(12) Patent Application Publication (10) Pub. No.: US 2011/0309017 A1 Hassler Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2011/0309017 A1 Hassler Et Al US 2011 0309017A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0309017 A1 Hassler et al. (43) Pub. Date: Dec. 22, 2011 (54) METHODS AND DEVICES FOR ENHANCING CO2F I/44 (2006.01) CONTAMINANT REMOVAL BY RARE CO2F I/72 (2006.01) EARTHIS CO2F L/70 (2006.01) CO2F I/52 (2006.01) (75) Inventors: Carl R. Hassler, Gig Harbor, WA CO2F I/42 (2006.01) (US); John L. Burba, III, Parker, CO2F I/26 (2006.01) CO (US); Charles F. Whitehead, CO2F I/68 (2006.01) Henderson, NV (US); Joseph CO2F IOI/30 (2006.01) Lupo, Henderson, NV (US); CO2F IOI/2O (2006.01) Timothy L. Oriard, Issaquah, WA CO2F IOI/22 (2006.01) (US) CO2F IOI/12 (2006.01) CO2F IOI/14 (2006.01) (73) Assignee: MOLYCORP MINERALS, LLC, CO2F IOI/IO (2006.01) Greenwood Village, CO (US) CO2F IOI/38 (2006.01) CO2F IOI/16 (2006.01) (21) Appl. No.: 13/086,247 CO2F IOI/36 (2006.01) CO2F IOI/34 2006.O1 (22) Filed: Apr. 13, 2011 ( ) Related U.S. Application Data (52) U.S. Cl. ......... 210/638; 210/749; 210/753: 210/758: (60) Provisional application No. 61/323,758, filed on Apr. 210/757: 210/723; 210/668; 295.839; 13, 2010, provisional application No. 61/325,996, s filed on Apr. 20, 2010. Publication Classification (57) ABSTRACT (51) Int. Cl. Embodiments are provided for removing a variety of con CO2F I/00 (2006.01) taminants using both rare earth and non-rare earth-containing CO2F I/76 (2006.01) treatment elements. FEED STREAM NON-RAREEARTH-CONTAININGREATMENT ELEMEN RARE EARH-CONTAINMG TREATMENTELEMENT TREATED STREAM Patent Application Publication Dec. 22, 2011 Sheet 1 of 8 US 2011/0309017 A1 100 FEED STREAM 104 NON-RARE EARTH-CONTAINING TREATMENT ELEMENT 108 RARE EARTH-CONTAINING TREATMENTELEMENT 112 TREATED STREAM F.G. 1 Patent Application Publication Dec. 22, 2011 Sheet 2 of 8 US 2011/0309017 A1 1OO FEED STREAM RARE EARTH-CONTAINING TREATMENTELEMENT NON-RARE EARTH-CONTAINING TREATMENT ELEMENT 204 TREATED STREAM FIG 2 Patent Application Publicatication Dec.• 22,4-4- 2011 Sh eet 3 of 8 US 2011/0309017 A1 Retention of humic acid on 20 g of ceria-coated alumina challenged by 6 mg/L using 10 min contact time, 100 90 80 70 60 . 50 AO 30 20 O O 0.0 0.5 1.O 1.5 2.0 2.5 3.0 Volume (L) Y Fig. 3 Patent Application2 o Publicationo Dec. 22, 2011 Sheet 4 of 8 US 2011/03090 17 A1 Fluoride Effects on Residual Arsenic in Solutuin 6O O 0 WI. Fluoride No Fluoride 5O O 4.O O 300 200 100 0.80 1.00 120 14 O 160 180 2.00 Molar Ratio Ce?As Fig. Patent Application Publication Dec. 22, 2011 Sheet 5 of 8 US 2011/0309017 A1 Effect of Molar Ratio on the Loading Capacity R Molar Ratio WIF Molar Ratio No F Q 500 g 450 400350 S 300 p e 250 & 200 4) 150 O 100 E 50 d 0.80O 100 120 140 160 1.80 2.00 2.20 Molar Ratio CelAS Fig. 5 Patent Application Publication Dec. 22, 2011 Sheet 6 of 8 US 2011/0309017 A1 400 ppb Arsenic removal capacity for CMI media (powdered) in Solutions With elevated ion Concentrations (5x w/ respect to NSF recipe). 24 hr isotherms. 20 - Ed As(III) 16 As (V) 12 10X 50X DI NSF SO, F C CO. SiO2 PO FIG 6 Patent Application Publication Dec. 22, 2011 Sheet 7 of 8 US 2011/0309017 A1 Competing ion column studies for CMI media using 300ppb AS(V). Solutions contain 10 X the concentration of the 300 indicated. ionss from the NSF tap water recipe. NSF water is used as a contr. 250 - ExCeSS F, CO3, es and SiO, O s 5, 200 - m 2 o O 150 i rts - Excess PO4 cooooo KXXX E oooooooo ? 