Management Zones from Small Pelagic Fish Species Stock Structure in Southern Australian Waters

Total Page:16

File Type:pdf, Size:1020Kb

Management Zones from Small Pelagic Fish Species Stock Structure in Southern Australian Waters Management zones from small pelagic fish species stock structure in southern Australian waters C. Bulman, S. Condie, J. Findlay, B. Ward & J. Young FRDC 2006/076 March 2008 Fisheries Research and Development Corporation and Australian Fisheries Management Authority Commercial–in–Confidence ii Bulman, Cathy. Management zones from small pelagic fish species stock structure in southern Australian waters. Bibliography. ISBN 9781921424007 (pdf). 1. Deep-sea fishes - Australia. 2. Marine fishes - Australia. 3. Fish stock assessment - Australia. 4. Fishery resources - Australia. 5. Fishery management - Australia. 6. Fisheries - Australia. I. CSIRO. II. Title. 333.9560994 Management zones from small pelagic fish species stock structure in southern Australian waters iii Enquiries should be addressed to: Dr Catherine Bulman CSIRO Marine and Atmospheric Research GPO Box 1538, Tasmania 7001 Australia W 03 6232 5357 F 03 6332 5053 [email protected] Distribution list On-line approval to publish (CSIRO) 1 (pdf) FRDC 6 (+ pdf) AFMA 5 (+ pdf) Authors 5 ComFRAB 1 SPFRAG scientific members (Drs Ward, Lyle & Neira) 3 State Fisheries Managers (NSW, Vic, Tas, SA, WA) 5 CMAR Library (not for circulation) 1 (pdf) Important Notice © Copyright Fisheries Research and Development Corporation and Commonwealth Scientific and Industrial Research Organisation (‘CSIRO’) Australia 2008 All rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of the copyright owners. The results and analyses contained in this Report are based on a number of technical, circumstantial or otherwise specified assumptions and parameters. The user must make its own assessment of the suitability for its use of the information or material contained in or generated from the Report. To the extent permitted by law, CSIRO excludes all liability to any party for expenses, losses, damages and costs arising directly or indirectly from using this Report. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. Use of this Report The use of this Report is subject to the terms on which it was prepared by CSIRO. In particular, the Report may only be used for the following purposes. this Report may be copied for distribution within the Client’s organisation; the information in this Report may be used by the entity for which it was prepared (“the Client”), or by the Client’s contractors and agents, for the Client’s internal business operations (but not licensing to third parties); extracts of the Report distributed for these purposes must clearly note that the extract is part of a larger Report prepared by CSIRO for the Client. The Report must not be used as a means of endorsement without the prior written consent of CSIRO. The name, trademark or logo of CSIRO must not be used without the prior written consent of CSIRO. Management zones from small pelagic fish species stock structure in southern Australian waters iv GLOSSARY AAIW Antarctic Intermediate Water AFMA Australian Fisheries Management Authority AFZ Australian Fishing Zone BRS Bureau of Rural Sciences CARS CSIRO Atlas of Regional Seas CSIRO Commonwealth Scientific and Industrial Research Organization DPIW Department of Primary Industries and Water (Tasmania) EAC East Australian Current EEZ Exclusive Economic Zone FL Fork length FRDC Fisheries Research and Development Corporation GAB Great Australian Bight ITW Indonesian Throughflow Water OCS Offshore Constitutional Settlement PIRVic Primary Industries Research Victoria SAMW Subantarctic Mode Water SARDI South Australian Research and Development Institute SDODE Spatial Dynamics Ocean Data Explorer SICW South Indian Central Water SLW Subtropical Lower Water SMP Statutory Management Plan SPF Small Pelagic Fishery SPFMAC Small Pelagic Fisheries Management Advisory Committee SPFRAG Small Pelagic Fisheries Research Advisory Group SPRAT Small Pelagic Research and Assessment Team SPRFMO South Pacific Regional Fisheries Management Organisation TAC Total Allowable Catch TACC Total Allowable Commercial Catch TAFI Tasmanian Aquaculture and Fisheries Institute TCL Trigger Catch Levels Management zones from small pelagic fish species stock structure in southern Australian waters v NON TECHNICAL SUMMARY 2006/076 Management zones from small pelagic fish species stock structure in southern Australian waters PRINCIPAL INVESTIGATOR: Dr C. Bulman ADDRESS: CSIRO Marine and Atmospheric Research GPO Box 1538 Hobart Tas 7001 ph: 03 6232 5357 Objectives: 1. Undertake a review of the global literature on the subject of small pelagic species stock structures and delineations. The review should focus on available scientific knowledge and current understanding from similar species or general knowledge of the spatial structure of physical and biological processes in this area to suggest an appropriate spatial structure for immediate management. 2. Consolidate and review existing information on small pelagic fish species. Derive from this information, one or a range of reasonable interpretations or hypotheses for the spatial stock structuring of small pelagic species in the Commonwealth Small Pelagics Fishery off southern Australia. 3. Develop from the above interpretations/hypotheses a suite of potential and appropriate interim spatial management zones and measures, recognising the alternative hypotheses and the likely need for precaution. 