What's in a Neanderthal

Total Page:16

File Type:pdf, Size:1020Kb

What's in a Neanderthal WHAT’S IN A NEANDERTHAL: A COMPARATIVE ANALYSIS Taylorlyn Stephan Oberlin College Dept. of Anthropology Advised by Prof. Amy Margaris TABLE OF CONTENTS I. Abstract – pg. 3 II. Introduction – pg. 3-4 III. Historical Background – pg. 4-5 a. Fig. 1 – pg. 5 IV. Methods – pg. 5-8 a. Figs. 2 and 3 – pg. 6 V. Genomic Definitions – pg. 8-9 VI. Site Introduction – pg. 9-10 a. Fig 4 – pg. 10 VII. El Sidron – pg. 10-14 a. Table – pg. 10-12 b. Figs. 5-7 – pg. 12 c. Figs. 8 and 9 – pg. 13 VIII. Mezmaiskaya – pg. 14-18 a. Table – pg. 14-16 b. Figs. 10 and 11 – pg. 16 IX. Shanidar – pg. 18-22 a. Table – pg. 19-20 b. Figs. 12 and 13 – pg.21 X. Vindija – pg. 22-28 a. Table – pg. 23-25 b. Fig. 14 – pg. 25 c. Figs. 15-18 – pg. 26 XI. The Neanderthal Genome Project – pg. 28-32 a. Table – pg. 29 b. Fig. 19 – pg. 29 c. Figs. 20 and 21 – pg. 30 XII. Discussion – pg. 32- 36 XIII. Conclusion – pg. 36-38 XIV. Bibliography – pg. 38-42 2 ABSTRACT In this analysis, I seek to understand how three separate lines of evidence – skeletal morphology, archaeology, and genomics – are used separately and in tandem to produce taxonomic classifications in Neanderthal and paleoanthropological research more generally. To do so, I have selected four sites as case studies: El Sidrón Cave, Mezmaiskaya Cave, Shanidar Cave, and Vindija Cave. El Sidrón, Mezmaiskaya, and Vindija all have detailed archaeological records and have yielded Neanderthal DNA. Shanidar is one of the oldest and most well-documented Neanderthal sites. Alongside the four sites listed above, the findings of the full-coverage Neanderthal genome will be used as a “site” of sorts to understand how genetics can inform and supplement morphological and archaeological data. Ultimately, the data presented here is more useful to contextualize the meta- interactions between paleoanthropological subdivisions rather than to answer, “what is a Neanderthal?”. INTRODUCTION In order to explore the limits of Neanderthal morphology, behavior, and genetics, we must first acknowledge traditional definitions of Neanderthals. The Smithsonian Institution defines them as “members of Homo neanderthalensis; our closest extinct human relative”. The European Nucleotide Archive, which hosts all of the genome sequences derived from Neanderthals, classifies the organism of origin as Homo sapiens neanderthalensis. But among anthropologists, the reigning definition of Neanderthals tends to omit a taxonomic name in favor of labeling them as: “Late Pleistocene human populations living in Europe and parts of Western Asia until approximately 30,000 years ago…this hominid group was morphologically different from its contemporaries and from later human populations”.30 Traditional morphology guidelines paint Neanderthals as short and squat people, possessing large and wide noses, thick and pronounced brow ridges, and sometimes even brains larger than modern humans.6, 24, 26, 28, 34 Despite these common descriptive approximations of Neanderthal morphology, there is no consensus in paleoanthropology regarding what exactly defines a Neanderthal. No current numerical standards decisively defining the limits of Neanderthal morphology yet exist, and it is even difficult to find clearly photographed Neanderthal skeletal and cultural remains. In recent years, our understanding of Neanderthal behavior has changed rapidly. Historically, Neanderthals were associated with the Mousterian lithic (stone tool) industry and were believed to deliberately bury their dead.3, 40, 70, 71, 73, 82 Recent evidence shows that they produced art and jewelry.48, 81 But irrefutable evidence of language and more sophisticated tool building currently remain elusive All citations in this document will follow the format dictated by the journal Science. The only differences are that journal 3 titles are not abbreviated and the bibliography is in alphabetical order. Science published the draft sequence of the Neanderthal genome and since then has published many significant findings on Neanderthal culture and biology. for most extinct hominins classified as Neanderthals; capabilities that have sometimes been used to define all modern humans excluding their Neanderthal contemporaries. But as I will discuss, archaeological evidence is often used to support a previous species designation rather than explicitly define one in the way that