100 s & © C o KXXKX 50 - O O 1OOO 2000 3OOO 4000 5000 6000 7OOO Bed Volumes Treated FIG. 7 Patent Application Publication Dec. 22, 2011 Sheet 8 of 8 US 2011/0309017 A1 Removal Capacity of Arsenic by Cerium Chloride As Win D AS II in D 50%/50% As il/V in Di FIG. 8 US 2011/0309017 A1 Dec. 22, 2011 METHODS AND DEVICES FOR ENHANCING following: PO, CO., SiO, bicarbonate, vanadate, and CONTAMINANT REMOVAL BY RARE a halogen, and the target material is one or more of a chemical EARTHIS agent, a colorant, a dye intermediate, a biological material, an organic carbon, a microbe, an oxyanion, and mixtures CROSS REFERENCE TO RELATED thereof. APPLICATION 0012. In one configuration, the downstream treatment ele 0001. The present application is claims the benefits of U.S. ment is the non-rare earth-containing treatment element, the Provisional Patent Application Ser. Nos. 61/323,758, filed upstream treatment element is the rare earth-containing treat Apr. 13, 2010, and 61/325,996, filed Apr. 20, 2010, all of the ment element, and the interferer and target material are each same title and all of which are incorporated herein by this one or more of a chemical agent, a colorant, a dye interme reference in their entirety. diate, a biological material, an organic carbon, a microbe, an oxyanion, a halogen, a halide compound, and mixtures FIELD thereof. 0013 There are a number of examples of applications for 0002 The present disclosure relates generally to treatment this configuration. of target material-containing fluids and particularly to rare 0014. In one example, the non-rare earth-containing treat earth treatment of target material-containing fluids. ment element is a membrane, and the interferer is one or more BACKGROUND of a halogen and a halide compound. 0015. In another example, the non-rare earth-containing 0003. Rare earths and rare earth-containing compositions treatment element comprises an oxidant, and the interferer is are a known way to remove selectively a variety of organic an oxidizable material. The oxidant, relative to the target and inorganic contaminants from liquids. Rare earths are, material, preferentially oxidizes the interferer. however, relatively limited in availability and increasingly 0016. In another example, the non-rare earth-containing expensive. Additionally, rare earths can react preferentially treatment element comprises a reductant, and the interferer is with certain compounds or interferers, thereby preventing a reducible material. The reductant, relative to the target them from reacting with target materials of interest. Certain material, preferentially reduces the interferer. target materials of interest are optimally removed only by rare 0017. In another example, the non-rare earth-containing earths and not by other less expensive sorbents. treatment element comprises a precipitant, and the interferer 0004. There is a need in water purification for greater is co-precipitated with the target material by the precipitant. selectivity in and control of the target materials exposed to a 0018. In another example, the non-rare earth-containing rare earth-containing contaminant removal agent. treatment element comprises an ion exchange medium, and SUMMARY the interferer is, relative to the target material, a competing ion for sites on the ion exchange medium. 0005. These and other needs are addressed by the various 0019. In another example, the non-rare earth-containing aspects, embodiments, and configurations of the present dis treatment element comprises an ion exchange medium, and closure. The disclosure is directed to the removal of various the interferer is a foulant, the at least one of a foulant detri target materials by combinations of rare earths and/or rare mentally impacting operation of the non-rare earth-contain earth compositions with other devices, materials, and pro ing treatment element. cesses (hereinafter "elements'). 