4. From these hypotheses, generate recommendations regarding sampling design and appropriate analytical techniques to use in a future study to resolve the key uncertainties for future management Non Technical Summary: The available literature and data on the biology, habitat and catches of target species in the Commonwealth Small Pelagic Fishery was reviewed. This information suggests that, for at least 4 of the 5 species, there are likely to be two major subpopulations, one on the eastern seaboard of Australia including East Tasmania and another to the west of Tasmania across the Management zones from small pelagic fish species stock structure in southern Australian waters vi Great Australian Bight and the Western Australia region. In the Eastern region, there is no evidence to suggest that jack mackerel Trachurus declivis is not one stock. The most recent information arising from ichthyoplankton surveys combined with the surveys of jack mackerel off eastern Tasmanian in the late 1980s are indicative of a specific association of the spawning stocks with the cool water masses of the Tasman Front. While it has been suggested that spawning is triggered by the warmer East Australian Current impinging on the shelf, there is evidence to suggest that the fish spawn in the cooler water under the surface currents. However, the eggs rise into the surface waters of the East Australian Current where development would be expected to be faster due to the warmer temperatures. While jack mackerel is caught widely throughout its distribution, catches were highest off East Tasmania in the mid 1980s for a couple of seasons, and have continued to fluctuate until redbait became the primary target in the early 2000s. While this suggests that jack mackerel are more abundant in southern regions, market forces strongly influence fishing practices and consequently the resulting catch history. Similarly, redbait Emmelichthys nitidus appears to be more strongly associated with the cooler water masses in the Tasmanian region. There is some suggestion that redbait accumulate on the cooler side of the East Australian Current front. There is evidence for faunal contrast between the East Australian Current eddies and cooler Tasman Sea waters and it has been suggested that species such as tuna prefer either the cooler or warmer sides of the fronts. Simultaneous spawning of redbait throughout its range in eastern Australia also suggests one stock in the Eastern region. Historically, the largest catches of redbait have been from eastern Tasmania but again this could possibly reflect fishing practices more than abundances. Blue mackerel Scomber australasicus and yellowtail scad Trachurus novaezelandiae are more commonly caught off New South Wales and southern Queensland. The major oceanographic influence in this region is the East Australian Current which carries warm, higher salinity water from the Coral Sea along the east coast surfacing along the Tasman Front and flowing eastwards. The position of the Tasman Front moves south in summer and north in winter and ichthyoplankton surveys off NSW and Victoria have found a mixed species composition of eggs and larvae. Blue mackerel eggs and larvae were caught exclusively in the “mixed” and East Australian Current waters. Yellowtail scad appear to prefer the warmer more northern waters although identification to species level of the Trachurus eggs has not yet been possible. Ongoing analyses of these data are expected to help to clarify species’ associations. There is insufficient local data on Peruvian jack mackerel Trachurus murphyi to make any conclusions about stock structure in Australia. This species is widely distributed throughout the Pacific with populations in the northern and southern hemisphere considered to be two subspecies. The Southern Pacific Ocean subspecies is distributed
Recommended publications
  • Appendicularia of CTAW
    APPENDICULARIA APPENDICULARIA a b Fig. 26. Oikopleura albicans (Leuckart, 1854), a commonly occurring appendicularian species: a, dorsal view; b, lateral view. (Scale bar = 0.1 mm). [after T. Prentiss, reproduced with permission, from Alldredge 1976] Appendicularians are small free swimming planktonic tunicates, their bodies consisting of a short trunk and a tail (containing the notochord cells) which is present through the life of the individual. Glandular (oikoplast) epithelium on the trunk secretes the mucous house which encloses the whole or part of the body and contains the complex filters which strain food from the water driven through them (Deibel 1998; Flood & Deibel 1998). Unlike other tunicates, there is no peribranchial cavity and a pair of pharyngeal perforations (spiracles) surrounded by a ring of cilia open directly to the exterior from the floor of the pharynx. The early studies of these organisms, begun with Chamisso's description of Appendicularia flagellum Chamisso, 1821, were confounded by questions of its phylogenetic affinity. Chamisso classified his species with medusoids, Mertens (1830) with molluscs, and Quoy & Gaimard (1833) with zoophytes. Only in 1851 were appendicularians correctly assigned to the Tunicata by Huxley. At the time of this placement, the existence of more than one taxon was only just beginning to be recognised, and despite Huxley's work, they were not universally regarded as adult organisms—some authors still insisting that they were ascidian larvae or a free swimming generation of the sessile ascidians (Fenaux 1993). Subsequently, these questions were resolved by the work of Fol (1872) on material from the Straits of Messina, which forms the basis of later studies on the large collections of the great expeditions of the 19th century that revealed their true diversity in the oceanic plankton.
