Saline Lakes Around the World: Unique Systems with Unique Values Article 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: a Critical Review of Current Knowledge
Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 12-2013 Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge Danielle Barandiaran Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Soil Science Commons Recommended Citation Barandiaran, Danielle, "Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge" (2013). All Graduate Plan B and other Reports. 332. https://digitalcommons.usu.edu/gradreports/332 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. METHYLMERCURY FATE IN THE HYPERSALINE ENVIRONMENT OF THE GREAT SALT LAKE: A CRITICAL REVIEW OF CURRENT KNOWLEDGE By Danielle Barandiaran A paper submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Soil Science Approved: Astrid Jacobson Jeanette Norton Major Professor Committee Member - Paul Grossl Teryl Roper Committee Member Department Head UTAH STATE UNIVERSITY Logan, Utah 2013 Copyright © Danielle Barandiaran 2013 All Rights Reserved iii ABSTRACT Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge by Danielle Barandiaran, Master of Science Utah State University, 2013 Major Professor: Dr. Astrid R. Jacobson Department: Plants, Soils & Climate Methylmercury (MeHg) is a highly potent neurotoxic form of the environmental pollutant Mercury (Hg). -
The Hydrocarbon Biodegradation Potential of Faroe-Shetland Channel Bacterioplankton
THE HYDROCARBON BIODEGRADATION POTENTIAL OF FAROE-SHETLAND CHANNEL BACTERIOPLANKTON Angelina G. Angelova Submitted for the degree of Doctor of Philosophy Heriot Watt University School of Engineering and Physical Sciences July 2017 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. ABSTRACT The Faroe-Shetland Channel (FSC) is an important gateway for dynamic water exchange between the North Atlantic Ocean and the Nordic Seas. In recent years it has also become a frontier for deep-water oil exploration and petroleum production, which has raised the risk of oil pollution to local ecosystems and adjacent waterways. In order to better understand the factors that influence the biodegradation of spilled petroleum, a prerequisite has been recognized to elucidate the complex dynamics of microbial communities and their relationships to their ecosystem. This research project was a pioneering attempt to investigate the FSC’s microbial community composition, its response and potential to degrade crude oil hydrocarbons under the prevailing regional temperature conditions. Three strategies were used to investigate this. Firstly, high throughput sequencing and 16S rRNA gene-based community profiling techniques were utilized to explore the spatiotemporal patterns of the FSC bacterioplankton. Monitoring proceeded over a period of 2 years and interrogated the multiple water masses flowing through the region producing 2 contrasting water cores: Atlantic (surface) and Nordic (subsurface). Results revealed microbial profiles more distinguishable based on water cores (rather than individual water masses) and seasonal variability patterns within each core. -
And Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments
Mathematisch-Naturwissenschaftliche Fakultät Steffi Genderjahn | Mashal Alawi | Kai Mangelsdorf | Fabian Horn | Dirk Wagner Desiccation- and Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments Suggested citation referring to the original publication: Frontiers in Microbiology 9 (2018) 2082 DOI https://doi.org/10.3389/fmicb.2018.02082 ISSN (online) 1664-302X Postprint archived at the Institutional Repository of the Potsdam University in: Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe ; 993 ISSN 1866-8372 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-459154 DOI https://doi.org/10.25932/publishup-45915 fmicb-09-02082 September 19, 2018 Time: 14:22 # 1 ORIGINAL RESEARCH published: 20 September 2018 doi: 10.3389/fmicb.2018.02082 Desiccation- and Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments Steffi Genderjahn1,2*, Mashal Alawi1, Kai Mangelsdorf2, Fabian Horn1 and Dirk Wagner1,3 1 GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Potsdam, Germany, 2 GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 3.2 Organic Geochemistry, Potsdam, Germany, 3 Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany More than 41% of the Earth’s land area is covered by permanent or seasonally arid dryland ecosystems. Global development and human activity have led to an increase in aridity, resulting in ecosystem degradation and desertification around the world. The objective of the present work was to investigate and compare the microbial community structure and geochemical characteristics of two geographically distinct saline pan sediments in the Kalahari Desert of southern Africa. Our data suggest that these microbial communities have been shaped by geochemical drivers, including water content, salinity, and the supply of organic matter. -