0020. In another example, the non-rare earth-containing 0006. In an aspect, an interferer is removed by a non-rare treatment element comprises an organic solvent in a solvent earth-containing treatment element upstream of a rare earth exchange circuit, and the interferer and the target material are, containing treatment element or vice versa. under the selected operating conditions of the Solvent 0007. In an embodiment, a method and system are pro exchange circuit, soluble in the organic solvent. vided that includes the following steps/operations: 0021. In yet another example, the non-rare earth-contain 0008 (a) receiving, by an input, a feed stream comprising ing treatment element comprises a copper/silver ionization a target material and an interferer, the target material and treatment element, and the interferer comprises an oxyanion. interferer being different; 0009 (b) contacting the feed stream with an upstream 0022. In a further example, the non-rare earth-containing treatment element to remove most or all of the interferer while treatment element is a peroxide process, and the interferer leaving most or all of the target material in an intermediate reacts with peroxide to Substantially generate molecular oxy feed stream; and gen. 0010 (c) thereafter contacting the feed stream with a 0023. In yet another example, the interferer is one or more downstream treatment element to remove most or all of the of a phosphorus-containing composition, a carbon- and oxy target material, wherein the interferer interferes with removal gen-containing compound, a halogen, a halogen-containing of the target material by the downstream treatment element, composition, and a silicon-containing composition. the upstream treatment element is one of a rare earth-contain 0024. Other examples will be appreciated by one of ordi ing treatment element and a non-rare earth-containing treat nary skill in the art based on the present disclosure. ment element, and wherein the downstream treatment ele 0025. In a further embodiment, a method and/or system ment is the other of a rare earth-containing treatment element includes the following StepS/operations: and a non-rare earth-containing treatment element.
Recommended publications
  • WO 2015/095882 Al 25 June 2015 (25.06.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/095882 Al 25 June 2015 (25.06.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.0 1) C12Q 1/70 (2006.0 1) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/07 1963 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 22 December 2014 (22. 12.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/ 19,663 20 December 201 3 (20. 12.20 13) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: THE REGENTS OF THE UNIVERSITY GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, OF CALIFORNIA [US/US]; 1111 Franklin Street, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Twelfth Floor, Oakland, CA 94607-5200 (US).
    [Show full text]
  • EARTH Title Description ENTITIES ATTRIBUTES DYNAMIC ASPECTS
    EARTH Title Description ENTITIES ATTRIBUTES DYNAMIC ASPECTS DIMENSIONS ACCESSORY TERMS <EFFECTS AND SINGLE EVENTS> <STRUCTURE AND MORPHOLOGY> ACTIVITIES COMPOSITION CONDITIONS GENERAL TERMS IMMATERIAL ENTITIES MATERIAL ENTITIES PROCESSES PROPERTIES TIME <ABIOTIC ENVIRONMENT PROCESSES> <BIOECOLOGICAL PROCESSES> <COGNITIVE PROCESSES> <COMPLEX> <MENTAL CONSTRUCTS> <PHYSICAL AND CHEMICAL PROCESSES> <PHYSICAL OPERATIONS> <POLICY ACTIVITIES> <PROCESSES OF COMPLEX SYSTEMS (BY GENERAL TYPE)> <PROCESSES RELATED TO MATERIALS AND PRODUCTS> <PRODUCTIVE SECTORS> <SOCIAL AND CULTURAL ACTIVITIES> <SOCIAL, CULTURAL AND POLICY PROCESSES> INDUSTRY LIVING ENTITIES NON LIVING ENTITIES <ABSTRACT CONCEPTS AND PRINCIPLES> <DISPOSAL AND RESTORATION> <KNOWLEDGE SYSTEMS> <MANIPULATION, PRODUCTION, CONSUMPTION> <MEASURES> <METHODS AND TECHNIQUES> <PARAMETERS, CRITERIA AND