Contribution of Amynthas Gracilis (Megascolecidae) and Octolasion Cyaneum (Lumbricidae) to Soil Physical Stability: a Mesocosm Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Contribution of Amynthas Gracilis (Megascolecidae) and Octolasion Cyaneum (Lumbricidae) to Soil Physical Stability: a Mesocosm Experiment Rev. FCA UNCUYO. 2016. 48(1): 115-127. ISSN impreso 0370-4661. ISSN (en línea) 1853-8665. Contribution of Amynthas gracilis (Megascolecidae) and Octolasion cyaneum (Lumbricidae) to soil physical stability: a mesocosm experiment Contribución de Amynthas gracilis (Megascolecidae) y de Octolasion cyaneum (Lumbricidae) a la estabilidad física del suelo: una experiencia en mesocosmos Liliana Falco, Carlos Coviella Originales: Recepción: 30/06/2014 - Aceptación: 01/10/2015 Abstract The contribution of the introduced species Amynthas gracilis (Kinberg, 1867) and Octolasion cyaneum (Savigny, 1826) to the physical stability of the soil was evaluated in a mesocosm experiment. Pore formation and stable aggregates were measured; as well as changes in bulk density, porosity, and soil moisture. Mesocosm pots were organized into three treatments: 1- soil + Amynthas gracilis, 2- soil + Octolasion cyaneum and 3- soil (control containers). The experiment ran for 13 weeks and it was conducted in controlled conditions in a greenhouse. At the end of the experiment both treatments with earth- worms had higher number of pores and stable aggregates at the two considered depths (0 - 5 cm and 5 - 10 cm). The presence of both earthworm species favors the formation compared to the control without worms. These structures helped maintaining bulk densityof a significantly and porosity higher and proportion improved of stablewater aggregatescirculation. larger The resultsthan 5 mmshow (60%), that when compared to the control, both treatments had a lower loss of pore space, lower bulk density, and higher soil moisture, all attributable to earthworm presence. It is concluded that, despite both being introduced species, in intensive agricultural systems, A. gracilis and O. cyaneum can contribute to the maintenance of soil physical stability thus helping to preserve the sustainability of agro-ecosystems, even if native species became rare or locally extinct. Keywords pores • soil physical stability • aggregate stability • introduced species • earthworms Laboratorio de Ecología. Universidad Nacional de Luján. Av. Constitución y Ruta 5 (CC 221) 6700 Luján - Buenos Aires. Argentina. [email protected] Tomo 48 • N° 1 • 2016 115 L. Falco, C. Coviella Resumen En un experimento de mesocosmos se evaluó la contribución a la estabilidad Amynthas gracilis (Kinberg, 1867) y Octolasion cyaneum (Savigni, 1826). Se midió la formación de poros y de agregados estables,física del así suelo como de cambios las especies en la densidadintroducidas aparente, porosidad y humedad del suelo. Los contenedores de los mesocosmos fueron organizados en tres tratamientos: 1- suelo + A. gracilis, 2. Soil + O. cyaneum, and 3. Soil (contenedores control). El experimento se experimento los tratamientos con ambas especies generaron poros y mostraron mayor proporciónrealizó a lo largode agregados de 13 semanas estables en a condiciones las dos profundidades controladas consideradas en invernáculo. (0 Al- 5 final cm ydel 5 - 10 cm). Ambas especies de lombrices facilitaron la generación de una proporción controles sin lombrices. Estas estructuras ayudaron a mantener la densidad aparente y la porosidadsignificativamente y mejoraron mayor la circulaciónde agregados de mayoresagua. Los a resultados 5 mm (60%), muestran en comparación que, comparados con los con el control, ambos tratamientos tuvieron una menor pérdida de espacio de poros, menor densidad aparente y mayor humedad de suelo, todos atribuibles a la presencia de las lombrices. Se concluyó que, a pesar de ser ambas especies introducidas, en sistemas agrícolas intensivos A. gracilis y O. cyaneum pueden contribuir al mantenimiento de la estabilidad del suelo, ayudando así a preservar la sustentabilidad de los agroecosistemas, aun cuando las especies nativas puedan convertirse en raras o localmente extintas. Palabras clave lombrices poros • estabilidad física del suelo • estabilidad de agregados • especies introducidas • Introduction and land use history (25). Aggregate's formation is the result of soil particle