morphological and anatomical data are used. The latest form of evidence in paleoanthropology, ancient DNA, promises to objectively find the genetic basis of human evolutionary history and link anatomical observations. Yet, as we will see, genomic data only complicate and contradict previous morphological and archaeological-based classification of Neanderthals. Additionally, paleogenomics is also subject to computational and statistical biases, comparable to the consequences of solely using morphological and behavioral landmarks. In this analysis, I seek to understand how three separate lines of evidence – skeletal morphology, archaeology, and genomics – are used separately and in tandem to produce taxonomic classifications in Neanderthal and paleoanthropological research more generally. To do so, I have selected four sites as case studies: El Sidrón Cave, Mezmaiskaya Cave, Shanidar Cave, and Vindija Cave. El Sidrón, Mezmaiskaya, and Vindija all have detailed archaeological records and have yielded Neanderthal DNA. Shanidar is one of the oldest and most well-documented Neanderthal sites. Alongside the four sites listed above, the findings of the full-coverage Neanderthal genome will be used as a “site” of sorts to understand how genetics can inform and supplement morphological and archaeological data. Ultimately, the data presented here is more useful to contextualize the meta- interactions between paleoanthropological subdivisions rather than to answer, “what is a Neanderthal?”. HISTORICAL BACKGROUND Neanderthal bones were the first set of fossilized hominins to ever be found and identified as belonging to an ancient extinct human lineage. The Neanderthal type fossil was uncovered in 1856 by German miners in Neander Valley. Among the fragments were: a skull case, femurs, arm bones, ribs, and scapulae.76 Type fossils are the original remnants of a species uncovered and are used as the standard for all other species identifications. In retrospect, scholars realized that fossils from Belgium and Gibraltar (1829) were also Neanderthals rather than long-dead arthritic humans.76 To date, Neanderthal remains have been exclusively found in Europe and Asia unlike their contemporaries, anatomically modern Homo sapiens (AMH), of which are found across the world. To explain this unequal population distribution, two models have emerged: the regional continuity and replacement models. Put forth by the physical anthropologist Wolpoff, the regional continuity model states that 4 later members of Homo evolved from independently from regional hominin groups.14, 30 This model supports clinal variation and genetic drift seen in smaller populations. The replacement model, championed by paleontologists including Stringer and Andrews, is less popular than the regional continuity hypothesis. The latter suggests that all modern Homo sapiens are descended from archaic Homo sapiens that recently migrated out of Africa; overtaking Neanderthal and other Homo populations residing in Eurasia.11, 74 Further complicating ideas about Neanderthal evolutionary origins are paleoanthropologists (like Harvati et al) who believe that Neanderthals are an exception to the regional continuity model based on their extreme morphology.11, 29 Fig. 1: Neanderthal geographic distribution Credit: Open Access METHODS To address the questions posed in the abstract, I will utilize morphological landmarks, archaeology, and genomics in this analysis. The following methodology can be used as a guideline to explain how I will interpret the published data. Morphological Landmarks Skeletal morphology is used to ascertain phenotypes and variation within a population. Biological anthropologists use morphology to set species limits based on accepted parameters of variation. To best understand how changes in skeletal form influence hominin species definitions, 5 cranial landmarks of interest based on qualitative and quantitative analyses will used to explore the limits of Neanderthal species classifications. There are eight general categories of craniofacial landmarks used to evaluate Neanderthal morphology.28 The first is the shape and orientation of the infra-orbital region – which is typically classified as “inflated” in Neanderthal specimens. Second is the degree of antero-inferior glabella projection relative to the brow ridge and is used in differentiating pre- and early Neanderthals. Third, the position and sagittal orientation