FACTORS> <REPRESENTATION AND ELABORATION SYSTEMS> ARTIFICIAL ENTITIES BIOECOLOGICAL ENTITIES DATA NATURAL ENTITIES NATURAL SPACES BY GENERAL TYPES SOCIAL ENTITIES <ABIOTIC ENVIRONMENT> <BUILT ENVIRONMENT> <EARTH CONSTITUENTS AND MATERIALS> <MATERIALS AND PRODUCTS> <OPEN SPACES, CULTURAL LANDSCAPES> <PARTS> <PHYSICAL AND CHEMICAL CONSTITUENTS> <WHOLE> EQUIPMENT AND TECHNOLOGICAL SYSTEMS symbiotic organisms technological systems <ATMOSPHERE ENVIRONMENT> <ECOSYSTEM ABIOTIC COMPONENTS> <EXTRATERRESTRIAL ENVIRONMENT> <GEOGRAPHICAL REGIONS AND CLIMATIC ZONES> <TERRESTRIAL ENVIRONMENT> <WATER ENVIRONMENT> <CONTINENTAL WATER ENVIRONMENT> <OCEANIC WATER ENVIRONMENT> <TERRESTRIAL AREAS AND LANDFORMS> geological
    [Show full text]
  • 1 9729/01/TJC Prelim/2018 [Turn Over
    1 CHEMISTRY 9729/01 Paper 1 Multiple Choice 15th September 2018 1 hour Additional materials: Multiple Choice Answer Sheet Data Booklet READ THESE INSTRUCTIONS FIRST Write in soft pencil. Do not use staples, paper clips, glue or correction fluid. Write your name and Civics Group Write and shade your index number There are thirty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet. Read the instructions on the Answer Sheet very carefully. Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. The use of an approved scientific calculator is expected, where appropriate. This document consists of 13 printed pages. 9729/01/TJC Prelim/2018 [Turn Over 2 Section A For each question there are four possible answers, A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet (OMS). 1 Some isotopes are unstable and undergo nuclear (radioactive) reactions. In one type of reaction, an unstable nucleus assimilates an electron from an inner orbital of its electron cloud. The net effect is the conversion of a proton and an electron into a neutron. Which of the following describes this type of reaction? A 11C 12C B 111I 111Te C 76Br 75Br D 76Kr 75Br 2 Sodium hydrogencarbonate can be prepared from sodium sulfate by a three-step process: Na2SO4(s) + 4C(s)
    [Show full text]
  • DBDMH As a Processing Aid to the List of Allowed Substances in the National Organic Program
    CBI Deleted ALBEMARLE CORPORATION Petition to add DBDMH as a processing aid to the List of Allowed Substances in the National Organic Program This petition contains Confidential Business Information. This includes “trade secrets” related to the production process and quality control tests and data. This information is commercially valuable, used in Albemarle business and maintained in secrecy. Introduction Hypobromous acid (HOBr) derived from 1,3-dibromo-5,5-dimethylhydantoin (DBDMH, CAS No. 77-48-5) exhibits antimicrobial effects in water. It is used as a post-harvest intervention in the beef industry, and results from laboratory studies and commercial trials have shown a reduction in E. coli and Salmonella levels1 with HOBr from DBDMH. It can be used to control bacterial numbers on beef hides, carcasses, heads and organs. This chemistry is also used in the poultry processing industry. DBDMH is a stable white to off-white granular solid. In water, DBDMH undergoes a hydrolysis reaction to form two molecules of hypobromous acid (HOBr) and one molecule of dimethylhydantoin (DMH). During use, DBDMH is placed into a flow-through chemical feeder. The aqueous output of this feeder is mixed with a separate stream of water to dilute the HOBr to the desired level, and supply a constant stream of HOBr to the DBDMH application system. The water flow to the feeder and the water flow for dilution can be controlled to achieve the proper dilution to obtain the desired HOBr concentration. Hypobromous acid is the active antimicrobial agent in the water applied to the beef. The oxidizing action of hypobromous acid kills the bacteria.