throughThe mainthe creation influence of earthwormsburrows and have the productionon soil is the of modification casts. It is of thus soil structuregenerally and it is known to be mediated by soil claimed that earthworms can contribute organicreordering, carbon, flocculation, biota activity, and ioniccementing, bridge, to the regeneration of compacted zones and clay and carbonates (7). and this has been demonstrated under The increase in land-use intensity laboratory conditions (10). Earthworms results in a decline of soil biodiversity create soil biogenic aggregates with very (11, 21, 25, 30, 32, 41). Earthworms have particular physical, chemical, and micro- been shown to be sensitive to the changes biological properties (29). introduced by agricultural management However, the overall effects of earth- (crop type, mineral nitrogen input, worms on soil and ecosystem functioning are not uniform, concerning aggregate operations, and pesticide applications), formation in particular, which may vary whichorganic lead nitrogen to the disappearanceinput, mechanical of native field according to their ecological categories, the species or to their replacement by intro- particular species involved (4, 14, 26, 29), duced species. 116 Revista de la Facultad de Ciencias Agrarias These changes have an impact on the aggregates, and its effects on soil bulk ability of the soil to provide ecosystem density, porosity, and soil moisture. The services (3, 7, 12, 38). It is therefore important to know the contribution made the action of A. gracilis and O. cyaneum. by different earthworm species (4, 5, 26, 32). study also expected to find differences in In this context it also becomes relevant to know the effects introduced species have in Materials and Methods replacing native ones under changing condi- tions. Because most introduced species can Adult earthworms and soil were collected tolerate a wide range of soil and environ- mental conditions, they have been often considered as the predominant earthworm from cattle-grazing fields, on typical Argiudoll fauna in anthropic tropical ecosystems (22), soilsThe (18.6% soil clay,was 63%sieved silt, through18.4% sand, a 2 3.6%mm and to be important in maintaining the mesh,organic tomatter, remove and 2.12%structure, organic homogenize carbon). fertility of agricultural lands (31). the soil, and to extract all roots, and then Amynthas gracilis (Kinberg, 1867) dried at 30°C to constant mass. Sixty three (Megascolecidae) and Octolasion cyaneum (Savigny, 1826) (Lumbricidae) are two of soil and were slowly irrigated. After peregrine introduced species sharing 24mesocosm hours, potsthey werewere each further filled irrigated with 600 to g environments in Argiudoll soils of the rolling Pampas in Argentina. They have and weighed again. Thus, at the start of the been successful in colonizing disturbed experimentsaturation, lefteach to container drain to presentedfield capacity the environments (18, 20, 35, 36, 37). Due same amount of soil and moisture condition. to their wide distribution, it is important Each container within a treatment was then to know whether these two particular considered a replicate. The mesocosm pots were arranged in a greenhouse into three physical properties. According to the treatments: 1- soil + Amynthas gracilis, 2- species, have a significant impactA. gracilison soil soil + Octolasion cyaneum and 3- soil without is an epi-endogeic species associated with earthworms (control treatment). litterclassification (19), while by BouchéO. cyaneum (1977), is an endogeic One adult of either one of the species species living within the soil feeding on a was placed in each one of the 21 containers mixture of organic matter and mineral soil. per treatment, and 50 g of manure was This study focuses on evaluating added as food. The control containers were changes in soil physical variables, brought processed in the same way but without about by the presence of these two earthworms. Throughout the experiment, earthworm species, comparing each one of temperature was monitored (23°C ± 2°C) them with the control. A temporal analysis and the containers were irrigated with of each treatment was also performed. 