystallized a natural cookeite sample from Minas Gerais pegmatite, Brazil (Catalogue No. 115846 00, National Museum of Natural History, Smithsonian Institu- tion, USA), in a hydrothermal diamond-anvil cell (HDAC, type HDAC-VT; Li et al., 2016). The cookeite sample con- tained 46.63 wt % Al2O3, 35.77 wt % SiO2, 0.62 wt % F, 0.24 wt % MnO, 0.09 wt % SnO, 0.08 wt % SrO, 0.03 wt % Cs2O, 0.03 wt % Pb, 0.02 wt % K2O, 0.01 wt % Cl, which were analyzed with EMP at the conditions described above. Following Li et al. (2013b), the preheated cookeite sample and pure water were sealed together with an air bubble in the HDAC sample chamber. The sample chamber is a hole Figure 2. Crystal-rich inclusions (CIs) hosted in spodumene from (of diameter 0.5 mm) at the center of a Re gasket (of diam- the Jiajika deposit.
Recommended publications
  • Phase Evolution of Ancient and Historical Ceramics
    EMU Notes in Mineralogy, Vol. 20 (2019), Chapter 6, 233–281 The struggle between thermodynamics and kinetics: Phase evolution of ancient and historical ceramics 1 2 ROBERT B. HEIMANN and MARINO MAGGETTI 1Am Stadtpark 2A, D-02826 Go¨rlitz, Germany [email protected] 2University of Fribourg, Department of Geosciences, Earth Sciences, Chemin du Muse´e 6, CH-1700 Fribourg, Switzerland [email protected] This contribution is dedicated to the memory of Professor Ursula Martius Franklin, a true pioneer of archaeometric research, who passed away at her home in Toronto on July 22, 2016, at the age of 94. Making ceramics by firing of clay is essentially a reversal of the natural weathering process of rocks. Millennia ago, potters invented simple pyrotechnologies to recombine the chemical compounds once separated by weathering in order to obtain what is more or less a rock-like product shaped and decorated according to need and preference. Whereas Nature reconsolidates clays by long-term diagenetic or metamorphic transformation processes, potters exploit a ‘short-cut’ of these processes that affects the state of equilibrium of the system being transformed thermally. This ‘short-cut’ is thought to be akin to the development of mineral-reaction textures resulting from disequilibria established during rapidly heated pyrometamorphic events (Grapes, 2006) involving contact aureoles or reactions with xenoliths. In contrast to most naturally consolidated clays, the solidified rock-like ceramic material inherits non-equilibrium and statistical states best described as ‘frozen-in’. The more or less high temperatures applied to clays during ceramic firing result in a distinct state of sintering that is dependent on the firing temperature, the duration of firing, the firing atmosphere, and the composition and grain-size distribution of the clay.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Preprint American Mineralogist 407
    This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2012.4189 7/11 1 Semi-quantitative determination of the Fe/Mg ratio in synthetic cordierite using 2 Raman spectroscopy 3 REVISION 1 4 Authors: Udo Haefeker1, Reinhard Kaindl2, Peter Tropper1 5 6 1Institute of Mineralogy and Petrography, University Innsbruck, Innrain 52, A-6020 7 Innsbruck, Austria. 8 E-mail: [email protected] 9 2Present address: MATERIALS – Institute for Surface Technologies and Photonics, 10 Functional Surfaces, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 11 Leobner Straße 94, A-8712 Niklasdorf, Austria. 12 13 ABSTRACT 14 Investigations of H2O-bearing synthetic well-ordered Mg-Fe-cordierites (XFe = 0-1) 15 with micro-Raman spectroscopy revealed a linear correlation between the Fe/Mg 16 ratio and the position of certain Raman peaks. In the range between 100 and 1250 17 cm-1 all peaks except for three peaks shift towards lower wavenumbers with 18 increasing XFe as a consequence of the substitution of the lighter Mg by the heavier 19 Fe atom on the octahedral sites and the associated structural changes. Selected 20 medium and strong peaks show a shift of 5 to 13 cm-1, respectively. Based on recent 21 quantum-mechanicalPreprint calculations American (Kaindl et al. 2011) Mineralogist these shifts can be attributed to 22 specific vibrational modes in the cordierite structure, thus showing that the Mg-Fe 23 exchange affects the vibrational modes of tetrahedral, octahedral and mixed sites.