    [Show full text]
  • Validation of the PATHOGENA Electron-Activated Reactor For
    ineering ng & E P l r a o c i c e m s Opoku-Duah et al., J Chem Eng Process Technol 2015, 6:3 e s Journal of h T C e f c h o DOI: 10.4172/2157-7048.1000239 l ISSN: 2157-7048 n a o n l o r g u y o J Chemical Engineering & Process Technology CommentryResearch Article OpenOpen Access Access Validation of the PATHOGENA Electron-Activated Reactor for Purifying Contaminated Water in the Parkersburg Area in West Stephen Opoku-Duah*, Gordon Wells1, Wycliff Kipkomoi1, Ashley Wilcox1, Dennis Johnson2 and Mark Wiley3 1Ohio Valley University College of Arts and Sciences, Ohio Valley University, 1 Campus View Drive, Vienna, WV 26105 2EcH2O International Group, 14 Inverness Drive East, Suite D-112, Englewood, CO 80138 3TCG Global, 14104 E. Davies Ave., Suite B, Centennial, CO 80112 Abstract This paper concerns validation of the PATHOGENA version of electron-activated reactors designed to purify contaminated water to make it potable. The basic design of PATHOGENA is a 100-gallon plastic tank batch reactor which houses a vapor-ion plasma (VIP) generator and 1-micron ion-separator (ION-SEP) porous water filter. While the VIP generator splits ambient air into aggressive water treatment agents in the form of charged ions, free electrons, hydroxyl and peroxyl radicals using UV radiation, the ION-SEP filter is designed to eliminate broad-spectrum bacteria and other microbes. The validation process was started with creation of water quality database from: (a) contaminated surface water; (b) EPA/West Virginia Water Quality Standards, and (c) Vienna City Council drinking water.
    [Show full text]
  • Inorganic Chemistry
    AS-Level INORGANIC CHEMISTRY Q1 A mixture of the oxides of two elements of the third period is dissolved in water. The solution is approximately neutral. What could be the constituents of the mixture? A Al2O3 and MgO B Na2O and MgO C Na2O and P4O10 D SO3 and P4O10 Q2 Aluminium chloride catalyses certain reactions by forming carbocations (carbonium ions) with chloroalkanes as shown. Which property makes this reaction possible? A AlCl3 is a covalent molecule. B AlCl3 exists as the dimer Al2Cl6 in the vapour. C The aluminium atom in AlCl3 has an incomplete octet of electrons. D The chlorine atom in RCl has a vacant p orbital. Q3 What are the products of the thermal decomposition of magnesium nitrate? A magnesium nitride and oxygen B magnesium oxide and nitrogen C magnesium oxide, nitrogen and oxygen D magnesium oxide, nitrogen dioxide and oxygen Q4 Chlorine compounds show oxidation states ranging from –1 to +7. What are the reagent(s) and conditions necessary for the oxidation of elemental chlorine into a compound containing chlorine in the +5 oxidation state? A AgNO3(aq) followed by NH3(aq) at room temperature B concentrated H2SO4 at room temperature C cold dilute NaOH(aq) D hot concentrated NaOH(aq) Q5 Which gaseous hydride most readily decomposes into its elements on contact with a hot glass rod? A ammonia B hydrogen chloride C hydrogen iodide D steam Q6 Which reagent, when mixed and heated with ammonium sulphate, liberates ammonia? A aqueous bromine B dilute hydrochloric acid C limewater D acidified potassium dichromate(VI) Q7 Which pollutant
    [Show full text]
  • Progress in the Chemistry of Dihydrogen Trioxide (HOOOH)