of the face is used; generally relatively forward. A strong juxtamastoid eminence is expected, which results in the crest of the digastric fossa border. Occipital plane convexity, or occipital “bunning” is a fifth classical Neanderthal trait. Reduced mastoid processes, high mid-facial prognathism, and large piriform (nasal) apertures are the final groups of Neanderthal skeletal classifications.28 Despite these categories, morphological-based speciation presents a number of difficulties. Landmark descriptions are subject to human bias, fossil availability and preservation conditions, what kind of tools and measurement system was utilized, and small sample sizes. There is no way to circumvent these constraints, so in this study, all data obtained from morphological analyses
Recommended publications
  • The Origin and Spread of Modern Humans 1. Modern
    THE ORIGIN AND SPREAD OF MODERN HUMANS • Modern Humans • The Advent of Behavioral Modernity • Advances in Technology • Glacial Retreat • Cave Art • The Settling of Australia • Settling the Americas • The Peopling of the Pacific 1. MODERN HUMANS Anatomically modern humans (AMHs) evolved from an archaic Homo sapiens African ancestor • Eventually AMHs spread to other areas, including western Europe, where they replaced, or Interbred with, Neandertals Out of Africa II • Accumulating to support African origin for AMHs • White and Asfaw: finds near village of Herto are generally anatomically modern • Leakey: Omo Kibish remains from 195,000 B.P. appear to be earliest AMH fossils yet found • Sites in South Africa of early African AMHs 1 • Anatomically modern specimens, including skull found at Skhūl, date to 100,000 B.P. • Early AMHs in Western Europe often referred to as Cro Magnons, after earliest fossil find of an anatomically modern human in France • AMHs may have inhabited Middle East before the Neandertals GENETIC EVIDENCE FOR OUT OF AFRICA II • Researchers from Berkeley generated a computerized model of Homo evolution • Based upon the average rate of mutation in known samples of mtDNA • Only the mother contributes mtDNA • Everyone alive today has mtDNA that descends from a woman (dubbed Eve) who lived in sub-Saharan Africa around 200,000 years ago GENETIC EVIDENCE FOR OUT OF AFRICA II • In 1997, mtDNA extracted showed that the Neandertals differed significantly from modern humans • 27 differences between modern humans and Neandertal •
    [Show full text]
  • Past Climate Changes, Population Dynamics and the Origin of Bison in Europe Diyendo Massilani1†, Silvia Guimaraes1†, Jean-Philip Brugal2,3, E
    Massilani et al. BMC Biology (2016) 14:93 DOI 10.1186/s12915-016-0317-7 RESEARCHARTICLE Open Access Past climate changes, population dynamics and the origin of Bison in Europe Diyendo Massilani1†, Silvia Guimaraes1†, Jean-Philip Brugal2,3, E. Andrew Bennett1, Malgorzata Tokarska4, Rose-Marie Arbogast5, Gennady Baryshnikov6, Gennady Boeskorov7, Jean-Christophe Castel8, Sergey Davydov9, Stéphane Madelaine10, Olivier Putelat11,12, Natalia N. Spasskaya13, Hans-Peter Uerpmann14, Thierry Grange1*† and Eva-Maria Geigl1*† Abstract Background: Climatic and environmental fluctuations as well as anthropogenic pressure have led to the extinction of much of Europe’s megafauna. The European bison or wisent (Bison bonasus), one of the last wild European large mammals, narrowly escaped extinction at the onset of the 20th century owing to hunting and habitat fragmentation. Little is known, however, about its origin, evolutionary history and population dynamics during the Pleistocene. Results: Through ancient DNA analysis we show that the emblematic European bison has experienced several waves of population expansion, contraction, and extinction during the last 50,000 years in Europe, culminating in a major reduction of genetic diversity during the Holocene. Fifty-seven complete and partial ancient mitogenomes from throughout Europe, the Caucasus, and Siberia reveal that three populations of wisent (Bison bonasus)and steppe bison (B. priscus) alternately occupied Western Europe, correlating with climate-induced environmental changes. The Late Pleistocene European steppe bison originated from northern Eurasia, whereas the modern wisent population emerged from a refuge in the southern Caucasus after the last glacial maximum. A population overlap during a transition period is reflected in ca. 36,000-year-old paintings in the French Chauvet cave.
