New and Renewable Energy Sources for Sustainable Communities
Total Page:16
File Type:pdf, Size:1020Kb
NEW AND RENEWABLE ENERGY SOURCES FOR SUSTAINABLE COMMUNITIES by M. G. Carvalho L. Alves, A. Costa, N. Duic VII Encontro Regional do Engenheiro Angra do Heroísmo – Terceira – Açores 20 Julho 2002 CONTENTS OF THE PRESENTATION Characteristics of Sustainable Communities Types of Sustainable Communities Description of on-going projects for enhanced sustainability Conclusions SUSTAINABLE COMMUNITIES Rio summit: Agenda 21 EU White Paper for RES, Campaign for Take-off, ALTENER EU Green Paper on Security of Supply Kyoto Protocol THE GOALS OF THE SUSTAINABLE COMMUNITY Integration of new technologies and concepts in socio-economic development Intensive use of RES Diversify energy sources Social and economic benefits CHARACTERISTICS OF THE SOLUTIONS Competitive cost of NRET (when compared to conventional solutions) High percentage of NRES Decentralised generation Satisfy the needs of a community → INTEGRATION INTEGRATION Integration of NRES: Wind, Biomass, Small hydro, Geothermal, Distributed Generation, PV and solar heating, hydrogen, energy storage…. Rational use of energy (buildings, energy management , CHP...) is also important TYPES OF COMMUNITY Islands (small/medium) Isolated rural areas Non-isolate urban areas (blocks of buildings, neighbourhoods in residential areas, commercial / light industrial developments) Islands ISLANDS High economic dependence on imported energy sources – High energy costs Environmental fragility Seasonability of energetic, water and waste disposal needs - Tourism Small size of the local grids Island projects SANTO ANTÃO Metodology for the Evaluation of Renewable Energy Sources Potential EVALUATION OF SOLAR POTENTIAL IN GIS Clean sky Typical day •Height Gp •Visibility Measurements of global •Climatic zone radiation in metereological stations •Sun zenith •Ground reflexion •Lattitude Gp K h # # Vila Rib.Gran. U K = # # p N # Lugar de Guene # Boca de Coruja # Pinhão Cha de igreja # # # # # # Vila das Pombas U G # # # Eito hp # # # # # # João Afonso Campo de Ca#o # # # # # # # # # # # # Cabo da Ribeira Garca de Cima # # # # # # Lom. de Figueira Pico da Cruz Alto Mira # # # # # Ribeirão Fundo # Morro do Vento # # # Hourly maps # Jorge Luis Lagoa # Rib. dos Bodes Cirio # # # # SIG # Rib. Fria SIG # Cha de Morte SIG of direct and C.das Vacas SIG Porto Novo Monte Trigo # # Radiação média anual (wh/m2) SIG SIG # Tabuga 3897.817 - 3982.671 diffuse # 3982.671 - 4067.524 SIG Mato Estreito # # # Manuel Lopes 4067.524 - 4152.378 X Catano Spatial Model # 4152.378 - 4237.232 Lombo da# s Lanças 4237.232 - 4322.085 radiation Tarrafal # 4322.085 - 4406.939 4406.939 - 4491.793 # 4491.793 - 4576.646 4576.646 - 4661.5 No Data 010Kilometers Grid of global estimated global Ghp radiation with clean sky Gh (METHODOLOGY DEVELOPED BY INESC – PORTO) MAP OF RENEWABLE RESOURCES - SUN # # Vila Rib.Gran. U # # N # Lugar de Guene # Boca de Coruja # Pinhão Cha de igreja # # # # # # Vila das Pombas U # # # Eito # # # # # # J# oão Afonso Campo de Cao# # # # # # # # # # # # Cabo da Ribeira Garca de