120 ml distilled water three times a week The working hypothesis was that A. gracilis and O. cyaneum presence On each sampling date (30 and contributes to soil physical stability. In 90to keep days) them seven close random to field mesocosm capacity. pots per this context, the objective of this work treatment were removed and dried in an was to evaluate A. gracilis and O. cyaneum oven at 30°C. In each container, the number activity, through their effects in the and size (diameter) of the pores generated generation of pores, number of stable by each of the species was determined. Tomo 48 • N° 1 • 2016 117 L. Falco, C. Coviella In order to do this, once the containers Results and Discussion had been removed from the oven and their weight registered, a longitudinal cut Pore number and size was performed on the soil clod, and the Given the conditions under which the diameter of each pore was measured with test was developed (dried and sieved soil), a caliper over one of its faces. all pores observed in the pots are part of The wet method recommended by the galleries created by earthworms. The Ester and van Rozen (2012) was used to statistical analysis shows that the number evaluate the stability of soil aggregates at and size of pores varied between treat- two depths: from surface to 5 cm and from ments
Recommended publications
  • Size Variation and Geographical Distribution of the Luminous Earthworm Pontodrilus Litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan
    A peer-reviewed open-access journal ZooKeys 862: 23–43 (2019) Size variation and distribution of Pontodrilus litoralis 23 doi: 10.3897/zookeys.862.35727 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan Teerapong Seesamut1,2,4, Parin Jirapatrasilp2, Ratmanee Chanabun3, Yuichi Oba4, Somsak Panha2 1 Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2 Ani- mal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3 Program in Animal Science, Faculty of Agriculture Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand 4 Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan Corresponding authors: Somsak Panha ([email protected]), Yuichi Oba ([email protected]) Academic editor: Samuel James | Received 24 April 2019 | Accepted 13 June 2019 | Published 9 July 2019 http://zoobank.org/663444CA-70E2-4533-895A-BF0698461CDF Citation: Seesamut T, Jirapatrasilp P, Chanabun R, Oba Y, Panha S (2019) Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan. ZooKeys 862: 23–42. https://doi.org/10.3897/zookeys.862.35727 Abstract The luminous earthworm Pontodrilus litoralis (Grube, 1855) occurs in a very wide range of subtropical and tropical coastal areas. Morphometrics on size variation (number of segments, body length and diameter) and genetic analysis using the mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequence were conducted on 14 populations of P.
    [Show full text]
  • Composting Worms for Hawaii
    Home Garden Aug. 2005 HG-46 Composting Worms for Hawaii Piper Selden,1 Michael DuPonte,2 Brent Sipes,3 and Kelly Dinges2 1Hawaii Rainbow Worms, 2, 3CTAHR Departments of 2Human Nutrition, Food and Animal Sciences and 3Plant and Environmental Protection Sciences Perionyx excavatus cocoon contains several fertilized eggs, which hatch in 2–3 weeks under suitable conditions. Reproductive rates Blue worm, India blue worm, Malaysian blue vary according to the temperature and environmental worm, traveling worm conditions, which in vermiculture depend on the maintenance of the composting system. Under favorable Origin conditions, blue worms may each produce about 20 offspring per week, which in turn will take 3–5 weeks Perionyx excavatus (Perrier 1872) is found over large to reach sexual maturity. areas of tropical Asia, including India, Malaysia, the Phillippines, and Australia. It is also found in parts of Uses South America, in Puerto Rico, and in some areas of Blue worm is an excellent composting worm and a the United States (south of the Mason Dixon line and prolific breeder given proper nutrient sources and in the Gulf Coast region). Naturalized populations of P. maintenance of its environment, particularly in tropical excavatus have been identified in Hawaii; how long it and subtropical locations. has been here is not known. Description 1 3 Perionyx excavatus is a small earthworm 1 ⁄4–2 ⁄4 inches long. Its front part is deep purple and its hind part is dark red or brown. It has an iridescent, blue-violet sheen on its skin that is visible in bright light. These worms are highly active and twitch when disturbed.
