The Home of Blue Water Fish

Total Page:16

File Type:pdf, Size:1020Kb

The Home of Blue Water Fish The Home of Blue Water Fish Rather than singly inhabiting the trackless ocean, pelagic fish species travel together in groups, which migrate between hidden, productive oases A. Peter Klimley, John E. Richert and Salvador J. Jorgensen ore than two decades ago, I (Klim- It was a wonder. But what left us side of the ocean have later been caught Mley) pressed my mask against my dumbfounded was the sudden erup- on the other side. However, these data face, took a deep breath and flipped tion of this multilayered community. do not tell marine scientists whether over the edge of a small Mexican fish- Just one week before, we had visited the individual moved alone or as part ing boat into the Gulf of California. The the same site and seen nothing. The of a school, as a single species or within spectacular vision I saw that day has difference between the visits was like an aggregation of many species. These shaped the questions that motivate my comparing an empty stadium to one unanswered questions are part of a research career in marine biology. crowded with tens of thousands of general ignorance that has hindered ef- I was looking for hammerhead sharks cheering fans. Had we witnessed the forts to maintain healthy populations of over the Gorda Seamount, a shallow arrival of a massive influx of oceanic pelagic fishes, many of which are in a underwater ridge at the mouth of the species to the Gulf of California? precipitous, worldwide decline because gulf between the Baja Peninsula and of over-harvesting. Consequently, many the western coast of Mexico. Wear- Marine Oases fisheries managers and conservationists ing a mask, snorkel and fins, a local Thanks to the popularity of nature now favor the creation of protected hab- colleague and I saw, through the dis- shows on television, most people itats, similar to game preserves, to ease persing bubbles from our entry, a stun- know that many terrestrial animals mi- pressure on hard-hit fish stocks. The ning sight—we were in the middle of grate from one place to another as the problem with these “marine protect- a swarm of fish, as if we had joined seasons change. For example, in Africa ed areas” is where to put them. What the piscine version of rush hour at every year hundreds of thousands of is the habitat of pelagic fishes such as a subway station. More than a hun- wildebeests, gazelles and zebras leave tuna, dolphinfish and mackerel? Is it dred hammerhead sharks, some close the southern plain of the Serengeti to the broad expanse of the oceans, which enough to touch, passed by us as we avoid the dry season. Without rain, cover four-fifths of the globe? floated above a seemingly endless, the lakes evaporate and the grass dies, As marine ecologists, we propose tightly packed school of flashing, sil- causing the base of the food chain to that pelagic species might instead pass ver and black skipjack tunas. Nearby, a collapse and forcing large herbivores quickly through the vast, mostly emp- cyclone-shaped school of gray-striped to walk hundreds of miles in search ty ocean yet stay longer at biotic oases mullet snappers, each almost a meter of forage. As they slowly make their to feed on locally abundant prey— long, swam slowly in a circle. Small long-distance trek, the herds linger analogous to the way terrestrial spe- green jacks and plate-shaped pom- at remaining water holes to sate their cies congregate at water holes along pano were everywhere, darting to thirst and feed on the lush riparian fo- their migratory path. If this hypoth- feed on tiny, shrimp-like krill and tail- liage. These oases are terrestrial biotic esis is true, policy makers could focus beating larvaceans. “hotspots” along a migratory route on sheltering some of these locations, with few other sources of food. When rather than the entire ocean, to improve A. Peter Klimley is an adjunct associate professor at the rains return, the animals go back to the health of pelagic populations. the University of California, Davis. In addition to their green pasture in the south. scientific articles, he has written texts and popular Biologists know much less about Intro to El Bajo nonfiction about pelagic fish behavior and ecology. the migration of marine species, par- Much of our research into the ecology John E. Richert and Salvador J. Jorgensen are Ph.D. ticularly those pelagic or free-swimming of pelagic fishes is based on observa- candidates at UC Davis. Richert studies food chains fish that inhabit the blue ocean far from tions in the Gulf of California, par- in the Gulf of California and manages the Pelagic the coast. Animals in the pelagic realm ticularly at the fertile Espíritu Santo Fish Research Group. Jorgensen studies the move- are typically independent of the bottom Seamount, which we