    [Show full text]
  • The Home of Blue Water Fish
    The Home of Blue Water Fish Rather than singly inhabiting the trackless ocean, pelagic fish species travel together in groups, which migrate between hidden, productive oases A. Peter Klimley, John E. Richert and Salvador J. Jorgensen ore than two decades ago, I (Klim- It was a wonder. But what left us side of the ocean have later been caught Mley) pressed my mask against my dumbfounded was the sudden erup- on the other side. However, these data face, took a deep breath and flipped tion of this multilayered community. do not tell marine scientists whether over the edge of a small Mexican fish- Just one week before, we had visited the individual moved alone or as part ing boat into the Gulf of California. The the same site and seen nothing. The of a school, as a single species or within spectacular vision I saw that day has difference between the visits was like an aggregation of many species. These shaped the questions that motivate my comparing an empty stadium to one unanswered questions are part of a research career in marine biology. crowded with tens of thousands of general ignorance that has hindered ef- I was looking for hammerhead sharks cheering fans. Had we witnessed the forts to maintain healthy populations of over the Gorda Seamount, a shallow arrival of a massive influx of oceanic pelagic fishes, many of which are in a underwater ridge at the mouth of the species to the Gulf of California? precipitous, worldwide decline because gulf between the Baja Peninsula and of over-harvesting.
    [Show full text]
  • Eurochordata and Cephalochordata of Persian Gulf & Oman See
    Subphylum Urochordata : Tunicates Class Ascidacea Class Larvacea Class Thaliacea Subphylum Cephalochordata : Amphioxus Phylum Chordata : 1 - Subphylum Urochordata 2 Subphylum Cephalochordata (Subphylum Urochordata : Tunicates ) Class Ascidiacea Class Larvacea Class Thaliacea (Subphylum Cephalochordata ) Class Ascidiacea Ascidia Kowalevsky Patricia Kott D. lane David George & Gordon Paterson Herdmania momus savigny Herdmania momus kiamanensis Didemnum candidum savigny Phallusia nigra savigny Styela canopus savigny Class Ascidiacea : Order : Aplousobranchia Family : Polyclinidae : Aplidium cf. rubripunctum C.Monniot & F. Monniot 1997 Polyclinum constellatum Savigny, 1816 Family Didemnidae Didemnum candidum Savigny, 1816 Didemnum cf. granulatum Tokioka, 1954 Didemnum obscurum F. Monniot 1969 Didemnum perlucidum F. Monniot, 1983 Didemnum sp. Didemnum yolky C.Monniot & F. Monniot 1997 Diplosoma listerianum Milne Edwards, 1841 Order : Phlebobranchia Family : Ascidiidae Ascidia sp. Phallusia julinea Sluiter, 1915 Phallusia nigra Savigny, 1816 Order : Stolidobranchia Family : Styelidae Botryllus gregalis Sluiter, 1898 Botryllus niger Herdman, 1886 Botryllus sp. Eusynstyela cf. hartmeyeri Michaelsen, 1904 Polyandrocarpa sp. Styela canopus Savigny, 1816 Symplegma bahraini C.Monniot & F. Monniot 1997 Symplegma brakenhielmi Michaelsen, 1904 Family pyuridae Herdmania momus Savigny, 1816 Pyura curvigona Tokioka, 1950 Pyurid sp. Class Larvacea Larva Seymour Sewell Phylum Chordata Subphylum Urochordata * Class Larvacea Order Copelata Family Fritillariidae
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Round Scad Exploration by Purse Seine in the South China Sea, Area III: Western Philippines
    Round scad exploration by purse seine in the South China Sea, Area III: Western Philippines Item Type book_section Authors Pastoral, Prospero C.; Escobar Jr., Severino L.; Lamarca, Napoleon J. Publisher Secretariat, Southeast Asian Fisheries Development Center Download date 01/10/2021 13:06:13 Link to Item http://hdl.handle.net/1834/40530 Proceedings of the SEAFDEC Seminar on Fishery Resources in the South China Sea, Area III: Western Philippines Round Scad Exploration by Purse Seine in the South China Sea, Area III: Western Philippines Prospero C. Pastoral1, Severino L. Escobar, Jr.1 and Napoleon J. Lamarca2 1BFAR-National Marine Fisheries Development Center, Sangley