Delft University of Technology Halococcoides Cellulosivorans Gen
Delft University of Technology Halococcoides cellulosivorans gen. nov., sp. nov., an extremely halophilic cellulose- utilizing haloarchaeon from hypersaline lakes Sorokin, Dimitry Y.; Khijniak, Tatiana V.; Elcheninov, Alexander G.; Toshchakov, Stepan V.; Kostrikina, Nadezhda A.; Bale, Nicole J.; Sinninghe Damsté, Jaap S.; Kublanov, Ilya V. DOI 10.1099/ijsem.0.003312 Publication date 2019 Document Version Accepted author manuscript Published in International Journal of Systematic and Evolutionary Microbiology Citation (APA) Sorokin, D. Y., Khijniak, T. V., Elcheninov, A. G., Toshchakov, S. V., Kostrikina, N. A., Bale, N. J., Sinninghe Damsté, J. S., & Kublanov, I. V. (2019). Halococcoides cellulosivorans gen. nov., sp. nov., an extremely halophilic cellulose-utilizing haloarchaeon from hypersaline lakes. International Journal of Systematic and Evolutionary Microbiology, 69(5), 1327-1335. [003312]. https://doi.org/10.1099/ijsem.0.003312 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. International Journal of Systematic and Evolutionary Microbiology Halococcoides cellulosivorans gen. -
Microbial Diversity of Non-Flooded High Temperature Petroleum Reservoir in South of Iran
Archive of SID Biological Journal of Microorganism th 8 Year, Vol. 8, No. 32, Winter 2020 Received: November 18, 2018/ Accepted: May 21, 2019. Page: 15-231- 8 Microbial Diversity of Non-flooded High Temperature Petroleum Reservoir in South of Iran Mohsen Pournia Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran, [email protected] Nima Bahador * Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran, [email protected] Meisam Tabatabaei Biofuel Research Team (BRTeam), Karaj, Iran, [email protected] Reza Azarbayjani Molecular bank, Iranian Biological Resource Center, ACECR, Karaj, Iran, [email protected] Ghassem Hosseni Salekdeh Department of Biology, Agricultural Biotechnology Research Institute, Karaj, Iran, [email protected] Abstract Introduction: Although bacteria and archaea are able to grow and adapted to the petrol reservoirs during several years, there are no results from microbial diversity of oilfields with high temperature in Iran. Hence, the present study tried to identify microbial community in non-water flooding Zeilaei (ZZ) oil reservoir. Materials and methods: In this study, for the first time, non-water flooded high temperature Zeilaei oilfield was analyzed for its microbial community based on next generation sequencing of 16S rRNA genes. Results: The results obtained from this study indicated that the most abundant bacterial community belonged to phylum of Firmicutes (Bacilli ) and Thermotoga, while other phyla (Proteobacteria , Actinobacteria and Synergistetes ) were much less abundant. Bacillus subtilis , B. licheniformis , Petrotoga mobilis , P. miotherma, Fervidobacterium pennivorans , and Thermotoga subterranea were observed with high frequency. In addition, the most abundant archaea were Methanothermobacter thermautotrophicus . Discussion and conclusion: Although there are many reports on the microbial community of oil filed reservoirs, this is the first report of large quantities of Bacillus spp. -
Updating the Taxonomic Toolbox: Classification of Alteromonas Spp