have studied ments of pelagic fishes; he also co-founded Iemanya Oceanica, a nonprofit group dedicated to shark and are wide-ranging. For example, in concert with several Mexican col- conservation. Address for Klimley: Department of fish tagged in temperate waters during leagues. El Bajo Espíritu Santo or EBES Wildlife, Fish and Conservation Biology, University the summer have been recaptured in (literally, “shoal, or bank, of the Holy of California, Davis, One Shields Avenue, Davis, semitropical or tropical waters during Spirit” in Spanish) is a submarine CA 95616. Internet: [email protected] winter, and individuals tagged on one ridge that, in less than 2 kilometers, © 2005 Sigma Xi, The Scientific Research Society. Reproduction 42 American Scientist, Volume 93 with permission only. Contact [email protected]. Amos Nachoum/Corbis Figure 1. These skipjack tunas in the Gulf of California are pelagic fish, meaning their home is the open sea far from shore. With pelagic fish populations under threat, the size of their habitat presents unique challenges to conservation. Often neglected in the mathematics of fisheries management is an understanding of how tunas and other pelagic species interact with one another and the submarine geography as part of a dynamic ecosystem that changes as the fish undertake annual migrations between feeding grounds. rises steeply from a 1,000-meter basin and the ocean surface, providing more per second, which can occur during to within 18 meters of the surface. We drifting prey over time for predator fish spring tides, may cause twin eddies use a global positioning system to lo- lurking near the peak. as large as 1 kilometer on the down- cate the area, which is completely un- Many observers have noted high current side of EBES. This motion dis- derwater and invisible from the boat. biological productivity around sea- rupts the pycnocline, the boundary be- Shallow seamounts, such as Espíritu mounts and islands—a phenomenon tween the warmer, mixed surface layer Santo and Gorda, support rich stocks that oceanographers refer to as the and the colder, unmixed (but often nu- of pelagic fishes because of an abun- “island-mass effect.” Part of this abun- trient-rich) layers below. The nutrients dance of plankton that attracts consum- dance can be explained from a purely in the upper layer enhance the growth ers. So why is plankton (and the rest of physical perspective: Obstacles in the of phytoplankton (microscopic plants), the food web) enriched near EBES with path of a moving fluid usually cause and the eddies may also trap plankton respect to the surrounding ocean? We hydrodynamic disturbances—eddies in their reversing current flows. think that much of the answer, espe- and vortices—in the flow. Being situat- Rogelio Gonzalez-Armas stud- cially at Espíritu Santo, has to do with ed in an inland sea, EBES lacks a strong ied plankton dynamics at EBES as a the so-called “Venturi effect,” which de- unidirectional current, but it does have graduate student at the Centro de In- scribes how flow speed increases when a daily tide that oscillates around the vestigaciones Biológicas del Noroeste a fluid is forced through a narrow area. seamount like a cocktail swirled by a (CIBNOR), also in La Paz. By towing This physical law also explains the high fixed stirring rod. Armando Trasviña- a cylindrical net at six stations around winds through mountain passes. At El Castro, a physical oceanographer at the seamount, Gonzalez-Armas ob- Bajo Espíritu Santo, the same volume the Centro de Investigación Científica served a two- to seven-fold increase in of water carrying a given number of y de Educación Superior de Ensenada the concentration of copepods—minute plankters must flow through the more (CICESE) in La Paz, Mexico, estimates crustaceans that feed on phytoplank- constricted space between the seamount that tidal flows exceeding 0.5 meters ton—at the ridge, compared with sam- © 2005 Sigma Xi, The Scientific Research Society. Reproduction www.americanscientist.org 2005 January–February 43 with permission only. Contact [email protected]. to swim a 500-meter stretch of the ridge that includes its apex. During a typical Espíritu Santo dive we see loose schools of fish dash- Seamount ing after plankton, which fills the water. 18 Espíritu We also see oval-shaped jacks and bul- UNITED Santo 30 24 let-shaped mackerel. At the pinnacle of North STATES 30 the ridge, only 15 meters across, female 36 and male creolefish rush up from the 42 24 18 bottom to release enveloping clouds 48 of gametes. A flat plateau of sand and 54 rock separates the peak from a second 60 60 m high spot to the north, a 30-meter-wide Espíritu Santo mesa made of enormous, pillow-shaped stones. A tightly packed school of large 0 50 100 m South N snappers and a cadre of 15 to 20 ham- La Paz merhead sharks often hover nearby.