Point, Cavite City, Philippines 2BFAR-Fishing Technology Division, 860 Arcadia Bldg., Quezon Avenue, Quezon City, Philippines ABSTRACT Round scad exploration by purse seine in the waters of western Philippines was conducted from April 22 to May 7, 1998 for a period of five (5) fishing days with a total catch of 7.3 tons and an average of 1.5 tons per setting. Dominant species caught were Decapterus spp. having 70.09% of the total catch, followed by Selar spp. at 12.66% and Rastrelliger spp. 10.70%. Among the Decapterus spp. caught, D. macrosoma attained the highest total catch composition by species having 68.81% followed by D. kurroides and D.russelli with 0.31% and 1.14% respectively. The round scad fishery stock was composed mainly of juvenile fish (less than 13 cm) and Age group II (13 cm to 14 cm). Few large round scad at Age group IV and V (20 cm to 28 cm) stayed at the fishery.
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations
    A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS June 30 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria. L.D. Palomares, Rainer Froese, Brittany Derrick, Simon-Luc Nöel, Gordon Tsui Jessika Woroniak Daniel Pauly A report prepared by the Sea Around Us for OCEANA June 30, 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria L.D. Palomares1, Rainer Froese2, Brittany Derrick1, Simon-Luc Nöel1, Gordon Tsui1, Jessika Woroniak1 and Daniel Pauly1 CITE AS: Palomares MLD, Froese R, Derrick B, Nöel S-L, Tsui G, Woroniak J, Pauly D (2018) A preliminary global assessment of the status of exploited marine fish and invertebrate populations. A report prepared by the Sea Around Us for OCEANA. The University of British Columbia, Vancouver, p. 64. 1 Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver BC V6T1Z4 Canada 2 Helmholtz Centre for Ocean Research GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany TABLE OF CONTENTS Executive Summary 1 Introduction 2 Material and Methods 3 − Reconstructed catches vs official catches 3 − Marine Ecoregions vs EEZs 3 − The CMSY method 5 Results and Discussion 7 − Stock summaries reports 9 − Problematic stocks and sources of bias 14 − Stocks in the countries where OCEANA operates 22 − Stock assessments on the Sea Around Us website 31 − The next steps 32 Acknowledgements 33 References 34 Appendices I. List of marine ecoregions by EEZ 37 II. Summaries of number of stock by region and 49 by continent III.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • The Queensland Stout Whiting Fishery 1991 to 2002
    FISHERY ASSESSMENT REPORT DPI AGENCY FOR FOOD AND FIBRE SCIENCES THE QUEENSLAND STOUT WHITING FISHERY 1991 TO 2002 Michael O’Neill 1 Kate Yeomans 2, Ian Breddin2, Eddie Jebreen2 and Adam Butcher1 1 AFFS FISHERIES – RESOURCE ASSESSMENT 2 QUEENSLAND FISHERIES SERVICE MARCH 2002 CONTENTS 1. EXECUTIVE SUMMARY ...............................................................................................................3 2. INTRODUCTION .............................................................................................................................4 2.1 MAIN FEATURES OF THE 2002 FISHERY........................................................................................4 2.2 HISTORY .......................................................................................................................................4 2.3 BIOLOGY.......................................................................................................................................5 2.4 MARKETING .................................................................................................................................6 2.5 MANAGEMENT..............................................................................................................................6 2.6 PREVIOUS ASSESSMENTS .............................................................................................................7 3. 2003 ASSESSMENT..........................................................................................................................8 3.1 ADVANCES