1 Updating the taxonomic toolbox: classification of Alteromonas spp. 2 using Multilocus Phylogenetic Analysis and MALDI-TOF Mass 3 Spectrometry a a a 4 Hooi Jun Ng , Hayden K. Webb , Russell J. Crawford , François a b b c 5 Malherbe , Henry Butt , Rachel Knight , Valery V. Mikhailov and a, 6 Elena P. Ivanova * 7 aFaculty of Life and Social Sciences, Swinburne University of Technology, 8 PO Box 218, Hawthorn, Vic 3122, Australia 9 bBioscreen, Bio21 Institute, The University of Melbourne, Vic 3010, Australia 10 cG.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian 11 Academy of Sciences, Vladivostok 690022, Russian Federation 12 13 *Corresponding author: Tel: +61-3-9214-5137. Fax: +61-3-9214-5050. 14 E-mail: [email protected] 15 16 Abstract 17 Bacteria of the genus Alteromonas are Gram-negative, strictly aerobic, motile, 18 heterotrophic marine bacteria, known for their versatile metabolic activities. 19 Identification and classification of novel species belonging to the genus Alteromonas 20 generally involves DNA-DNA hybridization (DDH) as distinct species often fail to be 1 21 resolved at the 97% threshold value of the 16S rRNA gene sequence similarity. In this 22 study, the applicability of Multilocus Phylogenetic Analysis (MLPA) and Matrix- 23 Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF 24 MS) for the differentiation of Alteromonas species has been evaluated. Phylogenetic 25 analysis incorporating five house-keeping genes (dnaK, sucC, rpoB, gyrB, and rpoD) 26 revealed a threshold value of 98.9% that could be considered as the species cut-off 27 value for the delineation of Alteromonas spp. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Synoptic-Scale Control Over Modern Rainfall and Flood Patterns in the Levant Drylands with Implications for Past Climates
JUNE 2018 ARMONETAL. 1077 Synoptic-Scale Control over Modern Rainfall and Flood Patterns in the Levant Drylands with Implications for Past Climates MOSHE ARMON Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel ELAD DENTE Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, and Geological Survey of Israel, Jerusalem, Israel JAMES A. SMITH Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey YEHOUDA ENZEL AND EFRAT MORIN Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel (Manuscript received 23 January 2018, in final form 1 May 2018) ABSTRACT Rainfall in the Levant drylands is scarce but can potentially generate high-magnitude flash floods. Rainstorms are caused by distinct synoptic-scale circulation patterns: Mediterranean cyclone (MC), active Red Sea trough (ARST), and subtropical jet stream (STJ) disturbances, also termed tropical plumes (TPs). The unique spatiotemporal char- acteristics of rainstorms and floods for each circulation pattern were identified. Meteorological reanalyses, quantitative precipitation estimates from weather radars, hydrological data, and indicators of geomorphic changes from remote sensing imagery were used to characterize the chain of hydrometeorological processes leading to distinct flood patterns in the region. Significant differences in the hydrometeorology of these three flood-producing synoptic systems were identified: MC storms draw moisture from the Mediterranean and generate moderate rainfall in the northern part of the region. ARST and TP storms transfer large amounts of moisture from the south, which is converted to rainfall in the hyperarid southernmost parts of the Levant. -
Consequences of Drying Lake Systems Around the World
Consequences of Drying Lake Systems around the World Prepared for: State of Utah Great Salt Lake Advisory Council Prepared by: AECOM February 15, 2019 Consequences of Drying Lake Systems around the World Table of Contents EXECUTIVE SUMMARY ..................................................................... 5 I. INTRODUCTION ...................................................................... 13 II. CONTEXT ................................................................................. 13 III. APPROACH ............................................................................. 16 IV. CASE STUDIES OF DRYING LAKE SYSTEMS ...................... 17 1. LAKE URMIA ..................................................................................................... 17 a) Overview of Lake Characteristics .................................................................... 18 b) Economic Consequences ............................................................................... 19 c) Social Consequences ..................................................................................... 20 d) Environmental Consequences ........................................................................ 21 e) Relevance to Great Salt Lake ......................................................................... 21 2. ARAL SEA ........................................................................................................ 22 a) Overview of Lake Characteristics .................................................................... 22 b) Economic -