    Acta Chim. Slov. 2005, 52, 1–12 1 Review Article Progress in the Chemistry of Dihydrogen Trioxide (HOOOH) Božo Plesničar Department of Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, P.O.Box 537, 1000 Ljubljana, Slovenia, E-mail: [email protected] Received 23-02-2005 Abstract During the past 15 years, there has been considerable progress in understanding of the chemistry of dihydrogen trioxide (HOOOH). In this account, the preparation, characterization and structure (1H, 17O NMR, IR, quantum chemical methods), kinetics and mechanism of decomposition, and reactivity of this simplest of polyoxides are discussed. Dihydrogen trioxide is, in organic oxygen bases as solvents, far more stable than previously believed. For example, the half-life of HOOOH in acetone-d6 is 16 ± 2 min; however, it decomposes rather quickly in water solutions (t1/2 ≈ 20 ms) at room temperature. HOOOH is most likely involved in oxidation processes that span atmospheric, environmental, and biological systems. Key words: ozone, low-temperature ozonation, dihydrogen trioxide HOOOH, density-functional theory, ab-initio, molecular-structure, hydrogen-bonds, HOOO anion, HOOO radical, alkyl hydrotrioxides ROOOH, thermal- decomposition Contents Introduction ...............................................................................................................1 Origins of Dihydrogen Trioxide Chemistry .............................................................1 Direct Spectroscopic Detection of Dihydrogen Trioxide ......................................2
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Hypothiocyanous Acid Oxidation of Tubulin Cysteines Inhibits Microtubule Polymerization
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2011 Hypothiocyanous Acid Oxidation of Tubulin Cysteines Inhibits Microtubule Polymerization Hillary Meghan Clark College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Chemistry Commons Recommended Citation Clark, Hillary Meghan, "Hypothiocyanous Acid Oxidation of Tubulin Cysteines Inhibits Microtubule Polymerization" (2011). Undergraduate Honors Theses. Paper 398. https://scholarworks.wm.edu/honorstheses/398 This Honors Thesis -- Open Access is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Hypothiocyanous acid oxidation of tubulin cysteines inhibits microtubule polymerization A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Chemistry from The College of William and Mary by Hillary Meghan Clark Accepted for _________________________ (Honors) ___________________________________ Dr. Lisa M. Landino, Director ___________________________________ Dr. Lizabeth A. Allison ___________________________________ Dr. Gary W. Rice Williamsburg, VA April 27, 2011 i Table of Contents List of Figures iii List of Tables iv List of Abbreviations v Chemical Index vi Introduction 1 Reactive Oxygen Species 1 Antioxidants
    [Show full text]
  • Fear Or Report Name. Pdf
    S==dz 3 fate The electronic version of this file/report should have the file name: Type of document . S jte Number . Year-Month . File J'ea.2- Fear or Report name. pdf I , .pdf example: letter. Year-Month. File Year-Year . pdf worY-fhn. R\0... 905-004. /989- 02-01· Cloiu re-z>), 41*18 4- VOLZ .pdf . example:, report . Site Number . Year-Month . Report Name . pdf · · - Project Site numbers ·will be proceeded by the following:. Municipal Brownfields -' B . Superfund - HW Spills - SP ER:P-E VCP -V BCP-C 1 Engineering Report 1 1 PALMER STREET LANDFILL 1 CLOSURE/POST-CLOSURE PLAN (EPA ID NYD002126910) 1 VOLUME 11 : APPENDICES 1 Y 1 2 1 Moench Tanning Company 1 Diision of Brown Group, Inc. Gowanda, New York J 1 1 October 4. 1985 Revised November 1987 Revised February 1989 1 Revised August 1989 Project No. 0605-12-1 1 IRNI ENVIRONMENTAL ENGINEERS, SCIENTISTS & PLANNERS 1 1 1 =Isr 1 MOENCH TANNING COMPANY PALMER STREET LANDFILL CLOSURE/POST-CLOSURE PLAN 1 TABLE OF CONTENTS 1 VOLUME 1 Page 1 1.0 FACILITY DESCRIPTION ........... 1 1 1 1 1.1 General Description ........... ... 1.1.1 Products Produced ........ 1 1 1.1.2 Site Description ........ 1 2 1 1 2 1.2 Waste Generation ........./. .. 1.2.1 Maximum Hazardous Waste Inventory 1 4 1.3 Landfill Operation ........... 1 5 1 6 1 1.4 Topographic Map ........... .. 1.5 Facility Location Information ...... 1 6 1.5.1 Seismic Standard ........ .. 1 6 1 1.5.2 Floodplain Standard ....... 1 -6 1 7 1.5.3 Demonstration of Compliance ..