    [Show full text]
  • LITHIUM CARBONATE SAFETY DATA SHEET DATE of LAST REVISION: 07/13/15 Section 1: Identification
    LITHIUM CARBONATE SAFETY DATA SHEET DATE OF LAST REVISION: 07/13/15 Section 1: Identification Product Name: Lithium Carbonate CAS Number: 554-13-2 / EC Number: 209-062-5 Company: Angstrom Sciences, Inc. 40 South Linden Street Duquesne, PA 15110 For more information call: 412-469-8466 (Monday - Friday 9:00 AM -5:00 PM EST) Section 2: HAZARD IDENTIFICATION Signal Word: Warning Hazard Statements: H319: Causes serious eye irritation. H302: Harmful if swallowed Precautionary Statements: P264: Wash thoroughly after handling. P280: Wear protective gloves/protective clothing/eye protection/face protection P305 + P351 + P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing P301 + P312: IF SWALLOWED: Call a Poison Center or doctor/physician if you feel unwell P337 + P313: If eye irritation persists get medical advice/attention P501: Dispose of contents/container in accordance with local/regional/ national/international regulations. LITHIUM CARBONATE SAFETY DATA SHEET HMIS Health Ratings (0-4): Health: 2 Flammability: 1 Physical: 1 Section 3: Composition/Information on Ingredients Chemical characterization: Ceramic Additional Names: Dilithium carbonate, Carbolith, Cibalith-S, Duralith, Eskalith, Lithane, Lithizine, Lithobid, Lithonate, lithotabs Priadel, Zabuyelite. CAS# Description: 554-13-2 Percentage: 100 wt% EC number: 209-062-5 Section 4: FIRST AID MEASURES General Treatment: Seek medical attention if symptoms persist. Special Treatment: None Important Symptoms: None Eye Contact: Flush eyes with water, blinking often for several minutes. Remove contact lenses if present and easy to do. Continue rinsing. Skin Contact: Wash affected area with mild soap and water. Remove any contaminated clothing.
    [Show full text]
  • Andalusite and Na- and Li-Rich Cordierite in the La Costa Pluton, Sierras Pampeanas, Argentina: Textural and Chemical Evidence for a Magmatic Origin
    Andalusite and Na- and Li-rich cordierite in the La Costa pluton, Sierras Pampeanas, Argentina: textural and chemical evidence for a magmatic origin Pablo H. Alasino . Juan A. Dahlquist . Carmen Galindo · Cesar Casquet · Julio Saavedra Abstraet The La Costa pluton in the Sierra de Velasco Keywords Andalusite· Na- and Li-rich cormerite . (NW Argentina) consists of S-type granitoids that can be S-type granite . La Costa pluton . Sierras Pampeanas grouped into three igneous facies: the alkali-rich Santa Cruz facies (SCF, Si02 ",67 wt%) mstinguished by the presence of andalusite and Na- and Li-rich cormerite Introduetion (Na20 = 1.55-1.77 wt% and LhO = 0.14---0.66 wt%), the Anillaco facies (Si02 '" 74 wt%) with a significant pro­ Andalusite and cormerite are important and common rock­ portion of Mn-rich garnet, and the Anjullón facies (Si02 forming mineral s in metapelitic rocks and may also be '" 7 5 wt%) with abundant albitic plagioc1ase. The petrog­ abundant in felsic peralurninous igneous rocks such as raphy, mineral chemistry and whole-rock geochemistry of granites, pegmatites, aplites and rhyolites. A fundamental the SCF are compatible with magmatic crystallization of question conceming the presence of andalusite and corm­ Na- and Li-rich cormerite, andalusite and muscovite from erite in peraluminous rocks is how they formed, i.e. whe­ the peraluminous magma under moderate P-T conditions ther they crystallized from the magma or were trapped as ('" 1.9 kbar and ca. 735°C). The high Li content of cor­ xenocrysts (e.g. Flood and Shaw 1975 ; Clarke et al. 1976, merite in the SCF is unusual for granitic rocks of inter­ 2005; Bellido and Barrera 1979; Phillips et al.