    [Show full text]
  • The Giant Palouse Earthworm (Driloleirus Americanus)
    PETITION TO LIST The Giant Palouse Earthworm (Driloleirus americanus) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT June 30, 2009 Friends of the Clearwater Center for Biological Diversity Palouse Audubon Palouse Prairie Foundation Palouse Group of the Sierra Club 1 June 30, 2009 Ken Salazar, Secretary of the Interior Robyn Thorson, Regional Director U.S. Department of the Interior U.S. Fish & Wildlife Service 1849 C Street N.W. Pacific Region Washington, DC 20240 911 NE 11th Ave Portland, Oregon Dear Secretary Salazar, Friends of the Clearwater, Center for Biological Diversity, Palouse Prairie Foundation, Palouse Audubon, Palouse Group of the Sierra Club and Steve Paulson formally petition to list the Giant Palouse Earthworm (Driloleirus americanus) as a threatened or endangered species pursuant to the Endangered Species Act (”ESA”), 16 U.S.C. §1531 et seq. This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14 (1990), which grant interested parties the right to petition for issuance of a rule from the Secretary of Interior. Petitioners also request that critical habitat be designated for the Giant Palouse Earthworm concurrent with the listing, pursuant to 50 CFR 424.12, and pursuant to the Administrative Procedures Act (5 U.S.C. 553). The Giant Palouse Earthworm (D. americanus) is found only in the Columbia River Drainages of eastern Washington and Northern Idaho. Only four positive collections of this species have been made within the last 110 years, despite the fact that the earthworm was historically considered “very abundant” (Smith 1897). The four collections include one between Moscow, Idaho and Pullman, Washington, one near Moscow Mountain, Idaho, one at a prairie remnant called Smoot Hill and a fourth specimen near Ellensberg, Washington (Fender and McKey- Fender, 1990, James 2000, Sánchez de León and Johnson-Maynard, 2008).
    [Show full text]
  • Checklist of New Zealand Earthworms Updated from Lee (1959) by R.J
    Checklist of New Zealand Earthworms updated from Lee (1959) by R.J. Blakemore August, 2006 COE fellow, Soil Ecology Group, Yokohama National Univeristy, Japan. Summary This review is based on Blakemore (2004) that updated the work completed over 40 years earlier by Lee (1959) as modified by Blakemore in Lee et al. , (2000) and in Glasby et al. (2007/8) based on the information presented at the "Species 2000" meeting held Jan. 2000 at Te Papa Museum in Wellington, New Zealand. In the current checklist Acanthodrilidae, Octochaetidae and Megascolecidae sensu Blakemore (2000b) are all given separate family status. Whereas Lee (1959) listed approximately 193 species, the current list has about 199 taxa. Because many of the natives have few reports, or are based on only a few specimens, approximately 77 are listed as "threatened" or "endangered" in Dept. Conservation threatened species list (see www.doc.govt.nz/Conservation/001~Plants-and-Animals/006~Threatened-species/Terrestrial-invertebrate-(part-one).asp April, 2005) and three species are detailed in McGuinness (2001). Further studies such as those of Springett & Grey (1998) are required. Currently I seek funding to complete my database into an interactive guide to species, to use to conduct surveys in New Zealand. Some of the changes in Blakemore (2004) from Lee (1959) are: • Microscolex macquariensis (Beddard, 1896) is removed from the list because it is known only from Macquarie Island, which is now claimed as Australian territory (see Blakemore, 2000b). • Megascolides orthostichon (Schmarda, 1861) is removed from the fauna as Fletcher (1886: 524) reported that “on the authority of Captain Hutton” this species was not from New Zealand and may be from Mt Wellington in Tasmania (see Blakemore, 2000b).
    [Show full text]
  • Asian Jumping Worm (Megascolecidae) Impacts on Physical and Biological Characteristics of Turfgrass Ecosystems
    Colby College Digital Commons @ Colby Honors Theses Student Research 2019 Asian Jumping Worm (Megascolecidae) Impacts on Physical and Biological Characteristics of Turfgrass Ecosystems Ella L. Maddi Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Environmental Sciences Commons, and the Soil Science Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Maddi, Ella L., "Asian Jumping Worm (Megascolecidae) Impacts on Physical and Biological Characteristics of Turfgrass Ecosystems" (2019). Honors Theses. Paper 965. https://digitalcommons.colby.edu/honorstheses/965 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. Asian Jumping Worm impacts (Megascolecidae) on Physical and Biological Characteristics of Turfgrass Ecosystems An Honors Thesis presented to the Faculty of the Department of Biology at Colby College in partial fulfillment of the requirements for the Degree of Bachelor of Arts with Honors By Ella Maddi Waterville, ME May 20, 2019 Asian Jumping Worm impacts (Megascolecidae) on Physical and Biological Characteristics of Turfgrass Ecosystems An Honors Thesis presented
