Final Souvenir Aveocon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gross Anatomy
www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY www.BookOfLinks.com Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the infor- mation contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY David A. Morton, PhD Associate Professor Anatomy Director Department of Neurobiology and Anatomy University of Utah School of Medicine Salt Lake City, Utah K. Bo Foreman, PhD, PT Assistant Professor Anatomy Director University of Utah College of Health Salt Lake City, Utah Kurt H. -
Descriptive Analysis of Human Remains from the Fuller and Fanning Mounds
AN ABSTRACT OF THE THESIS OF David Stepp for the degree of Master of Arts in Interdisciplinary Studies in the co- departments of Anthropology, Zoology, and Statistics presented onFebruary 2, 1994. Title :Descriptive Analysis of Human Remains from the Fuller and Fanning Mounds, Yamhill River, Willamette Valley, Oregon Redacted for Privacy Abstract Approved : Roberta Hall The study presents the results of a descriptive analysis of the skeletal remains of 66 individuals recovered from the Fuller and Fanning Mound sites, located on the Yamhill River, Willamette Valley, Oregon, excavated in 1941-42 by W. T. Edmundson and William S. Laughlin. The literature and original field notes have been analyzed, and a description of burial type, side, orientation, grave type, associations, original preservation, and other information has been compiled for each individual. A tally of each of these burial attributes for the Yamhill population as a whole is also completed. In addition, an assessment of age, sex, and stature, a series of craniometric measurements, and non-metric traits, a dental analysis, and general description of obvious pathologic and morphologic condition of each individual and the group as a whole have been accomplished. Differences in trade item associations between deformed and non-deformed individuals suggest either a later arrival of cranial deformation practices (and possibly another cultural group) to the area, and possibly a multiple occupation of the Fuller and Fanning sites, or an elite class separation defined in part by artificial deformation of crania. Cranial deformation is also associated with the frequency of certain cranial discrete traits. Sexual dimorphism was noted in metric but not in non-metric analyses. -
The Neanderthal ''Chignon'': Variation, Integration, and Homology
Journal of Human Evolution 52 (2007) 262e274 The Neanderthal ‘‘chignon’’: Variation, integration, and homology Philipp Gunz, Katerina Harvati* Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany Received 10 May 2006; accepted 31 August 2006 Abstract The occipital bun (‘‘chignon’’) is cited widely as a Neanderthal derived trait. It encompasses the posterior projection/convexity of the occipital squama and is associated with lambdoid flattening on the parietal. A ‘hemibun’ in some Upper Paleolithic Europeans is thought by some authors to indicate interbreeding between Neanderthals and early modern Europeans. However, ‘bunning’ is difficult to measure, and the term has been applied to a range of morphological patterns. Furthermore, its usefulness in phylogenetic reconstruction and its homologous status across modern and fossil humans have been disputed. We present a geometric morphometric study that quantitatively evaluates the chignon, assesses its usefulness in separating Neanderthals from modern humans, and its degree of similarity to Upper Paleolithic ‘hemibuns.’ We measured the three-dimensional coordinates of closely spaced points along the midsagittal plane from bregma to inion and of anatomical landmarks in a large series of recent human crania and several Middle and Late Pleistocene European and African fossils. These coordinate data were processed using the techniques of geometric morphometrics and analyzed with relative warps, canonical variates, and singular warps. Our results show no separation between Neanderthals and modern humans, including early modern Europeans, when the shape of the occipital plane midsagittal-profile is considered alone. On the other hand, Neanderthals are well separated from both recent and fossil modern humans when information about the occipital’s relative position and relative size are also included. -