    [Show full text]
  • Upper Pleistocene Human Remains from Vindija Cave, Croatia, Yugoslavia
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 54~499-545(1981) Upper Pleistocene Human Remains From Vindija Cave, Croatia, Yugoslavia MILFORD H. WOLPOFF, FRED H. SMITH, MIRKO MALEZ, JAKOV RADOVCIC, AND DARKO RUKAVINA Department of Anthropology, University of Michigan, Ann Arbor, Michigan 48109 (MH.W.1,Department of Anthropology, University of Tennessee, Kmxuille, Tennessee 37916 (FHS.),and Institute for Paleontology and Quaternary Geology, Yugoslav Academy of Sciences and Arts, 41000 Zagreb, Yugoslavia (M.M., J.R., D.R.) KEY WORDS Vindija, Neandertal, South Central Europe, Modern Homo sapiens origin, Evolution ABSTRACT Human remains excavated from Vindija cave include a large although fragmentary sample of late Mousterian-associated specimens and a few additional individuals from the overlying early Upper Paleolithic levels. The Mousterian-associated sample is similar to European Neandertals from other regions. Compared with earlier Neandertals from south central Europe, this sam- ple evinces evolutionary trends in the direction of Upper Paleolithic Europeans. Compared with the western European Neandertals, the same trends can be demon- strated, although the magnitude of difference is less, and there is a potential for confusing temporal with regional sources of variation. The early Upper Paleo- lithic-associated sample cannot be distinguished from the Mousterian-associated hominids. We believe that this site provides support for Hrdlicka’s “Neandertal phase” of human evolution, as it was originally applied in Europe. The Pannonian Basin and surrounding val- the earliest chronometrically dated Upper leys of south central Europe have yielded a Paleolithic-associated hominid in Europe large and significant series of Upper Pleisto- (Smith, 1976a). cene fossil hominids (e.g. Jelinek, 1969) as well This report presents a detailed comparative as extensive evidence of their cultural behavior description of a sample of fossil hominids re- (e.g.
    [Show full text]
  • "Paleogenomics" In
    Rev. Cell Biol. Mol. Medicine Paleogenomics 243 Paleogenomics Peter D. Heintzman*, André E. R. Soares*, Dan Chang, and Beth Shapiro Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA 1 Reconstructing Paleogenomes 245 1.1 Ancient DNA 245 1.1.1 The Nature of Ancient DNA 245 1.1.2 The Common Effects of DNA Damage 246 1.2 The Recovery and Sequencing of Ancient DNA 246 1.2.1 Ancient DNA Extraction 246 1.2.2 DNA Library Preparation 247 1.2.3 Capture-Based Target Enrichment 248 1.2.4 Quantification of aDNA and Sequencing 249 1.3 Assembly and Analysis of a Paleogenome 250 1.3.1 Initial Data Processing 251 1.3.2 Mapping and Quality Control 252 1.3.3 Paleogenomic Analysis 253 2 Case Studies 253 2.1 Hominin Paleogenomics 253 2.1.1 The Origin of Hominin Paleogenetics 253 2.1.2 Entering the Paleogenomics Era 254 2.1.3 The First Complete Human Paleogenome 255 2.1.4 Human and Neandertal Paleogenomics 255 2.2 The Black Death and Insights into Ancient Plagues 257 2.3 Reconstruction and Selection of Ancient Phenotypes 258 2.4 Epigenetics of Ancient Species 260 3 Conclusions 261 Acknowledgments 261 References 261 ∗These authors contributed equally to this study. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA Vol 1 | No 3 | 2015 244 Paleogenomics Rev. Cell Biol. Mol. Medicine Keywords Paleogenomics The science of reconstructing and analyzing the genomes of organisms that are not alive in the present day. Ancient DNA (aDNA) Ancient DNA is DNA that is extracted and characterized from degraded biological spec- imens, including preserved bones, teeth, hair, seeds, or other tissues.