    [Show full text]
  • An Integrative Taxonomic Approach to the Identification of Three New New Zealand Endemic Earthworm Species (Acanthodrilidae, Octochaetidae: Oligochaeta)
    Zootaxa 2994: 21–32 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) An integrative taxonomic approach to the identification of three new New Zealand endemic earthworm species (Acanthodrilidae, Octochaetidae: Oligochaeta) STEPHANE BOYER1,3, ROBERT J. BLAKEMORE2 & STEVE D. WRATTEN1 1Bio-Protection Research Centre, Lincoln University, New Zealand 2National Museum of Science and Nature in Tokyo, Japan 3Corresponding author. E-mail: [email protected] Abstract This work adds three new species to the ca. 200 currently known from New Zealand. In Acanthodrilidae is Maoridrilus felix and in Octochaetidae are Deinodrilus gorgon and Octochaetus kenleei. All three are endemics that often have restrict- ed ranges; however, little is yet known of their distribution, ecology nor conservation status. DNA barcoding was conduct- ed, which is the first time that New Zealand endemic holotypes have been so characterized. The barcoding region COI (cytochrome c oxidase subunit 1) as well as the 16S rDNA region were sequenced using tissue from the holotype specimen to provide indisputable uniqueness of the species. These DNA sequences are publically available on GenBank to allow accurate cross checking to verify the identification of other specimens or even to identify specimens on the basis of their DNA sequences alone. Based on their 16S rDNA sequences, the position of the three newly described species in the phy- logeny of New Zealand earthworms was discussed. The description of new species using this approach is encouraged, to provide a user-friendly identification tool for ecologists studying diverse endemic faunas of poorly known earthworm species.
    [Show full text]
  • Phylogeny of the Megascolecidae and Crassiclitellata (Annelida
    Phylogeny of the Megascolecidae and Crassiclitellata (Annelida, Oligochaeta): combined versus partitioned analysis using nuclear (28S) and mitochondrial (12S, 16S) rDNA Barrie G. M. JAMIESON Department of Zoology and Entomology, University of Queensland, Brisbane 4072, Queensland (Australia) [email protected] Simon TILLIER Annie TILLIER Département Systématique et Évolution et Service de Systématique moléculaire, Muséum national d’Histoire naturelle, 43 rue Cuvier, F-75231 Paris cedex 05 (France) Jean-Lou JUSTINE Laboratoire de Biologie parasitaire, Protistologie, Helminthologie, Département Systématique et Évolution, Muséum national d’Histoire naturelle, 61 rue Buffon, F-75321 Paris cedex 05 (France) present address: UR “Connaissance des Faunes et Flores Marines Tropicales”, Centre IRD de Nouméa, B.P. A5, 98848 Nouméa cedex (Nouvelle-Calédonie) Edmund LING Department of Zoology and Entomology, University of Queensland, Brisbane 4072, Queensland (Australia) Sam JAMES Department of Life Sciences, Maharishi University of Management, Fairfield, Iowa 52557 (USA) Keith MCDONALD Queensland Parks and Wildlife Service, PO Box 834, Atherton 4883, Queensland (Australia) Andrew F. HUGALL Department of Zoology and Entomology, University of Queensland, Brisbane 4072, Queensland (Australia) ZOOSYSTEMA • 2002 • 24 (4) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris. www.zoosystema.com 707 Jamieson B. G. M. et al. Jamieson B. G. M., Tillier S., Tillier A., Justine J.-L., Ling E., James S., McDonald K. & Hugall A. F. 2002. — Phylogeny of the Megascolecidae and Crassiclitellata (Annelida, Oligochaeta): combined versus partitioned analysis using nuclear (28S) and mitochondrial (12S, 16S) rDNA. Zoosystema 24 (4) : 707-734. ABSTRACT Analysis of megascolecoid oligochaete (earthworms and allies) nuclear 28S rDNA and mitochondrial 12S and 16S rDNA using parsimony and likeli- hood, partition support and likelihood ratio tests, indicates that all higher, suprageneric, classifications within the Megascolecidae are incompatible with the molecular data.