Recommended publications
  • Balancing the Risks and the Benefits of Seafood Consumption in Bermuda
    This article was downloaded by: [Canadian Research Knowledge Network] On: 30 September 2008 Access details: Access Details: [subscription number 783016891] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Food Additives & Contaminants: Part A Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713599661 Balancing the risks and the benefits of local fish consumption in Bermuda É. Dewailly ab; P. Rouja c; R. Dallaire a; D. Pereg a; T. Tucker d; J. Ward c; J. P. Weber b; J. S. Maguire a; P. Julien a a Public Health Research Unit, Laval University Research Centre-CHUL-CHUQ, Québec, Canada b Institut National de Santé Publique du Québec, Québec, Canada c Department of Conservation Services, Government of Bermuda, Bermuda d Bermuda Underwater Exploration Institute, Bermuda First Published on: 25 September 2008 To cite this Article Dewailly, É., Rouja, P., Dallaire, R., Pereg, D., Tucker, T., Ward, J., Weber, J. P., Maguire, J. S. and Julien, P.(2008)'Balancing the risks and the benefits of local fish consumption in Bermuda',Food Additives & Contaminants: Part A, To link to this Article: DOI: 10.1080/02652030802175285 URL: http://dx.doi.org/10.1080/02652030802175285 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
    [Show full text]
  • Digenetic Trematodes of Marine Teleost Fishes from Biscayne Bay, Florida Robin M
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 6-26-1969 Digenetic Trematodes of Marine Teleost Fishes from Biscayne Bay, Florida Robin M. Overstreet University of Miami, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Overstreet, Robin M., "Digenetic Trematodes of Marine Teleost Fishes from Biscayne Bay, Florida" (1969). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 867. https://digitalcommons.unl.edu/parasitologyfacpubs/867 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TULANE STUDIES IN ZOOLOGY AND BOTANY Volume 15, Number 4 June 26, 1969 DIGENETIC TREMATODES OF MARINE TELEOST FISHES FROM BISCAYNE BAY, FLORIDA1 ROBIN M. OVERSTREET2 Institute of Marine Sciences, University of Miami, Miami, Florida CONTENTS ABSTRACT 120 ACKNOWLEDGMENTS ---------------------------------------------------------------------------------------------------- 120 INTRODUCTION --------------------------------------------------------------------------------------------------------------
    [Show full text]
  • Growth of the Shortnose Mojarra Diapterus Brevirostris (Perciformes: Gerreidae) in Central Mexican Pacific
    Growth of the Shortnose Mojarra Diapterus brevirostris (Perciformes: Gerreidae) in Central Mexican Pacific Crecimiento de la malacapa Diapterus brevirostris (Perciformes: Gerreidae) en el Pacífico centro mexicano Manuel Gallardo-Cabello,1 Elaine Espino-Barr,2* Esther Guadalupe Cabral-Solís,2 Arturo García-Boa2 y Marcos Puente-Gómez2 1 Instituto de Ciencias del Mar y Limnología Universidad Nacional Autónoma de México Av. Ciudad Universitaria 3000, Col. Copilco México, D. F. (C. P. 04360). 2 INAPESCA, CRIP-Manzanillo Playa Ventanas s/n Manzanillo, Colima (C.P. 28200). Tel: (314) 332 3750 *Corresponding author: [email protected] Abstract Resumen Samples of Shortnose Mojarra Diapterus brevi- Se obtuvieron muestras y datos morfométricos rostris were obtained from the commercial catch de 394 individuos de la malacapa Diapterus from April 2010 to July 2012, morphometric brevirostris, de la captura comercial entre abril data of 394 individuals were registered. The de 2010 y julio de 2012. El estudio del creci- growth study entailed two methods: length fre- miento se realizó por dos métodos: análisis de quency analysis and study of sagittae and as- frecuencia de longitud y el estudio de los otoli- terisci otoliths. Both methods identified six age tos sagittae y asteriscus. Ambos métodos iden- groups. Growth parameters of von Bertalanffy’s tificaron seis grupos de edad. Los parámetros equation were determined by Ford-Walford and de crecimiento de la ecuación de von Berta- Gulland methods and by ELEFAN routine ad- lanffy se determinaron con el método de Ford- justment. Both methods gave the same results: Walford y Gulland y por rutina ELEFAN. L∞= 48.61 cm, K= 0.135, to= -0.696.
