A Dissertation Submitted To
Total Page:16
File Type:pdf, Size:1020Kb
A dissertation submitted to the Institute of Environmental Physics and Remote Sensing Faculty of Physics and Electrical Engineering University of Bremen, Germany in partial fulfilment for the award of the degree Doctor of Natural Sciences by Oluyemi Temitayo Afe B.Sc. (Hons) Engineering Physics, M.Sc (Physics) Bremen, October 2005 Retrieval and Observations of Atmospheric BrO from SCIAMACHY nadir Measurements Front-page Image: BrO Explosion Event in Arctic Polar Spring (Monthly mean for April 2003) as observed by SCIAMACHY onboard ENVISAT. Upper photo: ESA’s ten-instrument ENVISAT in orbit has been observing the Earths atmosphere for more than three years. Picture by EADS Astrium. Credits: EADS Astrium, GmbH. i …. He stretches out the north over empty space, He hangs the world upon nothing. He binds up the water in His thick clouds, yet the clouds are not broken under it. He covers the face of His throne, and spreads his clouds over it. He drew a circular horizon on the face of the waters, at the boundary of light and darkness. The pillars of heaven tremble, and are astonished at his rebuke Job 26: 7-11 ii iii Referees: Prof. Dr. John P. Burrows Institute of Environmental Physics & Institute for Remote Sensing, University of Bremen, Germany Prof. Dr. Otto Schrems Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany Dr. Andreas Richter Institute of Environmental Physics & Institute for Remote Sensing, University of Bremen, Germany The work described in this thesis was performed at the Institute of Environmental Physics and Remote Sensing, University of Bremen, Germany. The research was supported in parts by the European Union (THALOZ Project EVK2-2001-00104), the German Ministry of Science and Education (BMBF), the German Aerospace Agency (DLR) and the University of Bremen. iv Abstract Measurements from the space-borne instrument SCIAMACHY launched in March 2002 onboard the ENVISAT platform, have been analysed for BrO absorption using the Differential Optical Absorption Spectroscopy (DOAS) method. BrO is an important atmospheric trace gas mainly responsible for the depletion of ozone in the polar boundary layer, the free troposphere and the stratosphere. Since 1995, global observations of BrO have been successfully demonstrated by the GOME instrument in several publications. This work reports the retrieval of BrO columns from the channel 2 UV/Visible spectral range of the SCIAMACHY nadir geometry. Although data analysis of GOME and SCIAMACHY BrO is very similar, a UV-shifted spectral range was employed to minimize the impact of residual structures from the polarisation sensitivity of the instrument. From this analysis, excellent agreement was obtained between the GOME and SCIAMACHY BrO columns. The impact of the improved spatial resolution of SCIAMACHY has also been utilised to explore the possibility for a volcanic source of BrO during major eruptions. In the polar regions over sea ice, frost flowers have been implicated as a major source of bromine to the atmosphere and BrO columns obtained from GOME and SCIAMACHY measurements correlates with areas potentially covered with frost flowers. v vi Contents 1 Introduction ............................................................................................................................................ 1 1.1 Vertical Structure of the Atmosphere .............................................................................................. 1 1.2 General Dynamics ........................................................................................................................... 3 1.3 Radiation Balance of the Atmosphere: The Greenhouse Effect ...................................................... 5 2 Atmospheric Chemistry of Halogens Influencing Ozone.................................................................... 7 2.1 Atmospheric Ozone ......................................................................................................................... 7 2.1.1 The Ozone Hole ....................................................................................................................... 9 2.1.2 Ozone at Mid-Latitudes ........................................................................................................... 9 2.1.3 Tropospheric Ozone............................................................................................................... 10 2.2 Tropospheric Halogen Chemistry.................................................................................................. 13 2.2.1 Sources of Reactive Halogen Species in the Atmosphere...................................................... 13 2.2.2 Chlorine Chemistry in the Troposphere................................................................................. 19 2.2.3 Bromine Chemistry in the Troposphere................................................................................. 20 2.2.4 Iodine Chemistry in the Marine Boundary Layer .................................................................. 21 2.3 Stratospheric Halogen Chemistry .................................................................................................. 22 2.3.1 Chlorine Chemistry in the Stratosphere ................................................................................. 23 2.3.2 Bromine Chemistry in the Stratosphere ................................................................................. 27 2.3.3 Reactive Iodine in the Lower Stratosphere ............................................................................ 29 2.4 BrO in the Atmosphere.................................................................................................................. 30 2.4.1 Extra-Polar Boundary Layer .................................................................................................. 30 2.4.2 Ozone Depletion Events at Polar Sunrise – Bromine Explosion............................................ 30 2.4.3 Involvement with Atmospheric Mercury ............................................................................... 31 2.4.4 BrO in the Free Troposphere.................................................................................................. 31 2.4.5 BrO in the Stratosphere.......................................................................................................... 32 3 The Space-borne Instruments GOME and SCIAMACHY............................................................... 33 3.1 The Global Ozone Monitoring Experiment (GOME).................................................................... 33 3.1.1 Instrumental Layout of GOME .............................................................................................. 33 3.1.2 Viewing mode, Spatial coverage and Resolution................................................................... 35 3.1.3 Instrumental Problems and Limitations ................................................................................. 37 3.2 The SCIAMACHY Instrument...................................................................................................... 38 3.2.1 Optical Layout of the Instrument ........................................................................................... 38 3.2.2 Viewing Geometries, Spatial coverage and Resolution ......................................................... 40 3.3 Data Products................................................................................................................................. 42 3.4 Instrumental Problems and Limitations ......................................................................................... 43 4 Radiative Transfer and Absorption Spectroscopy............................................................................. 44 4.1 SCIAMACHY Radiance and Solar Irradiance from Nadir Geometry in Channel 2 ..................... 44 4.2 The Differential Optical Absorption Spectroscopy (DOAS) method .......................................... 45 4.3 The Radiative Transfer Model SCIATRAN .................................................................................. 47 4.4 Airmass Factors (AMF)................................................................................................................. 48 4.4.1 AMF Computation for Stratospheric BrO Profile.................................................................. 49 4.4.2 AMF Computation for Tropospheric BrO Profile.................................................................. 50 4.4.3 Influence of Surface Albedo .................................................................................................. 51 4.4.4 Influence of Aerosol scenario ................................................................................................ 52 vii 4.5 The Influence of Clouds on Satellite Retrievals ............................................................................ 52 4.6 The Ring Effect.............................................................................................................................. 53 4.7 The Solar Io Effect ......................................................................................................................... 54 5 BrO DOAS Analysis from GOME Nadir Observations.................................................................... 55 5.1 GOME Calibrated Irradiance and Radiance Spectra .................................................................... 55 5.2 Reference Spectra and Ring Spectrum for derivation of Optimal Slant Column Densities........... 56 5.3 Undersampling