What's in a Neanderthal
WHAT’S IN A NEANDERTHAL: A COMPARATIVE ANALYSIS Taylorlyn Stephan Oberlin College Dept. of Anthropology Advised by Prof. Amy Margaris TABLE OF CONTENTS I. Abstract – pg. 3 II. Introduction – pg. 3-4 III. Historical Background – pg. 4-5 a. Fig. 1 – pg. 5 IV. Methods – pg. 5-8 a. Figs. 2 and 3 – pg. 6 V. Genomic Definitions – pg. 8-9 VI. Site Introduction – pg. 9-10 a. Fig 4 – pg. 10 VII. El Sidron – pg. 10-14 a. Table – pg. 10-12 b. Figs. 5-7 – pg. 12 c. Figs. 8 and 9 – pg. 13 VIII. Mezmaiskaya – pg. 14-18 a. Table – pg. 14-16 b. Figs. 10 and 11 – pg. 16 IX. Shanidar – pg. 18-22 a. Table – pg. 19-20 b. Figs. 12 and 13 – pg.21 X. Vindija – pg. 22-28 a. Table – pg. 23-25 b. Fig. 14 – pg. 25 c. Figs. 15-18 – pg. 26 XI. The Neanderthal Genome Project – pg. 28-32 a. Table – pg. 29 b. Fig. 19 – pg. 29 c. Figs. 20 and 21 – pg. 30 XII. Discussion – pg. 32- 36 XIII. Conclusion – pg. 36-38 XIV. Bibliography – pg. 38-42 2 ABSTRACT In this analysis, I seek to understand how three separate lines of evidence – skeletal morphology, archaeology, and genomics – are used separately and in tandem to produce taxonomic classifications in Neanderthal and paleoanthropological research more generally. To do so, I have selected four sites as case studies: El Sidrón Cave, Mezmaiskaya Cave, Shanidar Cave, and Vindija Cave. El Sidrón, Mezmaiskaya, and Vindija all have detailed archaeological records and have yielded Neanderthal DNA. -
A Case Report of an Enlarged Suboccipital Nerve with Cutaneous Branch
Open Access Case Report DOI: 10.7759/cureus.2933 A Case Report of an Enlarged Suboccipital Nerve with Cutaneous Branch Sasha Lake 1 , Joe Iwanaga 2 , Rod J. Oskouian 3 , Marios Loukas 4 , R. Shane Tubbs 5 1. Anatomical Studies, St. George's, St. George, GRD 2. Medical Education and Simulation, Seattle Science Foundation, Seattle, USA 3. Neurosurgery, Swedish Neuroscience Institute, Seattle, USA 4. Anatomical Sciences, St. George's University, St. George's, GRD 5. Neurosurgery, Seattle Science Foundation, Seattle, USA Corresponding author: Joe Iwanaga, [email protected] Abstract Variations of the suboccipital nerve are infrequently reported. This nerve derived from the C1 spinal nerve is usually a small branch that primarily innervates the short suboccipital muscles. During the routine dissection of the occipital region in an adult cadaver, a vastly enlarged left-sided suboccipital nerve was identified. The nerve innervated the short suboccipital muscles and overlying semispinalis capitis in normal fashion. However, it continued cranially to end in the overlying skin of the occiput. Although not normally thought to have a cutaneous branch, recalcitrant occipital neuralgia might be due to such a variant branch. Future studies are necessary to further elucidate this proposed pathomechanism. Categories: Neurology, Pathology Keywords: suboccipital nerve, c1 nerve, occiput cutaneous innervation, sensory suboccipital nerve Introduction The suboccipital nerve is the dorsal ramus of C1. This nerve is found between the skull and atlas and within the suboccipital triangle. Here, it is positioned between the posterior arch of the atlas and vertebral artery bordering the nerve inferiorly and superiorly, respectively [1]. The suboccipital nerve innervates the rectus capitis posterior major and minor, obliquus capitis superior, obliquus capitis inferior, and semispinalis capitis. -
ANNEXURE 5.8 (CHAPTER V, PARA 25) FORM 9 List of Applica Ons For