    [Show full text]
  • 229 Index of Scientific and Vernacular Names
    previous page 229 INDEX OF SCIENTIFIC AND VERNACULAR NAMES EXPLANATION OF THE SYSTEM Type faces used: Italics : Valid scientific names (genera and species) Italics : Synonyms * Italics : Misidentifications (preceded by an asterisk) ROMAN (saps) : Family names Roman : International (FAO) names of species 230 Page Page A African red snapper ................................................. 79 Abalistes stellatus ............................................... 42 African sawtail catshark ......................................... 144 Abámbolo ............................................................... 81 African sicklefìsh ...................................................... 62 Abámbolo de bajura ................................................ 81 African solenette .................................................... 111 Ablennes hians ..................................................... 44 African spadefish ..................................................... 63 Abuete cajeta ........................................................ 184 African spider shrimp ............................................. 175 Abuete de Angola ................................................. 184 African spoon-nose eel ............................................ 88 Abuete negro ........................................................ 184 African squid .......................................................... 199 Abuete real ........................................................... 183 African striped grunt ................................................
    [Show full text]
  • Amorphometric and Meristic Study of the Halfbeak, Hyporhamphus
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1993 Amorphometric and Meristic Study of the Halfbeak, Hyporhamphus unifasciatus (Teleostei: Hemiramphidae) from the Western Atlantic, with the Description of a New Species Heidi M. Banford College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Banford, Heidi M., "Amorphometric and Meristic Study of the Halfbeak, Hyporhamphus unifasciatus (Teleostei: Hemiramphidae) from the Western Atlantic, with the Description of a New Species" (1993). Dissertations, Theses, and Masters Projects. Paper 1539617658. https://dx.doi.org/doi:10.25773/v5-pbsc-sy52 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. A MORPHOMETRIC AND MERISTIC STUDY OF THE HALFBEAK, HYPORHAMPHUS UNIFASCIATUS (TELEOSTEI: HEMIRAMPHIDAE) FROM THE WESTERN ATLANTIC, WITH THE DESCRIPTION OF A NEW SPECIES A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts by Heidi M. Banford 1993 This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Heidi M. Banford Approved, July 1993 Jojm A. Musick,' Ph.D. flmittee Chairman/Advisor ~ t M . ^ Herbert M. Austin, Ph.D.
    [Show full text]
  • Round Scad Exploration by Purse Seine in the South China Sea, Area III: Western Philippines
    Round scad exploration by purse seine in the South China Sea, Area III: Western Philippines Item Type book_section Authors Pastoral, Prospero C.; Escobar Jr., Severino L.; Lamarca, Napoleon J. Publisher Secretariat, Southeast Asian Fisheries Development Center Download date 01/10/2021 13:06:13 Link to Item http://hdl.handle.net/1834/40530 Proceedings of the SEAFDEC Seminar on Fishery Resources in the South China Sea, Area III: Western Philippines Round Scad Exploration by Purse Seine in the South China Sea, Area III: Western Philippines Prospero C. Pastoral1, Severino L. Escobar, Jr.1 and Napoleon J. Lamarca2 1BFAR-National Marine Fisheries Development Center, Sangley Point, Cavite City, Philippines 2BFAR-Fishing Technology Division, 860 Arcadia Bldg., Quezon Avenue, Quezon City, Philippines ABSTRACT Round scad exploration by purse seine in the waters of western Philippines was conducted from April 22 to May 7, 1998 for a period of five (5) fishing days with a total catch of 7.3 tons and an average of 1.5 tons per setting. Dominant species caught were Decapterus spp. having 70.09% of the total catch, followed by Selar spp. at 12.66% and Rastrelliger spp. 10.70%. Among the Decapterus spp. caught, D. macrosoma attained the highest total catch composition by species having 68.81% followed by D. kurroides and D.russelli with 0.31% and 1.14% respectively. The round scad fishery stock was composed mainly of juvenile fish (less than 13 cm) and Age group II (13 cm to 14 cm). Few large round scad at Age group IV and V (20 cm to 28 cm) stayed at the fishery.