    [Show full text]
  • Structural Characteristics of Gas Hydrates Within the Framework of Generalized Crystallography A
    Crystallography Reports, Vol. 48, No. 3, 2003, pp. 347–350. Translated from Kristallografiya, Vol. 48, No. 3, 2003, pp. 391–394. Original Russian Text Copyright © 2003 by Talis. THEORY OF CRYSTAL STRUCTURES Structural Characteristics of Gas Hydrates within the Framework of Generalized Crystallography A. L. Talis Russian Institute of Synthesis of Mineral Raw Materials, Aleksandrov, Vladimir oblast, 601650 Russia e-mail: [email protected] Received September 16, 2002 Abstract—It is shown that the symmetry of the {5, 3, 3} polytope (four-dimensional dodecahedron) embedded into E4 enables one to derive all the polyhedra–cavities that make up gas hydrates from the {5, 3} dodecahedron. Consideration is given to the allomorphic embedding of the {5, 3} subgraph into the incidence graph of the Desargues configuration 103, which determines the mechanism of incorporation of guest molecules into the polyhedra–cavities of gas hydrates and their escape from these polyhedra at the symmetry level. The relation- ships obtained may be considered as a basis for an a priori derivation of the determined (periodic and aperiodic) structures of gas hydrates. © 2003 MAIK “Nauka/Interperiodica”. The impossibility of dividing the three-dimensional pentagonal “cap” of the icosahedron into a hexagonal Euclidean space E3 into regular tetrahedra determines 2π one (if a wedge with an angle ------ is inserted), with the the structural characteristics of tetrahedrally coordi- 5 nated aqueous frameworks of gas hydrates that cannot disclination interactions being determined by the prod- be adequately reflected within the framework of classi- uct of the corresponding elements of group Y'. The cal crystallography. For example, the polyhedra–cavi- 2π introduction of two, three, and four Ð------ disclinations ties D, T, P, and H (dodecahedron, tetra-, penta-, and 5 hexadecahedra), the constituent fragments of the struc- into an icosahedron along its fivefold axes results in the tures of gas hydrates, are determined as dual to the Z12, formation of the Z14, Z15, and Z16 polyhedra [2].
    [Show full text]
  • Mid-Infrared (2.1-25 Urn) Spectra of Minerals: First Edition
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Mid-Infrared (2.1-25 urn) Spectra of Minerals: First Edition by John W. Salisbury . U.S. Geological Survey1 Louis S. Walter NASA Goddard Space Flight Center2 Norma Vergo U.S. Geological Survey1 Open-File Report 87-263 This report 1s preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Stop 927 laboratory for Terrestrial Physics Reston, VA 22092 Greenbelt, MD 20771 Contents 1.0 Abstract 2.0 Introduction 3.0 Experimental Technique 3.1 Sample Acquisition and Preparation 3.2 Sample Characterization 3.3 Acquisition of Spectra 3.4 Data Storage and Retrieval 4.0 Discussion of Spectra 4.1 Major Spectral Features of Minerals 4.2 Effect of Particle Size 4.21 Role of surface and volume scattering 4.22 Changes in spectral contrast 4.23 Transparency peaks 4.24 Christiansen frequency 4.3 Effect of Crystal!ographic Orientation 4.4 Effect of Packing 4.5 Effect of Atmospheric Gases 4.6 Effect of Impurities 4.7 Using Laboratory Spectra to Predict Remote Sensing Measurements 5.0 Acknowledgements 6.0 Appendix 1: Mineral spectra and description sheets are presented in alphabetical order. Minerals are listed alphabetically and by mineral class, subclass and group at the beginning of the appendix. 7.0 Appendix 2. Making a KBr Pellet 1.0 ABSTRACT Almost all libraries of mineral spectra 1n the mid-Infrared are 1n the form of transmittance spectra. Although useful In a laboratory setting, such spectra are of limited benefit for Interpreting remote sensing observations because they do not include the effects of scattering.