12/2/2020 Form9_AC6_02/12/2020 ANNEXURE 5.8 (CHAPTER V, PARA 25) FORM 9 List of Applicaons for inclusion received in Form 6 Designated locaon identy (where applicaons Constuency (Assembly/£Parliamentary): Avadi Revision identy have been received) From date To date @ 2. Period of applicaons (covered in this list) 1. List number 01/12/2020 01/12/2020 3. Place of hearing* Serial $ Date of Name of Father / Mother / Date of Time of number Name of claimant Place of residence of receipt Husband and (Relaonship)# hearing* hearing* applicaon 1 01/12/2020 Manikandan K Krishnan R (F) 135/8, avadi main road, Paruthipau, , Thiruvallur #20, BOUND STREET, KOVILPATHAGAI, AVADI 2 01/12/2020 PRASANNA E ELANGO R (F) , , Thiruvallur 3 01/12/2020 PRASANNA E ELANGO R (F) #20, BOUND STREET, KOVILPATHAGAI, AVADI, , Thiruvallur NO 6 , 8TH STREET THIRUVALLUVAR 4 01/12/2020 LATHA PARAMASIVAM (H) NAGAR, THIRUMULLAIVOYAL, , Thiruvallur NO 5 PHASE 1, SWATHI NAGAR , KANNADAPALAYAM 5 01/12/2020 BHAVANI S SELVAKUMAR (F) KOVILPATHAGAI AVADI CHENNAI , , Thiruvallur NO 26, 2ND STREET, 4TH CROSS STREET, INDRA 6 01/12/2020 AMANULLAH S SYED MOHAMED (F) NAGAR, CHOLAPURAM, , Thiruvallur NO 72A, SARADHI 7 01/12/2020 RAJAMANI C EAKAMBARAM (F) NAGAR, KARUNAKARACHERI, , Thiruvallur SUBISHANA 8 01/12/2020 DHARMAGURU LAKSHMANAN (F) NO 1, INDRA NAGAR, KOVILPADHAGAI, , Thiruvallur DHARMAGURU NO 72A, SARATHI 9 01/12/2020 C GIRIJA RAJAMANI (H) NAGAR, KARUNAKARACHERI, , Thiruvallur PLOT NO 91, 6 TH STREET THIRUMALAI VASAN NAGAR S 10 01/12/2020 MANU RAMESH R RAMESAN P G (F) M NAGAR POST, -
Abdominal Wall and Cavity
Abdominal Wall and Cavity Dr. ALSHIKH YOUSSEF Haiyan BOUNDARIES Bony Landmarks around Abdomen Iliac crest • Anterior superior iliac • spine (ASIS) Pubic crest • Inguinal ligament • Costal margin • Xiphoid process • Body Cavities Abdominopelvic Cavity Abdominal Cavity – Pelvic Cavity – P242-fig.4.21 Abdominal wall Muscle Aponeurosis DIVISIONS Abdominal Quadrants Applied Anatomy Abdomen is divided into 9 regions via four • planes: Two horizontal [sub-costal (10th) and trans – tubercules plane] (L5). Two vertical (midclavicular planes). – They help in localization of abdominal signs • and symptoms Abdomen Boundaries 9 regions hypochondrium epigastric region subcostal plane flank umbilical region transtubercular plane groin pubic region midclavicular line P243-fig.4.23 Abdominal wall Anterolateral abdominal wall Posterior abdominal wall Anterolateral abdominal wall Layers ( from superficial to deep) Skin • Superficial fascia • Anterolateral muscles • Transverse fascia • Extraperitoneal fascia • Parietal peritoneum • Superficial fascia Camper’s fascia • Scarpa's fascia • Anterolateral abdominal wall Superficial fascia : -division below umbilicus = Fatty layer (Camper’s fascia) continuous • with the superficial fascia over the rest of the ) Thigh –thorax (body. = Membranous layer (Scarpa’s fascia) • passes over the inguinal ligament to fuse the deep fascia of the thigh (fascia lata) approximately one fingerbreadth below the inguinal ligament. In the midline, it is not attached to the pubis but instead from a tubular sheath for the penis (clitoris). In the perineum, it is attaches on each side to the margins of the pubic arch and is know as Colles’ fascia. deep fascia : thin layer covering abdominal • musceles . Arteries 5 intercostal arteries • subcostal arteries • 4 lumbar arteries • Superior epigastric artery— • internal thoracic artery Inferior epigastric artery - • external iliac artery Deep iliac circumflex artery- • external iliac artery SUPERFICIAL ARTERIES Lateral • Posterior intercostal a. -
Bilateral Variation of the Suboccipital Region Musculature