    [Show full text]
  • A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations
    A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS June 30 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria. L.D. Palomares, Rainer Froese, Brittany Derrick, Simon-Luc Nöel, Gordon Tsui Jessika Woroniak Daniel Pauly A report prepared by the Sea Around Us for OCEANA June 30, 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria L.D. Palomares1, Rainer Froese2, Brittany Derrick1, Simon-Luc Nöel1, Gordon Tsui1, Jessika Woroniak1 and Daniel Pauly1 CITE AS: Palomares MLD, Froese R, Derrick B, Nöel S-L, Tsui G, Woroniak J, Pauly D (2018) A preliminary global assessment of the status of exploited marine fish and invertebrate populations. A report prepared by the Sea Around Us for OCEANA. The University of British Columbia, Vancouver, p. 64. 1 Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver BC V6T1Z4 Canada 2 Helmholtz Centre for Ocean Research GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany TABLE OF CONTENTS Executive Summary 1 Introduction 2 Material and Methods 3 − Reconstructed catches vs official catches 3 − Marine Ecoregions vs EEZs 3 − The CMSY method 5 Results and Discussion 7 − Stock summaries reports 9 − Problematic stocks and sources of bias 14 − Stocks in the countries where OCEANA operates 22 − Stock assessments on the Sea Around Us website 31 − The next steps 32 Acknowledgements 33 References 34 Appendices I. List of marine ecoregions by EEZ 37 II. Summaries of number of stock by region and 49 by continent III.
    [Show full text]
  • Mid-Atlantic Forage Species ID Guide
    Mid-Atlantic Forage Species Identification Guide Forage Species Identification Guide Basic Morphology Dorsal fin Lateral line Caudal fin This guide provides descriptions and These species are subject to the codes for the forage species that vessels combined 1,700-pound trip limit: Opercle and dealers are required to report under Operculum • Anchovies the Mid-Atlantic Council’s Unmanaged Forage Omnibus Amendment. Find out • Argentines/Smelt Herring more about the amendment at: • Greeneyes Pectoral fin www.mafmc.org/forage. • Halfbeaks Pelvic fin Anal fin Caudal peduncle All federally permitted vessels fishing • Lanternfishes in the Mid-Atlantic Forage Species Dorsal Right (lateral) side Management Unit and dealers are • Round Herring required to report catch and landings of • Scaled Sardine the forage species listed to the right. All species listed in this guide are subject • Atlantic Thread Herring Anterior Posterior to the 1,700-pound trip limit unless • Spanish Sardine stated otherwise. • Pearlsides/Deepsea Hatchetfish • Sand Lances Left (lateral) side Ventral • Silversides • Cusk-eels Using the Guide • Atlantic Saury • Use the images and descriptions to identify species. • Unclassified Mollusks (Unmanaged Squids, Pteropods) • Report catch and sale of these species using the VTR code (red bubble) for • Other Crustaceans/Shellfish logbooks, or the common name (dark (Copepods, Krill, Amphipods) blue bubble) for dealer reports. 2 These species are subject to the combined 1,700-pound trip limit: • Anchovies • Argentines/Smelt Herring •
    [Show full text]
  • Xchel G. MORENO-SÁNCHEZ1, Pilar PEREZ-ROJO1, Marina S