    [Show full text]
  • Growth, Learning, Play and Attachment in Neanderthal Children
    This is a repository copy of The Cradle of Thought : Growth, Learning, Play and Attachment in Neanderthal children. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/83027/ Version: Submitted Version Article: Spikins, Penny orcid.org/0000-0002-9174-5168, Hitchens, Gail, Rutherford, Holly et al. (1 more author) (2014) The Cradle of Thought : Growth, Learning, Play and Attachment in Neanderthal children. Oxford Journal of Archaeology. pp. 111-134. ISSN 0262-5253 https://doi.org/10.1111/ojoa.12030 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ THE CRADLE OF THOUGHT: GROWTH, LEARNING, PLAY AND ATTACHMENT IN NEANDERTHAL CHILDREN Penny Spikins, Gail Hitchens, Andy Needham and Holly Rutherford Department of Archaeology University of York King’s Manor York YO1 7EP SUMMARY Childhood is a core stage in development, essential in the acquisition of social, practical and cultural skills. However, this area receives limited attention in archaeological debate, especially in early prehistory.
    [Show full text]
  • Inference of Natural Selection from Ancient DNA
    COMMENT AND OPINION doi:10.1002/evl3.165 Inference of natural selection from ancient DNA Marianne Dehasque,1,2,3,4 Marıa´ C. Avila-Arcos,´ 5 David Dıez-del-Molino,´ 1,3 Matteo Fumagalli,6 Katerina Guschanski,7 Eline D. Lorenzen,8 Anna-Sapfo Malaspinas,9,10 Tomas Marques-Bonet,11,12,13,14 Michael D. Martin,15 Gemma G. R. Murray,16 Alexander S. T. Papadopulos,17 Nina Overgaard Therkildsen,18 Daniel Wegmann,19,20 Love Dalen,´ 1,2 and Andrew D. Foote17,21 1Centre for Palaeogenetics 10691, Stockholm, Sweden 2Department of Bioinformatics and Genetics, Swedish Museum of Natural History 10405 Stockholm, Sweden 3Department of Zoology, Stockholm University 10691 Stockholm, Sweden 4E-mail: [email protected] 5International Laboratory for Human Genome Research (LIIGH), UNAM Juriquilla, Queretaro 76230, Mexico 6Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot SL5 7PY, United Kingdom 7Animal Ecology, Department of Ecology and Genetics, Science for Life Laboratory, Uppsala University 75236, Uppsala, Sweden 8Globe Institute, University of Copenhagen DK-1350, Copenhagen, Denmark 9Department of Computational Biology, University of Lausanne 1015, Lausanne, Switzerland 10SIB Swiss Institute of Bioinformatics 1015, Lausanne, Switzerland 11Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), Parc de Recerca Biomedica` de Barcelona, Barcelona, Spain 12National Centre for Genomic Analysis—Centre for Genomic Regulation, Barcelona Institute of Science and Technology 08028, Barcelona, Spain 13Institucio Catalana
    [Show full text]
  • Krapina and Other Neanderthal Clavicles: a Peculiar Morphology?
    Krapina and Other Neanderthal Clavicles : A Peculiar Morphology? Jean-Luc Voisin To cite this version: Jean-Luc Voisin. Krapina and Other Neanderthal Clavicles : A Peculiar Morphology?. Periodicum Biologorum, 2006, 108 (3), pp.331-339. halshs-00352689 HAL Id: halshs-00352689 https://halshs.archives-ouvertes.fr/halshs-00352689 Submitted on 13 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PERIODICUM BIOLOGORUM UDC 57:61 VOL. 108, No 3, 331–339, 2006 CODEN PDBIAD ISSN 0031-5362 Original scientific paper Krapina and Other Neanderthal Clavicles: A Peculiar Morphology? Abstract JEAN-LUC VOISIN The clavicle is the less studied element of the shoulder girdle, even if it is USM 103 a very important bone for human evolution because it permits all move- Institut de Paléontologie Humaine ments outside the parasagittal plan. In this work, clavicle curvatures are 1 rue René Panhard 75013 Paris studied by projecting them on a cranial and a dorsal plan, which are perpen- E-mail: [email protected] dicular. In cranial view, there is no difference within the genus Homo, and [email protected] Neanderthal clavicles are not more S-shaped than modern human ones.