    [Show full text]
  • Fluid and Solid Inclusions in Host Minerals of Permian Pegmatites from Koralpe (Austria): Deciphering the Permian Fluid Evolution During Pegmatite Formation
    minerals Article Fluid and Solid Inclusions in Host Minerals of Permian Pegmatites from Koralpe (Austria): Deciphering the Permian Fluid Evolution during Pegmatite Formation Kurt Krenn *, Martina Husar and Anna Mikulics NAWI Graz Geocenter, Institute of Earth Sciences, University of Graz, 8010 Graz, Austria; [email protected] (M.H.); [email protected] (A.M.) * Correspondence: [email protected] Abstract: Fluid inclusions (FIs) and associated solids in host minerals garnet, tourmaline, spodumene, and quartz from six pegmatite fields of Permian origin at Koralpe (Eastern Alps) have been investi- gated. Although pegmatites suffered intense Eoalpine high-pressure metamorphic overprint during the Cretaceous period, the studied samples originate from rock sections with well-preserved Permian magmatic textures. Magmatic low-saline aqueous FIs in garnet domains entrapped as part of an unmixed fluid together with primary N2-bearing FIs that originate from a host rock-derived CO2-N2 dominated high-grade metamorphic fluid. This CO2-N2 fluid is entrapped as primary FIs in garnet, tourmaline, and quartz. During host mineral crystallization, fluid mixing between the magmatic and the metamorphic fluid at the solvus formed CO2-N2-H2O–rich FIs of various compositional degrees Citation: Krenn, K.; Husar, M.; that are preserved as pseudo-secondary inclusions in tourmaline, quartz, and as primary inclusions Mikulics, A. Fluid and Solid in spodumene. Intense fluid modification processes by in-situ host mineral–fluid reactions formed a Inclusions in Host Minerals of high amount of crystal-rich inclusions in spodumene but also in garnet. The distribution of different Permian Pegmatites from Koralpe types of FIs enables a chronology of pegmatite host mineral growth (garnet-tourmaline/quartz- (Austria): Deciphering the Permian Fluid Evolution during Pegmatite spodumene) and their fluid chemistry is considered as having exsolved from the pegmatite parent Formation.