A Pre-Feasibility Study on Water Conveyance Routes to the Dead
A PRE-FEASIBILITY STUDY ON WATER CONVEYANCE ROUTES TO THE DEAD SEA Published by Arava Institute for Environmental Studies, Kibbutz Ketura, D.N Hevel Eilot 88840, ISRAEL. Copyright by Willner Bros. Ltd. 2013. All rights reserved. Funded by: Willner Bros Ltd. Publisher: Arava Institute for Environmental Studies Research Team: Samuel E. Willner, Dr. Clive Lipchin, Shira Kronich, Tal Amiel, Nathan Hartshorne and Shae Selix www.arava.org TABLE OF CONTENTS 1 INTRODUCTION 1 2 HISTORICAL REVIEW 5 2.1 THE EVOLUTION OF THE MED-DEAD SEA CONVEYANCE PROJECT ................................................................... 7 2.2 THE HISTORY OF THE CONVEYANCE SINCE ISRAELI INDEPENDENCE .................................................................. 9 2.3 UNITED NATIONS INTERVENTION ......................................................................................................... 12 2.4 MULTILATERAL COOPERATION ............................................................................................................ 12 3 MED-DEAD PROJECT BENEFITS 14 3.1 WATER MANAGEMENT IN ISRAEL, JORDAN AND THE PALESTINIAN AUTHORITY ............................................... 14 3.2 POWER GENERATION IN ISRAEL ........................................................................................................... 18 3.3 ENERGY SECTOR IN THE PALESTINIAN AUTHORITY .................................................................................... 20 3.4 POWER GENERATION IN JORDAN ........................................................................................................ -
Impacts of Biogenic Polyunsaturated Aldehydes on Metabolism and Community
https://doi.org/10.5194/bg-2020-243 Preprint. Discussion started: 24 July 2020 c Author(s) 2020. CC BY 4.0 License. 1 Impacts of biogenic polyunsaturated aldehydes on metabolism and community 2 composition of particle-attached bacteria in coastal hypoxia 3 Zhengchao Wu1,2, Qian P. Li1,2,3,*, Zaiming Ge1,3, Bangqin Huang4, Chunming Dong5 4 1State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese 5 Academy of Sciences, Guangzhou, China 6 2Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China 7 3College of Marine Science, University of the Chinese Academy of Sciences, Beijing, China 8 4Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of 9 Marine Environmental Science, Xiamen University, Xiamen, China 10 5Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, MNR, Xiamen, China 11 *Correspondence to: Qian Li ([email protected]) 12 13 Abstract. Eutrophication-driven coastal hypoxia is of great interest recently, though its mechanisms are not 14 fully understood. Here, we showed elevated concentrations of particulate and dissolved polyunsaturated 15 aldehydes (PUAs) associated with the hypoxic waters meanly dominated by particle-attached bacteria (PAB) 16 in the bottom water of a salt-wedge estuary. Particle-adsorbed PUAs of ~10 micromoles per liter particle in 17 the hypoxic waters were directly quantified for the first time using large-volume-filtration followed with 18 on-site derivation and extraction of the adsorbed PUAs. PUAs-amended incubation experiments for PAB 19 retrieved from the low-oxygen waters were also performed to explore the impacts of PUAs on the growth 20 and metabolism of PAB and associated oxygen utilization. -
Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert
Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT. Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert. Scientific Reports 2017, 7(1), 8373. Copyright: © The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. DOI link to article: https://doi.org/10.1038/s41598-017-08937-4 Date deposited: 18/10/2017 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk www.nature.com/scientificreports OPEN Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Received: 13 April 2017 Accepted: 4 July 2017 Desert Published: xx xx xxxx Hamidah Idris1, Michael Goodfellow1, Roy Sanderson1, Juan A. Asenjo2 & Alan T. Bull3 The Atacama Desert is the most extreme non-polar biome on Earth, the core region of which is considered to represent the dry limit for life and to be an analogue for Martian soils.