    [Show full text]
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • Paleoanthropology Society Meeting Abstracts, Albuquerque, Nm, 9–10 April 2019
    PALEOANTHROPOLOGY SOCIETY MEETING ABSTRACTS, ALBUQUERQUE, NM, 9–10 APRIL 2019 New Hominin Remains from Mille‐Logya, Afar, Ethiopia and Their Implication for the Origin of Homo Zeresenay Alemseged, Organismal Biology and Anatomy, University of Chicago, UNITED STATES OF AMERICA Jonathan Wynn, National Science Foundation, UNITED STATES OF AMERICA Denis Geraads, CNRS UMR 7207, Muséum National dʹHistoire Naturelle, FRANCE Denné Reed, Anthropology, University of Texas at Austin, UNITED STATES OF AMERICA W. Andrew Barr, Center for the Advanced Study of Human Paleobiology & Department of Anthropology, The George Washington University, UNITED STATES OF AMERICA René Bobe, University of Oxford, UNITED KINGDOM Shannon McPherron, Human Evolution, Max Planck Institute for Evolutionary Anthropology, GERMANY The Mille‐Logya site is located in the Afar depression of Ethiopia, a paleoanthropological hotspot. The region has produced a vast amount of paleontological and archeological evidence for our understanding of the biological and cultural evolution of the hominin clade spanning the past 6 million years. Yet, as is the case in many places, the time interval between 3 and 2.5 Ma is poorly sampled in this otherwise prolific region. The Mille‐Logya Project (MLP) area, which is located north of the Ledi‐Geraru and east of Woraso‐ Mille research areas, contains sediments representing this crucial interval and has yielded rich faunal assemblages with important implications for environmental change in the sedimentary basin (Alemseged et al. 2016). It has also yielded hominin remains, albeit fragmentary, that will shed some light on hominin evolution in the 3 to 2.5 Ma interval. To date, our team has recovered four hominin remains including a diagnostic and complete upper second molar crown (MLP‐1549), a calvarial fragment (MLP‐1469) and right and left proximal ulnae (MLP‐1617 and MLP‐786), from different individuals.
    [Show full text]
  • Comments on Mezmaiskaya"
    Eurasian Prehistory, 5 (1) : 131- 136. GETTING BACK TO BASICS: A RESPONSE TO OTTE "COMMENTS ON MEZMAISKAYA" Lubov Golovanova, Vladimir Doronichev and Naomi Cleghorn Marcel Otte recently argued (In "Comments Jar to the Ahmarian tradition, and particularly the on Mezmaiskaya, North Caucasus", Eurasian lithic assemblages from Abu Noshra and the La­ Prehistory, this issue) that the Early Upper Paleo­ gaman, dating between 30 and 35 ky BP (Gilead, lithic (EUP) at Mezmaiskaya Cave can be defined 1991 ). This preliminary conclusion is based on as Aurignacian (versus Golovanova et al., 2006). the prevalence of micro-laminar (bladelet) debi­ This raises an old methodological problem con­ tage, a high percentage of tools made on bladelets cerning the correct use of scientific terms and the (compared with 45 .7 percent at Lagama), and a definition of the Aurignacian. Lithic definitions rather low representation (about 20 percent) of such as Aurignacian and Gravettian, which were endscrapers and burins. It is important to note that ori ginally based on specific materials, have been only the later Ahmarian assemblages provided a rather more loosely applied to assemblages dis­ basis for this comparison. Moreover, despite tant in time and space. We believe that the wider many similarities, the EUP industry from Layer application of these original terms not only sim­ 1C at Mezmaiskaya is not identical to the Ahmar­ plifies them by a subjective reduction of their pri­ ian. mary determining attributes, but also confuses our Ongoing excavations of EUP levels in Mez­ understanding of cultural processes within and maiskaya Cave now permit a more accurate com­ between various regions.