Cima # # # # # # Lom. de Figueira Pico da Cruz Alto Mira # # # # # Ribeirão Fundo # Morro do Vento # # # # Jorge Luis Lagoa # Rib. dos Bodes Cirio # # # # # Rib. Fria # Cha de Morte C.das Vacas Monte Trigo Porto Novo # # # Radiação média anual (wh/m2) Tabuga 3897.817 - 3982.671 # 3982.671 - 4067.524 Mato Estreito # # # Manuel Lopes 4067.524 - 4152.378 Catano # 4152.378 - 4237.232 Lombo da# s Lanças 4237.232 - 4322.085 Tarrafal # 4322.085 - 4406.939 4406.939 - 4491.793 # 4491.793 - 4576.646 4576.646 - 4661.5 No Da t a 010Kilometers MAP OF RENEWABLE RESOURCES - WIND # # # Vila Rib.Gran. U # N # # # # Cha de igreja # # # Vila das Pombas U # # # # # # # # # # # # Corda # # # # # # # # # # # # Cabo da Ribeira Janela # # # Pico da Cruz # # # # # # # # # # # # # # # # # # # # Porto Novo # # # # velocidade média (m/s) # # # 0 = vel # 0 < vel <4 # 4 < vel < 5 # 5 < vel < 6 # 6 < vel < 7 7 < vel < 8 8 < vel < 11 No Da t a 0 10 Kilometers MAP OF RENEWABLE RESOURCES - GEOTHERMAL ELECTRICITY DISTRIBUTION NETWORK CABO VERDE The potential for Clean Development Mechanism in Electricity Production ECONOMY 2000 0 2000 Maio Maio 1800 1800 Br= 10 ava Brava 1600 1600 Tourism investments 1400 Business as Usual Fog1o400 Fogo 1980 1980 = 100 1200 S. N1200icolau S. Nicolau e e d rd r 1000 Boa1v000ista Boavista e V Ve 800 800 Sal Sal e e p p 600 600 a a S. Antão S. Antão C 400 C 400 , , SaP ntiago Santiago P 200 200 GD GD 0 S. Vice0nte S. Vicente 1980 1990 2000 2010 2020 2030 1980 1990 2000 2010 2020 2030 2000 Year Year 100 1800 1600 80 = 1400 Low development 19 1200 Regional GDP distribution for e d r 1000 800 Ve 3 economic scenaria, per e p 600 a C 400 , island P 200 GD 0 1980 1990 2000 2010 2020 2030 Year ELECTRICITY DEMAND 1800 Wh G 1600 Tourism investment , n 1400 Business as usual 1200 Low development uctio 1000 d 800 600 y pro 400 icit r 200 0 Elect 1980 1990 2000 2010 2020 2030 Tourism sector Year 3000 Electrification rate p. Tourism investment ca 2500 Business as usual h/ Low development W 2000 Security of supply 1500 y, k icit 1000 r 500 Elect 0 1980 1990 2000 2010 2020 2030 Year ELECTRICITY SUPPLY 1200 Wind h 1000 Diesel + steam W ← Baseline G 800 on, i 600 t c 400 1200 odu Wind r h 1000 p 200 Diesel + steam W 0 G 800 2000 2010 2020 2030 on, i 600 t c year u 400 od r 30% wind → p 200 1200 0 Wind h 1000 Diesel + steam 2000 2010 2020 2030 W Combined Cycle G 800 year , on 600 ti c u 400 d o pr 200 ← Combined cycle 30% wind 0 2000 2010 2020 2030 year Business as usual economic scenario CDM VALUE 5.0 4.5 Santiago, CC Wind in all 4.0 Maio Brava D 3.5 islands S Fogo U M 3.0 São Nicolau , e Boavista lu 2.5 a Sal v 2.0 M Santo Antão Combined D C 1.5 Santiago, wind 1.0 São Vicente cycle only 0.5 in Santiago 0.0 2000 2010 year 2020 2030 Business as usual economic scenarium Medium CDM price scenarium – 15$/tCO2 INSTALLED POWER BY ISLAND 15 10 MW 5 0 40 2000 2010 2020 2030 30 20 25 MW 20 10 15 3 0 MW 10 2000 2010 2020 2030 2 5 0 MW 1 10 2000 2010 2020 2030 0 2000 2010 2020 2030 Frontier, wind 5 MW BAU, wind 0 PakW radise, wind 10 2000 2010 2020 2030 0 Fron1 tier, CC 000 020 030 5 BAU20 , CC MW Para2 2 d2 