    [Show full text]
  • Modelling Bromate Formation During Ozonation
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Cranfield CERES Ozone: Science & Engineering: The Journal of the International Ozone Association Volume 29, Issue 6, 2007 pages 429-442 Modelling Bromate Formation During Ozonation Peter Jarvis1*, Rosie Smith2 and Simon A. Parsons1 1School of Water Sciences, Building 39, Cranfield University, Cranfield, Bedford, MK43 0AL. 2Yorkshire Water, ROCC, Halifax Road, Bradford, BD6 2LZ *Corresponding author: [email protected], tel.: 01234 750111 ext 3374. Received for Review: Accepted for publication: Abstract Bromate formation has been identified as a significant barrier in the application of ozone during water treatment for water sources that contain high levels of bromide. Bromate has been identified as a possible human carcinogen and bromate levels in drinking water are strictly controlled at 10 g/L in most developed countries. Various models have been proposed to model bromate formation during ozonation based on raw water quality, ozone dose and contact time. Two main approaches for modelling have been used: an empirical regression modelling methodology and kinetic based methodology. Currently, the benefit of the bromate models lies in their ability to show how process parameters may impact on the amount bromate formed. Keywords – Ozone; Bromate; Kinetics; Modelling; Multiple Linear Regression. 1 Introduction In recent years, bromate has become known as a contaminant of potable water supplies and in aquariums due to its formation from naturally occurring bromide during ozonation. Evidence supports the view that bromate is a possible human carcinogen and is therefore strictly controlled in drinking water (Weinberg et al, 1993; Bull and Cottruvo, 2006).
    [Show full text]
  • Blending Hbr with Bleach to Form Hypobromous Acid (Hobr)
    500 Winmoore Way * Modesto, CA 95358 * (209) 581-9576 * Fax (209) 581-9653 www.envirotech.com * www.stabilizedbromine.com Blending HBr with Bleach to Form Hypobromous Acid (HOBr) Hypobromous acid can be efficiently and quickly blended on site using several methods. Both of them differ in the chemical kinetics and attributes, but both methods are based on the basic equation: hydrogen bromide precursor + sodium hypochlorite hypobromous acid + sodium chloride (salt) HBr + NaOCl HOBr + NaCl Hydrogen Bromide: Hydrogen bromide is the only known acid (mineral or organic) to react with chlorine or bleach to form a further non-hazardous product, hypobromous acid, and does not create noxious chlorine gas at concentrations less than 2%, [20,000 ppm], by wt. The precursor is an acid, but it has no odor or fuming characteristics. It is far safer to handle than hydrochloric acid (muriatic acid). The shelf life of the product is several years if kept at normal ambient temperatures and out of the direct sunlight. Direct sunlight will have a negative impact on the appearance of the product by changing the color from clear to degrees of yellow or orange. The orange color is bromine (Br2), which is normally not a problem, but if allowed to remain in the sunlight more bromine will develop, which will have a distinct pungent odor. The solution is still useable in the „yellow-orange‟ state, but these conditions should be avoided by not allowing the precursor to be subjected to direct sunlight (UV) or excessive continuous heat to allow the temperature of the bulk liquid to exceed 90° F.
    [Show full text]