    ACTA ICHTHYOLOGICA ET PISCATORIA (2019) 49 (1): 9–22 DOI: 10.3750/AIEP/02321 FEEDING HABITS OF THE LEOPARD GROUPER, MYCTEROPERCA ROSACEA (ACTINOPTERYGII: PERCIFORMES: EPINEPHELIDAE), IN THE CENTRAL GULF OF CALIFORNIA, BCS, MEXICO Xchel G. MORENO-SÁNCHEZ1, Pilar PEREZ-ROJO1, Marina S. IRIGOYEN-ARREDONDO1, Emigdio MARIN- ENRÍQUEZ2, Leonardo A. ABITIA-CÁRDENAS1*, and Ofelia ESCOBAR-SANCHEZ2 1Instituto Politecnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Departamento de Pesquerías y Biología Marina La Paz, BCS, Mexico 2CONACYT-Universidad Autónoma de Sinaloa-Facultad de Ciencias del Mar (CONACYT UAS-FACIMAR) Mazatlán, SIN, Mexico Moreno-Sánchez X.G., Perez-Rojo P., Irigoyen-Arredondo M.S., Marin- Enríquez E., Abitia-Cárdenas L.A., Escobar-Sanchez O. 2019. Feeding habits of the leopard grouper, Mycteroperca rosacea (Actinopterygii: Perciformes: Epinephelidae), in the central Gulf of California, BCS, Mexico. Acta Ichthyol. Piscat. 49 (1): 9–22. Background. The leopard grouper, Mycteroperca rosacea (Streets, 1877), is endemic to north-western Mexico and has high commercial value. Although facts of its basic biology are known, information on its trophic ecology, in particular, is scarce. The objective of the presently reported study was to characterize the feeding habits of M. rosacea through the analysis of stomach contents, and to determine possible variations linked to sex (male or female), size (small, medium, or large), or season (spring, summer, autumn, or winter), in order to understand the trophic role that this species plays in the ecosystem where it is found. Materials and methods. Fish were captured monthly, from March 2014 to May 2015 by spearfishing in Santa Rosalía, BCS, Mexico. Percentages by the number, by weight, and frequency of appearance of each food category, the index of relative importance (%IRI), and prey-specific index of relative importance (%PSIRI) were used to determine the importance of each prey item in the leopard grouper diet.
    [Show full text]
  • Several Were Simply on an Adventure, Almost Certain They'd Catch The
    This article is provided courtesy of BlueWater Readers’BlueWater Trip Boatsto Panama & Sportsfishing magazine. It originally appeared in Issue 105, 2014. Copyright © 2014 BlueWater Publishing Andy O’Shea with one of the big yellowfin he caught on Hannibal Bank. head of us, scattered across 300 metres of them. This was Isla Montuosa, known in these parts as “Several were glass-calm ocean, a mass of spotted dolphins ‘Monster Island’. burst through the surface in a low arc, We were only hours into the first day of the BlueWater simply on an their blowholes puffing small plumes of mist Readers’ Trip to Panama and already things were adventure, Abefore rapidly sucking in a new breath as they tracked developing fast. Our team had booked out the entire eastwards with purpose. High above them, frigate birds Panama Big Game Fishing Club, and we had departed almost certain wheeled expectantly. Something was about to happen at dawn that morning aboard four 10m gameboats on and we could all feel the tension rise. a mission seeking some of the biggest yellowfin tuna they’d catch the Tall palms stood sentry nearby behind a golden beach on the planet. biggest fish of flanked by jagged stacks of fractured black volcanic Our captain skilfully assessed the dolphins as we rocks that formed a dramatic fringe separating the scooted over the low, oily swells. He changed direction their life.” dense green jungle above from the slick blue ocean frequently, angling to position us in front of the pack. and its brilliant white surf that crashed down upon Then, with a sudden urgency he pulled the twin throttles 46 facebook.com/BlueWatermagazine BlueWater Readers’ Trip to Panama CHASING TUNA TO THE FAR SIDE OF THE WORLD THE BLUEWATER Readers’ TRIP TO PANAMA For the 20 anglers and partners on the BlueWater Readers’ Trip to Panama, a bucket-list dream became a reality in June.
    [Show full text]
  • A List of Common and Scientific Names of Fishes from the United States And
    t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]