    [Show full text]
  • External Morphological Comparison, Taxonomic Revision and Molecular Differentiation of the Four Economically Important Species of Earthworm in Thailand
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 10–607/SRZ/2011/13–4–553–558 http://www.fspublishers.org Full Length Article External Morphological Comparison, Taxonomic Revision and Molecular Differentiation of the Four Economically Important Species of Earthworm in Thailand WIRIYA LOONGYAI1, PHUWADOL BANGRAK† AND SOMCHAI CHANTSAVANG Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok 10900 Thailand †School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80160 Thailand 1Corresponding author’s e-mail: [email protected]; [email protected] ABSTRACT Four economically important species of earthworm were cultured and the external and internal characters of adult clitellate earthworms were studied. Partial sequences for ribosomal 16S rDNA and subunit one for mitochondrial cytochrome c oxidase (COI) of four earthworm species were obtained. The result of sequence analysis combined with taxonomic characters could distinguish the different species of earthworm. Morphology and nucleotide sequence of two genes for the red worm (Pheretima peguana) were distinct from Eudrilus eugeniae but were similar to the blue worm (Perionyx excavatus) and Lao worm (P. excavates) and therefore, it was classified as a new species, Perionyx sp. 1. Moreover, Eudrilus eugeniae was evidently defined as the same genus and species. Interestingly, the blue worm and Lao worm were morphologically similar to Perionyx sp. However, the molecular data of 16S rDNA could not differentiate in taxa of those two species. COI nucleotide sequence analyses showed the presence of divergent lineages between two species, suggesting the blue worm and Lao worm could be described as Perionyx sp. 2 and Perionyx sp.
    [Show full text]
  • Giant Gippsland Earthworm Surveys at Three Sites Within the Lang Lang
    Giant Gippsland Earthworm survey at a site of a proposed rezoning, Jumbunna Rd, Korumburra February 2012 PREPAREDPREPARED FOR: FOR: REPORT AUTHOR: PREPARED FOR: Company Name Goes Here Dr. Beverley Van Praagh Company Name Goes Here Second Line of Text Here REPORT AUTHOR: Second Line of Text Here REPORT AUTHOR: BeveridgeThird Line Williams of Text & CoHere Pty Ltd Dr. Beverley Van Praagh 52A ThirdBair Street Line of Text Here Dr. Beverley Van Praagh PO Box 161 Leongatha Vic 3953 INVERT-ECO 1 Giant Gippsland Earthworm survey at Jumbunna Rd, Korumburra REPORT - Giant Gippsland Earthworm survey of site of a proposed rezoning, Jumbunna Rd, Korumburra Report by Beverley Van Praagh INVERT-ECO ABN 96 817 328 909 25 Jacaranda Place Craigieburn, Victoria 3064 Tel/Fax: 03 9305 5154 Mobile: 0402 572 443 On Behalf Of Beveridge Williams & Co Pty Ltd 52A Bair Street PO Box 161 Leongatha Vic 3953 Final Version February 2012 ACKNOWLEDGEMENTS The author thanks the following people for their contribution to the project, Neil Breeden (Beveridge Williams) for project and site information Mr Winterhalter and Mr Cellante (property owners) for site access Matt Killin for assistance in the field Cover Photo: Megascolides australis and subject land© INVERT-ECO Abbreviations DSE: Department of Sustainability and Environment EPBC Act: Environment Protection and Biodiversity Conservation Act 1999 FFG Act: Flora and Fauna Guarantee Act 1988 Copyright ©INVERT-ECO This document is subject to copyright and may only be used for the purposes for which it was commissioned. Disclaimer Although due diligence was used by INVERT-ECO in the preparation of this report, INVERT-ECO takes no liability for any damages or loss incurred as a result of reliance placed upon this report and its contents.
    [Show full text]
  • The Earthworm Genus Pheretima, Kinberg, 1866, in Louisiana (Oligochaeta: Megascolecidae)." (1969)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 The aE rthworm Genus Pheretima, Kinberg, 1866, in Louisiana (Oligochaeta: Megascolecidae). Richard Elvin Tandy Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Tandy, Richard Elvin, "The Earthworm Genus Pheretima, Kinberg, 1866, in Louisiana (Oligochaeta: Megascolecidae)." (1969). LSU Historical Dissertations and Theses. 1566. https://digitalcommons.lsu.edu/gradschool_disstheses/1566 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 69-17,130 TANDY, Richard Elvin, 1937- THE EARTHWORM GENUS PHERETIMA KINBERG, 1866, IN LOUISIANA (OLIGOCHAETA: MEGASCOLECIDAE). Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Zoology University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The Earthworm Genus Pheretima Kinberg, 1856, In Louisiana (01igochaeta:M egascolecidae) A D issertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillm ent of the requirements for the degree of Doctor of Philosophy in The Department of Zoology and Physiology by Richard Elvin Tandy B.A., Anderson College, 1960 M.S., Louisiana Polytechnic Institute, 1963 January, 1969 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENT Sincere appreciation is expressed to Dr.