    [Show full text]
  • The FAD Fishery in the Gulf of Thailand
    Aquat. Living Resour. 26, 85–96 (2013) Aquatic c EDP Sciences, IFREMER, IRD 2013 DOI: 10.1051/alr/2013045 Living www.alr-journal.org Resources The FAD fishery in the Gulf of Thailand: time for management measures Pavarot Noranarttragoon1,a, Piyachok Sinanan2, Nantachai Boonjohn3, Pakjuta Khemakorn4 and Amararatne Yakupitiyage1 1 Asian Institute of Technology, PO Box 4, Klong Luang, 12120 Pathum Thani, Thailand 2 Eastern Marine Fisheries Research and Development Center (Rayong), 2 Phe, Muang, 21160 Rayong, Thailand 3 Chumphon Marine Fisheries Research and Development Center, 408 Paknam, Muang, 86120 Chumphon, Thailand 4 Southern Marine Fisheries Research and Development Center (Songkhla), 79/1 Wichianchom Rd., Bo-yang, Muang, 90000 Songkhla, Thailand Received 3 May 2012; Accepted 9 January 2013 Abstract – Fish aggregating devices (FADs) used in the Gulf of Thailand are made of bamboo poles, twisted wire and coconut leaves, fastened to a concrete block. Purse seines with 2.5 cm mesh size are used to surround the fish, using fishing boats ranging from 18 to 26 m in overall length. Fishing grounds are located in the central Gulf of Thailand at a depth of 25–60 m. Catch per unit effort (CPUE), species composition and size of economically important species were analyzed by collecting data from fishing boats using FADs at nine main fishing ports along the Gulf of Thailand between January and December 2007. The results show that the average CPUE was 3351 kg day−1,which was composed of 88% pelagic fishes, 5% demersal fishes, 4% trash fishes and 2% squids and cuttlefishes. The major pelagic species were Indian mackerel (Rastrelliger kanagurta), Indian scad (Decapterus russelli) and bigeye scad (Selar crumenophthalmus), which made up 25%, 24% and 8% of the total catch, respectively, while neritic tunas (kawakawa; Euthynnus affinis, frigate tuna; Auxis thazard thazard and longtail tuna; Thunnus tonggol) made up 8% of the total catch.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Fisheries Resources from Thai Purse Seine in the Inner Gulf of Thailand
    2 Fisheries Resources from Thai Purse Seine in the Inner Gulf of Thailand Pavarot Noranarttragoon1*, Thitipon Chueamunkong2 and Adisorn Jamsai3 1 Fisheries Resources Assessment Group 2 Upper Gulf Fisheries Research and Development Center (Samut Prakan) 3 Mueang Surin Fisheries District Office Abstract Catch per unit effort (CPUE), species composition and size of some economically important species from Thai purse seiners in the Inner Gulf of Thailand were studied during January to December 2013 by collecting the data from fishing port in Chon Buri, Samut Prakan, Samut Sakhon, Phetchaburi and Prachuap Khiri Khan Province. The results showed that CPUE was 2,114.007 kilogram/day. Pelagic fish represented the highest composition of 84.39% of the total catch followed by trash fish, demersal fish and invertebrate made up 11.39%, 3.04% and 1.18% of the total catch respectively. The major pelagic species were short mackerel (Rastrelliger brachysoma), goldstripe sardinella (Sardinella gibbosa) and white sardinella (S. albella) sum up 51.62%, 13.66% and 3.83% of the total catch respectively. The size measurement of ten economically important pelagic species found that mean length of five species, i.e., short mackerel, goldstripe sardinella, yellowtail scad (Atule mate), Indian mackerel (R. kanagurta) and torpedo scad (Megalaspis cordyla), were smaller than their size at first maturity accounted for 94.74%, 72.82%, 96.79%, 76.14% and 99.26% of their total catch respectively. In addition, mean length of yellowstripe scad (Selaroides leptolepis) was larger than its size at first maturity. Keywords: fisheries resources, Thai purse seine, Inner Gulf of Thailand, pelagic fish, short mackerel *Corresponding author: Department of Fisheries, 50 Phahon Yothin Road, Lad Yao, Chatuchak, Bangkok 10900 Tel.
    [Show full text]