S Journal of O p s e s n Acce Anatomy and Physiological Studies CASE REPORT Bilateral Variation of the Suboccipital Region Musculature AR Dickerson*, CL Fisher PhD Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA Abstract Dissection of the posterior cervical and suboccipital regions of an embalmed 81-year-old male cadaver revealed bilateral variations in the muscular anatomy, including two accessory muscles lying deep to the semispinalis capitis on each side, as well as a bilateral doubling of the rectus capitis posterior major muscle. These two sets of anatomical variations have little to no previous documentation in the literature. The accessory muscle bands were observed to have unique relationships with the greater occipital nerve on each side. This case report describes the findings in detail and examines their precedent in the literature. The suboccipital region has been implicated in the etiology of cervicogenic pain, headaches, and occipital neuralgia. Variations in the muscular anatomy have the potential to create structural interactions with vascular and neurologic structures in the area. Anatomic variations like those reported here should be considered in the diagnosis and treatment of pain and other conditions of the suboccipital region. Keywords: Anatomic Variation, Suboccipital, Accessory Muscle, Greater Occipital Nerve, Rectus capitis posterior major muscle Background leading us to believe that we had encountered accessory muscles that had been previously unreported. The muscles This case report describes variation of the musculature in the were delicate and located in a region often removed to expose suboccipital region observed during dissection of an embalmed the suboccipital region just beneath, so we postulate that the 81-year-old male cadaver. -
Appleton & Lange Review of Anatomy
0523-00 FM 07/15/02 15:30 Page i Sixth edition APPLETON & LANGE REVIEW OF ANATOMY Royce Lee Montgomery, PhD Professor Department of Cell and Developmental Biology School of Medicine University of North Carolina Chapel Hill, North Carolina Kurt Ogden Gilliland, PhD Department of Cell and Developmental Biology School of Medicine University of North Carolina Chapel Hill, North Carolina Appleton & Lange Reviews/McGraw-Hill Medical Publishing Division New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto 0523-00 FM 07/15/02 15:30 Page ii Appleton & Lange Review of Anatomy, Sixth Edition Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. Previous editions copyright © 1995, 1989, by Appleton & Lange; copyright © 1982, 1978, 1974, by Arco Publishing, Inc. 1 2 3 4 5 6 7 8 9 0 VNH VNH 0 9 8 7 6 5 4 3 2 ISBN: 0-07-137727-1 Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the stan- dards accepted at the time of publication. -
Extrinsic Effects of Cranial Modification
Georgia State University ScholarWorks @ Georgia State University Anthropology Theses Department of Anthropology Spring 5-9-2015 Extrinsic Effects of Cranial Modification: A Case Study of Cranial Porosity and Cranial Modification Intensity in Late Intermediate Period (AD 1000 - AD 1400) Andahuaylas, Peru Davette N. Gadison Follow this and additional works at: https://scholarworks.gsu.edu/anthro_theses Recommended Citation Gadison, Davette N., "Extrinsic Effects of Cranial Modification: A Case Study of Cranial Porosity and Cranial Modification Intensity in Late Intermediate Period (AD 1000 - AD 1400) Andahuaylas, Peru." Thesis, Georgia State University, 2015. https://scholarworks.gsu.edu/anthro_theses/95 This Thesis is brought to you for free and open access by the Department of Anthropology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Anthropology Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. EXTRINSIC EFFECTS OF CRANIAL MODIFICATION: A CASE STUDY OF CRANIAL POROSITY AND CRANIAL MODIFICATION INTENSITY IN LATE INTERMEDIATE PERIOD (AD 1000 – AD 1400) ANDAHUAYLAS, PERU by DAVETTE NICHOLE GADISON Under the Direction of Bethany L. Turner-Livermore, PhD ABSTRACT Body alterations such as artificial cranial modification are permanent irreversible changes to the body that become a powerful, constant visual “salient” indicator (Torres-Rouff 2002) or life-long affiliation or demarcation of social identity (Kurin 2014). Most studies have focused on the social implications as well as typology and classification methods. Very few studies have investigated the extrinsic pathological consequences of external compression caused by the boards, pads, and bands used to create pressure at various points on the skull in order to achieve the desired modified shape. -
