Improved Reclaimation of Lithium Cobalt Oxide from Waste Lithium Ion Batteries to Be Used As Recycled Active Cathode Material
Total Page:16
File Type:pdf, Size:1020Kb
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY IMPROVED RECLAIMATION OF LITHIUM COBALT OXIDE FROM WASTE LITHIUM ION BATTERIES TO BE USED AS RECYCLED ACTIVE CATHODE MATERIAL Thesis submitted as a partial fulfillment of M.Sc. Engineering under the department of Materials and Metallurgical Engineering MD. RAKIBUL QADIR 3rd of February, 2018 DECLARATION This is to certify that this work has been carried out by the author under the supervision of Professor Fahmida Gulshan, Department of Materials and Metallurgical Engineering, BUET, Dhaka and it has not been submitted elsewhere for the award of any degree or diploma. Countersigned Professor Fahmida Gulshan Md. Rakibul Qadir I II ACKNOWLEDGEMENTS The author is endlessly thankful to the divine Almighty for the successful completion of the MSc thesis. He also pays his heartfelt gratitude to the thesis supervisor Professor Fahmida Gulshan, Dept. of Materials and Metallurgical Engineering, BUET for her dedicated guidance and continuous support. The author is grateful to retired Professor A.S.W. Kurny, Dept. of Materials and Metallurgical Engineering, BUET to enormous proportions for the very inception of the research topic and outline. The author finds himself indebted to predeceasing Head of the department, Prof. Ahmed Sharif for their kind help. The work reported in this thesis paper was completed in the laboratories of Pilot Plant and Process Development Center, Bangladesh Council of Scientific and Industrial Research. Dr. Abdul Gafur, PSO, BCSIR has been an ever responsive mentor to the author. The author also acknowledges the number of facilitators from Dept. of GCE, BUET, Departments of IFRD, Dhaka Laboratories, INARS and BTRI of BCSIR for their invaluable assistance. III DEDICATION DR. A. S. W. KURNY, RETD. PROFESSOR, DEPT. OF MME, BUET & DR. M. A. GAFUR, PSO, BCSIR IV TABLE OF CONTENTS DECLARATION ......................................................................... I ACKNOWLEDGEMENTS ......................................................... III INTRODUCTION ...................................................................... 3 1.1 Why is LIB a concern? ............................................................................. 4 1.2 Geopolitical impacts of LIB recycling ........................................................ 7 1.3 Economic impacts of LIB recycling ........................................................... 9 1.4 Environmental Impacts of LIB Recycling: ............................................... 13 1.5 Social Impacts of LIB Recycling: ............................................................. 14 1.6 Objectives of the Current Work: ............................................................. 14 LITERATURE REVIEW ........................................................... 17 2.1 Structure of A LIB ................................................................................. 17 2.1.1 Anode ............................................................................................. 18 2.1.2 Cathode .......................................................................................... 19 2.1.3 Adhesives and Polymers .................................................................. 22 2.1.4 Electrolyte ...................................................................................... 23 2.1.5 Separators ...................................................................................... 24 2.2 RECYCLING OF LIBs ............................................................................. 26 2.2.1 Pretreatment of LIBs ....................................................................... 27 2.2.2 Secondary Treatment of Spent LIBs ................................................. 29 2.2.3 Deep Recovery Process of Spent LIBs ............................................... 35 EXPERIMENTAL ..................................................................... 40 3.1 Materials: ............................................................................................. 41 3.1.1 Materials: ....................................................................................... 41 3.1.2 Instrumentation: ............................................................................. 41 3.2 Methods: ............................................................................................... 41 3.2.1 Mechanical Breaking: ...................................................................... 41 3.2.2 Separation of Aluminum and AEM: .................................................. 43 3.2.3 Leaching: ........................................................................................ 46 3.2.4 Cobalt and Lithium Recovery: .......................................................... 46 3.2.5 LiCoO2 formation: ........................................................................... 48 3.3 Summary .............................................................................................. 49 V RESULTS AND DISCUSSION .................................................. 51 4.1 Dismantling: ......................................................................................... 51 4.2 Active electrode material identification: .................................................. 53 4.3 Reclamation after leaching: .................................................................... 53 4.4 XRD Analysis: ....................................................................................... 54 4.5 SEM micrographs: ................................................................................. 58 4.6 Comparison with Literature Data: .......................................................... 59 CONCLUSION ........................................................................ 61 REFERENCES ....................................................................... 62 VI LIST OF TABLES Table 1: Demand scenario of other metals present in the Li-ion battery21 ............... 9 Table 2: Composition of typical spent LIB (%) ..................................................... 11 Table 3: Various leaching conditions of LiCoO2 cathode material from the spent LIBs .................................................................................................................. 32 Table 4: Overview of the experimental path ......................................................... 40 Table 5: measurements of the electrodes and separator ...................................... 52 Table 6: amount of different constituents of a LIB ............................................... 52 Table 7: Amount of different elements in the cathode material ............................. 53 Table 8: Amount of different elements by elemental analysis ............................... 53 Table 9: AAS data of solutions derived at different stages .................................... 54 Table 10: Comparison with literature data .......................................................... 59 VII LIST OF FIGURES Figure 1: Common LIBs ....................................................................................... 5 Figure 2: Advantages of LIB14 ............................................................................... 6 Figure 3: LIB demand in Electric Vehicles20 .......................................................... 7 Figure 4: World Cobalt sources, source: Dartan commodities ................................ 8 Figure 5: Geopolitical scenario of global Lithium resource21 ................................... 8 Figure 6: Valuables demography of LIB29 ............................................................ 11 Figure 7: Advantages of LIB recycling ................................................................. 12 Figure 8: Preliminary recycling results indicate: (a) large energy conservation (b) Greenhouse-gas Emission reduction - with battery industry sustained by recycling. ......................................................................................................................... 14 Figure 9: Construction of different LIB31 ............................................................. 17 Figure 10: Structure of graphite and LiC635 ......................................................... 18 Figure 11: (a) Layered structure of (first kind of Lithium-compounds) for ex: LiTiS2, LiVSe2, LiCoO2, LiNiO2 ; (b) three dimensional spinel structure; (c) structure of V2O5 showing the square pyramids sharing edges of the basal planes; (d) Crystal 36 structure of LiFePO4 ....................................................................................... 20 Figure 12: Charging and discharging mechanisms of a typical LIB ...................... 25 Figure 13: Recycling processes for LIBs .............................................................. 26 Figure 14: The overall recycling process of LIBs .................................................. 26 Figure 15: Secondary treatment processes .......................................................... 29 Figure 16: Studied waste LIB from laptop ........................................................... 41 Figure 17: Breakage of battery assembly: casing, electronics and 6 cells .............. 42 Figure 18: Breakage of cells: metallic casing, connectors, fillers, etc. ................... 42 Figure 19: Electrodes and separators of LIB........................................................ 44 Figure 20: Aluminum hydroxide (left) and Al2O3 after firing ................................. 45 Figure 21: Leaching Setup (left) and schematics (right)........................................ 46 Figure 22: Products at different