    [Show full text]
  • Curriculum Vitae Erik Trinkaus
    9/2014 Curriculum Vitae Erik Trinkaus Education and Degrees 1970-1975 University of Pennsylvania Ph.D 1975 Dissertation: A Functional Analysis of the Neandertal Foot M.A. 1973 Thesis: A Review of the Reconstructions and Evolutionary Significance of the Fontéchevade Fossils 1966-1970 University of Wisconsin B.A. 1970 ACADEMIC APPOINTMENTS Primary Academic Appointments Current 2002- Mary Tileston Hemenway Professor of Arts & Sciences, Department of Anthropolo- gy, Washington University Previous 1997-2002 Professor: Department of Anthropology, Washington University 1996-1997 Regents’ Professor of Anthropology, University of New Mexico 1983-1996 Assistant Professor to Professor: Dept. of Anthropology, University of New Mexico 1975-1983 Assistant to Associate Professor: Department of Anthropology, Harvard University MEMBERSHIPS Honorary 2001- Academy of Science of Saint Louis 1996- National Academy of Sciences USA Professional 1992- Paleoanthropological Society 1990- Anthropological Society of Nippon 1985- Société d’Anthropologie de Paris 1973- American Association of Physical Anthropologists AWARDS 2013 Faculty Mentor Award, Graduate School, Washington University 2011 Arthur Holly Compton Award for Faculty Achievement, Washington University 2005 Faculty Mentor Award, Graduate School, Washington University PUBLICATIONS: Books Trinkaus, E., Shipman, P. (1993) The Neandertals: Changing the Image of Mankind. New York: Alfred A. Knopf Pub. pp. 454. PUBLICATIONS: Monographs Trinkaus, E., Buzhilova, A.P., Mednikova, M.B., Dobrovolskaya, M.V. (2014) The People of Sunghir: Burials, Bodies and Behavior in the Earlier Upper Paleolithic. New York: Ox- ford University Press. pp. 339. Trinkaus, E., Constantin, S., Zilhão, J. (Eds.) (2013) Life and Death at the Peştera cu Oase. A Setting for Modern Human Emergence in Europe. New York: Oxford University Press.
    [Show full text]
  • K = Kenyanthropus Platyops “Kenya Man” Discovered by Meave Leaky
    K = Kenyanthropus platyops “Kenya Man” Discovered by Meave Leaky and her team in 1998 west of Lake Turkana, Kenya, and described as a new genus dating back to the middle Pliocene, 3.5 MYA. A = Australopithecus africanus STS-5 “Mrs. Ples” The discovery of this skull in 1947 in South Africa of this virtually complete skull gave additional credence to the establishment of early Hominids. Dated at 2.5 MYA. H = Homo habilis KNM-ER 1813 Discovered in 1973 by Kamoya Kimeu in Koobi Fora, Kenya. Even though it is very small, it is considered to be an adult and is dated at 1.9 MYA. E = Homo erectus “Peking Man” Discovered in China in the 1920’s, this is based on the reconstruction by Sawyer and Tattersall of the American Museum of Natural History. Dated at 400-500,000 YA. (2 parts) L = Australopithecus afarensis “Lucy” Discovered by Donald Johanson in 1974 in Ethiopia. Lucy, at 3.2 million years old has been considered the first human. This is now being challenged by the discovery of Kenyanthropus described by Leaky. (2 parts) TC = Australopithecus africanus “Taung child” Discovered in 1924 in Taung, South Africa by M. de Bruyn. Raymond Dart established it as a new genus and species. Dated at 2.3 MYA. (3 parts) G = Homo ergaster “Nariokotome or Turkana boy” KNM-WT 15000 Discovered in 1984 in Nariokotome, Kenya by Richard Leaky this is the first skull dated before 100,000 years that is complete enough to get accurate measurements to determine brain size. Dated at 1.6 MYA.
    [Show full text]