    [Show full text]
  • Foitite: Formation During Late Stages of Evolution of Complex Granitic Pegmatites at Dobrá Voda, Czech Republic, and Pala, California, U.S.A
    1399 The Canadian Mineralogist Vol. 38, pp. 1399-1408 (2000) FOITITE: FORMATION DURING LATE STAGES OF EVOLUTION OF COMPLEX GRANITIC PEGMATITES AT DOBRÁ VODA, CZECH REPUBLIC, AND PALA, CALIFORNIA, U.S.A. MILAN NOVÁK§ Department of Mineralogy, Petrology and Geochemistry, Masaryk University, Kotláøská 2, CZ-611 37 Brno, Czech Republic MATTHEW C. TAYLOR¶ Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Zoned crystals of tourmaline (elbaite–foitite) were found in pockets of the lepidolite-subtype granitic pegmatites at Dobrá Voda, western Moravia, Czech Republic, and the White Queen mine, Pala, San Diego County, California. Zoned crystals consist of pale pink, colorless and greenish Fe-poor elbaite, blue, violet or green Fe-rich elbaite, and dark violet to black foitite. Elbaite– foitite is associated with quartz, cookeite, albite and apatite at Dobrá Voda, and with albite, quartz, K-feldspar, beryl, and musco- vite at the White Queen mine. Chemical compositions of foitite and associated Fe-poor to Fe-rich elbaite are similar at both localities, and exhibit an X-site vacancy (≤0.78 apfu, in foitite), and variable amounts of Ca (≤0.05 apfu), Mn (≤0.47 apfu) and F (≤0.75 apfu, in elbaite), in contrast to foitite that in many cases is F-free. Two distinct stages of late Fe-enrichment in tourmaline were recognized, in contrast to Fe-depletion, noted in many granitic pegmatites. The first stage is generally characterized by increasing Fe and Na, and decreasing Al and Li contents; three substages show the following substitutions: (i) R2 (LiAl)–1, NaR2(OH) X ( ⅪAl2O)–1 and (OH) F–1 for elbaite containing <0.3 Fe apfu at Dobrá Voda (R = Fetot + Mn + Mg + Zn); (ii) Na R2(OH) X X ( ⅪAl2O)–1 or NaR ( ⅪAl)–1 and F (OH)–1 for Fe-rich elbaite with 0.5–1.0 Fe apfu; (iii) AlO2 [Li(OH)2]–1 and (OH) F–1, perhaps combined with R2 (LiAl)–1 for Fe-rich elbaite with 1.0–1.3 Fe apfu at the White Queen mine.
    [Show full text]
  • Lithium Mineral Evolution and Ecology: Comparison with Boron and Beryllium
    Eur. J. Mineral. – 2019, 31, 755 774 To Christian Chopin, Published online 6 June 2019 for 30 years of dedicated service to EJM Lithium mineral evolution and ecology: comparison with boron and beryllium Edward S. GREW1,*, Grete HYSTAD2, Myriam P. C. TOAPANTA2, Ahmed ELEISH3, Alexandra OSTROVERKHOVA4, Joshua GOLDEN5 and Robert M. HAZEN6 1School of Earth and Climate Sciences, 5790 Bryand Global Sciences Center, University of Maine, Orono, ME 04469-5790, USA *Corresponding author, e-mail: [email protected] 2Department of Mathematics, Statistics, and Computer Science, Purdue University Northwest, Hammond, IN 46323, USA 3Tetherless World Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA 4Department of Geology, Southern Illinois University, Parkinson, Mail Code 4324, Carbondale, IL 62901, USA 5Department of Geosciences, University of Arizona, Tucson, AZ 85721-0077, USA 6Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, DC 20015, USA Abstract: The idea that the mineralogical diversity now found at or near Earth’s surface was not present for much of the Earth’s history is the essence of mineral evolution, and the geological histories of the 118 Li, 120 Be, and 296 B minerals are not exceptions. Present crustal concentrations are generally too low for Li, Be, and B minerals to form (except tourmaline); this requires further enrichment by 1–2 orders of magnitude by processes such as partial melting and mobilization of fluids. As a result, minerals containing essential Li and Be are first reported in the geologic record at 3.0–3.1 Ga, later than Li-free tourmaline at 3.6 Ga.