ise, CC 0 2 100 3.0 2000 2010 2020 2030 80 2.0 1 60 MW MW MW 40 1.0 0 20 0.0 2000 2010 2020 2030 0 2000 2010 2020 2030 2000 2010 2020 2030 PORTO SANTO Renewable Energy Solutions for Islands 100% RES Island PORTO SANTO Madeira, Portugal RESOURCES TECHNOLOGIES COMMODITIES Sustainable Solar panels Community Heat Porto Santo Hydrogen Solar Hydrogen Cold Storage Electrolysis Water Reforming Fuel cell Trigeneration Electricity Gas PV panels Desalination Gasification Wind Wind turbines Sea Wastewater treatment Waste Wastewater EQUIPMENT TO BE INSTALLED PILOT HYDROGEN SYSTEM PRESENT SITUATION •75 kW Electrolyser •3.5 MW Diesel •300 kWh Storage •3.4 MW Fuel Oil •25 kW Fuel Cell •1.1 MW Wind (4.4%) •Peak Power – 5.6 MW •Low Power – 2 MW •Growth rate – 20% SAVINGS •27 tCO2/year •Cost: 830,000 € (33,000 €/kW) H2RES MODEL RESOURCES TECHNOLOGIES COMMODITIES Sustainable Community Porto Santo Solar Hydrogen Storage Electrolysis Fuel cell Trigeneration Electricity PV panels Desalination Wind Wind turbines H2RES MODULES WIND LOAD SOLAR STORAGE H2RES – WIND MODULE Hourly wind velocity data obtained 0.14 Adjusted to the hub height z vz = v10 Converted into hourly potential output 10 120% r e w Example for 100% po l VESTAS wind a n 80% i turbines, as 60% nom installed on f o t 225kW r 40% Porto Santo, 660kW pa , t Madeira, u 20% average (1110kW) p Portugal out 0% 0 5 10 15 20 25 30 wind velocity, m/s H2RES – SOLAR MODULE Hourly total radiation on horizontal surface obtained Adjusted to the inclined surface (RETSCREEN) Converted into hourly potential output by efficiency provided from supplier H2RES – LOAD MODULE Hourly load of power system obtained Limit to renewable intake Excess renewable rejected 4000 3500 3000 load 2500 solar output wind output 2000 kW renewable output 1500 renewable limit renewable taken 1000 renewable excess 500 0 0 4 8 12 16 20 hours H2RES – STORAGE MODULE – FILLING Excess renewable taken to electrolyser ¾ If less than electrolyser capacity ¾ If hydrogen tank not full The rest rejected – taken to desalination or other electricity dump H2RES – STORAGE MODULE – H2 USED During peak hours (various definition) fuel cell is turned on using hydrogen stored until tank is empy 4000 3500 load renewable limit 3000 to electrolyser 2500 H2 produced H2 retrieved 2000 fuel cell kW 1500 1000 500 0 0 4 8 12 16 20 hours H2RES MODEL Electricity delivered to power system 4000 3500 Diesel fuel cell 3000 renewable taken 2500 2000 kW 1500 1000 500 0 048121620 hours PORTO SANTO Population: 5000 in winter ⇒ 20000 in summer PORTO SANTO Power system (2000): 13.8 MW thermal + 1.1 MW wind 24.1 GWh thermal + 1.1 GWh wind 5.6 MW peak, 2 MW base, 20% growth PEAK SHAVING SCENARIA Scenaria 1. Wind only 2. Wind as installed + solar Up to 30% renewable at any time can be taken by power system Excess to electrolyser Fuel cell for peak shaving, optimised at 1.8% of electricity delivered PEAK SHAVING SCENARIA 3000 30000 wind 2500 solar 25000 electrolyser fuel cell 2000 storage vessel 20000 1500 15000 h kW kW 1000 10000 500 5000 0 0 Wind only Wind&solar PEAK SHAVING SCENARIA solar excess desalination fuel cell wind ren.