The Suboccipital Cavernous Sinus
The suboccipital cavernous sinus Kenan I. Arnautovic, M.D., Ossama Al-Mefty, M.D., T. Glenn Pait, M.D., Ali F. Krisht, M.D., and Muhammad M. Husain, M.D. Departments of Neurosurgery and Pathology, University of Arkansas for Medical Sciences, and Laboratory Service, Veterans Administration Medical Center, Little Rock, Arkansas The authors studied the microsurgical anatomy of the suboccipital region, concentrating on the third segment (V3) of the vertebral artery (VA), which extends from the transverse foramen of the axis to the dural penetration of the VA, paying particular attention to its loops, branches, supporting fibrous rings, adjacent nerves, and surrounding venous structures. Ten cadaver heads (20 sides) were fixed in formalin, their blood vessels were perfused with colored silicone rubber, and they were dissected under magnification. The authors subdivided the V3 into two parts, the horizontal (V3h) and the vertical (V3v), and studied the anatomical structures topographically, from the superficial to the deep tissues. In two additional specimens, serial histological sections were acquired through the V3 and its encircling elements to elucidate their cross-sectional anatomy. Measurements of surgically and clinically important features were obtained with the aid of an operating microscope. This study reveals an astonishing anatomical resemblance between the suboccipital complex and the cavernous sinus, as follows: venous cushioning; anatomical properties of the V3 and those of the petrouscavernous internal carotid artery (ICA), namely their loops, branches, supporting fibrous rings, and periarterial autonomic neural plexus; adjacent nerves; and skull base locations. Likewise, a review of the literature showed a related embryological development and functional and pathological features, as well as similar transitional patterns in the arterial walls of the V3 and the petrous-cavernous ICA. -
Tamil Nadu Government Gazette
© [Regd. No. TN/CCN/467/2012-14. GOVERNMENT OF TAMIL NADU [R. Dis. No. 197/2009. 2017 [Price: Rs. 16.80 Paise. TAMIL NADU GOVERNMENT GAZETTE PUBLISHED BY AUTHORITY No. 35] CHENNAI, WEDNESDAY, AUGUST 30, 2017 Aavani 14, Hevilambi, Thiruvalluvar Aandu – 2048 Part VI—Section 4 Advertisements by private individuals and private institutions CONTENTS PRIVATE ADVERTISEMENTS Pages. Change of Names .. 1891-1931 Notice .. 1932 Notice .. 682-685 NOTICE NO LEGAL RESPONSIBILITY IS ACCEPTED FOR THE PUBLICATION OF ADVERTISEMENTS REGARDING CHANGE OF NAME IN THE TAMIL NADU GOVERNMENT GAZETTE. PERSONS NOTIFYING THE CHANGES WILL REMAIN SOLELY RESPONSIBLE FOR THE LEGAL CONSEQUENCES AND ALSO FOR ANY OTHER MISREPRESENTATION, ETC. (By Order) Director of Stationery and Printing. CHANGE OF NAMES 27216. My son, X.A Binto Bestley, born on 22nd July 2002 27219. I, Nallathambi, son of Thiru Chellaiya, born on (native district: Kanyakumari), residing at No. 3/2B-1C, 20th May 1980 (native district: Madurai), residing at Johan Street, Kuthankadu, Konam, Nagercoil, Kanyakumari Old No. 3/3A, New No. 3/55A, Muniyandikovil Street, Kallikudi, District, shall henceforth be known as A BESTLEY Madurai-625 402, shall henceforth be known as C. RAMESH A. AMTHAN ï™ôî‹H Kanyakumari, 21st August 2017. (Father) Madurai, 21st August 2017. 27217. I, M.Jaya, wife of Thiru L. Malaichsamy, born on 27220. My daughter, R.A. Meera Reddy, born on 28th March 2013 (native district: Madurai), residing at 1st January 1986 (native district: Madurai), residing at No. 58/59, Flat-E, Sree Chaitanya Apartment, New Kumaran No. 3-121, Saranthaangi, Vellayapatti, Vadipatti Taluk, Nagar, 1st Main Road, Sholinganallur, Chennai-600 119, Madurai-625 503, shall henceforth be known as M.