    [Show full text]
  • Improved Reclaimation of Lithium Cobalt Oxide from Waste Lithium Ion Batteries to Be Used As Recycled Active Cathode Material
    BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY IMPROVED RECLAIMATION OF LITHIUM COBALT OXIDE FROM WASTE LITHIUM ION BATTERIES TO BE USED AS RECYCLED ACTIVE CATHODE MATERIAL Thesis submitted as a partial fulfillment of M.Sc. Engineering under the department of Materials and Metallurgical Engineering MD. RAKIBUL QADIR 3rd of February, 2018 DECLARATION This is to certify that this work has been carried out by the author under the supervision of Professor Fahmida Gulshan, Department of Materials and Metallurgical Engineering, BUET, Dhaka and it has not been submitted elsewhere for the award of any degree or diploma. Countersigned Professor Fahmida Gulshan Md. Rakibul Qadir I II ACKNOWLEDGEMENTS The author is endlessly thankful to the divine Almighty for the successful completion of the MSc thesis. He also pays his heartfelt gratitude to the thesis supervisor Professor Fahmida Gulshan, Dept. of Materials and Metallurgical Engineering, BUET for her dedicated guidance and continuous support. The author is grateful to retired Professor A.S.W. Kurny, Dept. of Materials and Metallurgical Engineering, BUET to enormous proportions for the very inception of the research topic and outline. The author finds himself indebted to predeceasing Head of the department, Prof. Ahmed Sharif for their kind help. The work reported in this thesis paper was completed in the laboratories of Pilot Plant and Process Development Center, Bangladesh Council of Scientific and Industrial Research. Dr. Abdul Gafur, PSO, BCSIR has been an ever responsive mentor to the author. The author also acknowledges the number of facilitators from Dept. of GCE, BUET, Departments of IFRD, Dhaka Laboratories, INARS and BTRI of BCSIR for their invaluable assistance.
    [Show full text]
  • Lithium in Sekaninaite from the Type Localitv, Dolni Bory. Czech Republic
    167 Thz Canadian M incralo gist Vol. 35, pp.1,67-173(1997) LITHIUMIN SEKANINAITEFROM THE TYPE LOCALITV, DOLNIBORY. CZECH REPUBLIC PETR dERNfI anp RON CHAPMAN Departrnentof GeolagicalSciences, University of Manitoba, Winnipeg,Manitoba R3T2N2 WERNERSCHREYER Irutitut fir Mincralogie, Ruh.r-Uni'ttersitiltBoclun D44801 Bochwa Germary LIIISA OTTOLINI AND PIERO BOTTAZZI CNRCentro d.i Studio per la Cristallochimicae la Cristall.ografia I-27100 Pnia ltaly CATIIERINEA. MoCAMMON BayerischzsGeoinstitw, UniversbAtBayreutfu D-95440 Bayreuth. Germany ABSTRACI The (Si,Al)-orderedFe end-memberof the cordieritegroup, sekaninaite, from its type locality at Dohl Bory, CzechRepublic, was analyze4 and found to contain0.04 - 0.2ALi ard0,1.l -0,2-6Na apfu; (Fe + Mn)/(Mg + Fe + 1!tn) (at.) rangesfrom 0.74 to 0.97.Lithium is incorporatedby the substitutionchNavlli0\4gFe)-r . This sekaninaiteis the first memberof the cordieritegroup reportedto have substantialLi but negligible Be. All samplesof Na,Be-, NaJ-i'Be- and Nati-bearing cordierite-sekadnaite examinedto date show a minor deficit in the tetrahedralsite (0,237 in the literature, 0.036 in our data) and a slight excessof channelcations (NaKCa) over the proportion of (BeIi) (at.). The Li-bearing sekaninaitecomes from ralher simple granitic pegmatites,in which the only Li-bearing minerals are rare tiphylite and cookeite.Thus cordierite-groupminerals are crystal- 'Ihis chemicalsinks for U. ffnding stressesthe needto analyzefor tracelight elements,even in mineralsfrom poorly fractionated andrare-element-depleted environnents, provided the crystal chemistryis favorable. Keyvvords:sekaninaite, cordierite group, lithium, beryllium, CzechRepublic. SoMraans Nous avonsanalysd la sekaninalte,p61e ferrifbre ordonn6en Al,Si du groupede la cordi6rite,provenaat de sa localit6 type, i Dolnl Bory, en R6publiqueTch{ue.
    [Show full text]