    [Show full text]
  • Molecular Identification and Distribution of Native and Exotic
    Molecular identification and distribution of native and exotic earthworms in New Zealand human-modified soils Young-Nam Kim, Nicholas Dickinson, Mike Bowie, Brett Robinson, Stéphane Boyer To cite this version: Young-Nam Kim, Nicholas Dickinson, Mike Bowie, Brett Robinson, Stéphane Boyer. Molecular iden- tification and distribution of native and exotic earthworms in New Zealand human-modified soils. New Zealand Journal of Ecology, The New Zealand Ecological Society, 2017, 41 (2), pp.218-225. 10.20417/nzjecol.41.23. hal-02303406 HAL Id: hal-02303406 https://hal.archives-ouvertes.fr/hal-02303406 Submitted on 2 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 218 New Zealand Journal of Ecology,DOI: 10.20417/nzjecol.41.23 Vol. 41, No. 2, 2017 Molecular identification and distribution of native and exotic earthworms in New Zealand human-modified soils Young-Nam Kim1, Nicholas Dickinson1, Mike Bowie1, Brett Robinson2 and Stephane Boyer1,3* 1Department of Ecology, Lincoln University, Lincoln 7647, Christchurch, New Zealand 2 Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand 3Applied Molecular Solutions Research Group, Environmental and Animal Sciences, Unitec Institute of Technology, Private Bag 92025, Victoria Street West, Auckland 1142, New Zealand *Author for correspondence (Email: [email protected]) Published online: 1 March 2017 Abstract: Important knowledge gaps remain with regards to the ecology and the systematics of New Zealand’s native earthworms.
    [Show full text]
  • A New Korean Earthworm (Oligochaeta: Megadrilacea: Megascolecidae)*
    Zootaxa 3368: 256–262 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A new Korean earthworm (Oligochaeta: Megadrilacea: Megascolecidae)* ROBERT J. BLAKEMORE1,2, TAE SEO PARK1 & HONG-YUL SEO1 1National Institute of Biological Resources (NIBR), Incheon, 404-708, Korea. 2Corresponding author. E-mail: [email protected] *In: Karanovic, T. & Lee, W. (Eds) (2012) Biodiversity of Invertebrates in Korea. Zootaxa, 3368, 1–304. Abstract Amynthas gageodo Blakemore, sp. nov. is described from small Gageo-do Island, offshore to the southwest of the Korean Peninsula in the Yellow Sea. It is an octothecal species (four pairs of spermathecae) comparable to Japanese Amynthas carnosus (Goto & Hatai, 1899) (synonyms: Korean kyamikia Kobayashi, 1934, monstrifera Kobayashi, 1936, sangyeoli Hong & James, 2001, youngtai Hong & James, 2001, kimhaeiensis Hong & James, 2001, sinsiensis Hong & James, 2001, baemsagolensis Hong & James, 2001, Taiwanese monsoonus James et al., 2005) and to Chinese A. pingi (Stephenson, 1925) (synonym: fornicata Gates, 1935). Species associations in its forest litter habitat on the remote island included terrestrial leeches, planarian flatworm predators and other worms. MtDNA COI barcodes indisputably identify types of A. gageodo as a new model for future Korean earthworm species characterizations. Key words: Amynthas, pheretimoid, island biodiversity, Asian endemic invertebrates. Introduction Surveys of invertebrates on Gageo-do Island (~9.2 km2) were conducted by the National Institute of Biological Resources in 2011. Amongst the animals collected were a manifestly new pheretimoid earthworm species as described in this paper. Materials and Methods Specimens were collected by digging and hand-sorting from leaf litter and humic soil.
    [Show full text]