Introduction to the Geometry of Complex Numbers Roland Deaux

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to the Geometry of Complex Numbers Roland Deaux INTRODUCTION TO THE GEOMETRY OF COMPLEX NUMBERS ROLAND DEAUX Translated by HOWARD EVES DOVER PUBLICATIONS, INC. Mineola, New York Bihliographical Note This Dover edition, first published in 2008, is an unabridged republication of the revised French edition of the work, translated by Howard Eves, and origi­ nally published In 1956 by Frederick Ungar Publishing Company, New York. Lihraryoj Congress Cataloging-in-Puhlication Data Deaux, Roland, 1893- [Introduction ilIa geometrie des nombres complexes. English] Introduction to the geometry of complex numbers / Roland Deaux ; trans­ lated by Howard Eves. -_. Dover ed. p. cm. Includes index. Prevo ed. of. New York: F. Ungar Pub. Co., 1956. ISBN-13: 978-0-486-46629-3 ISBN-IO: 0-486-46629-9 I. N umbers, Complex. 2. Geometry, ProJecllve. I. Title. QA471.D3732008 512.7'88- -dcn 2007042751 Manufactured in the United States of America Dover Publications, Inc., 31 East 2nd Street, Mineola, N.Y. 11501 PREFACE TO THE AMERICAN EDITION The presentation of this book to English-speaking students permits us to return to its reason for existence. It is addressed to beginners, if we understand by this term all those who, whatever might be their mathematical knowledge beyond the usual studies, have not considered the use of complex numbers for establishing geometric properties of plane figures. We declare, in fact, that a student accustomed to the classical methods of analytic geometry or of infinitesimal geometry is not, ipso facto, prepared to solve problems, even be they elementary, by appealing to complex numbers. He is even very often much embarrassed. Now such obligations arise in the applied sciences, particularly in electrical studies, where the graphical interpretation of the calcu­ lation is a convenient picture of the circumstances of the phenomenon studied. Finally, to assure the reader an easy and complete understanding, we have not hesitated to develop things from the beginning, by placing emphasis on the constructions connected with the algebraic operations. In deference to the practical end endorsed, we have only considered constructions related to the concepts and methods of elementary geometry. One will find in other works (see, for example, the first cited book by Coolidge) constructions which, following the ideas of Klein, possess the character of invariance under the group of circular transformations. The French edition has undergone a complete revision in the theory of unicursal bicircular quartics, in that of antigraphies, and in the proof of the theorem of Schick (art. 128). In addition, the statements of 136 exercises have been inserted after the various sections. They will allow the reader to test his new knowledge and to interest himself at the same time with some aspects of the geometry of the triangle; a theory is well understood and will acquire power only after its successful application to the 5 6 PREFACE solution of proposed problems. At the start, some indications of the path to follow, but not always suppressing personal effort, are offered to assist the solver. One can find in the Belgian journal Mathesis, when such a reference is given, a complete solution by means of complex numbers and often accompanied by developments which enlarge the horizon of the problem. The reader desirous of increasing his geometric knowledge in the domain to which the present work serves as an introduction will consult with profit, in addition to the books already cited, the re­ markable work Inversive Geometry (G. Bell and Sons, Ltd., London, 1933) by Frank Morley and F. V. Morley. He will also find in Advanced Plane Geometry (North-Holland Publishing Company, Amsterdam, 1950), by C. Zwikker, a study of numerous curves by means of complex coordinates. It is pleasant to express our gratitude to Professor Howard Eves of the University of Maine, who was so willing to take on the burdensome task of the translation and whose judicious remarks have improved the texture of several proofs, and our thanks to the Frederick Ungar Publishing Company of New York for the attentive care that it has brought to the presentation of this book. Virelles-lez-Chimay (Belgium) ROLAND DEAUX August, 1956 FOREWORD The present work briefly develops the lectures which we have given since 1930 to the engineering candidates who chose the section of electromechanics at the Faculte polytechnique de Mons. A memoir by Steinmetz 1 emphasized the simplifying role that can be played by the geometric interpretation of complex numbers in the study of the characteristic diagrams of electrical machines. This idea has proved fruitful in its developments, and many articles published in such journals as the Archiv fur Elektrotechnik can be comprehended only by the engineer acquainted with the meaning and the results of a plane analytic geometry adapted to representations in the Gauss plane. One there encounters, for example, unicursal bicircular quartics discussed by commencing with their parametric equation in complex coordinates; the procedure consisting of returning to classical geometry by the separation of the real and the imaginary will more often than not be devoid of interest, for it hides the clarity of certain interpretations which employ the relation between a com­ plex number and the equivalent vectors capable of representing this number. The study of such questions explains the appearance, particularly in Switzerland and Germany, of works in which geometric expositions accompany considerations on alternating currents.2 There does not exist a treatise of this sort in Belgium, and this lack will perhaps justify the book which we are presenting to the public. Since, on the other hand, the geometrical results are independent of the technical reasons which called them forth, the service rendered to engineers will be little diminished if we stay in the purely mathematical domain. We most certainly do not wish to affirm by this that some technical illustrations of the theories which we 1 Die Anwendung komplexer GrofJen in der Elektrotechnik, ETZ, 1893, pp. 597, 631, 641, 653. 2 O. BLOCH, Die Ortskurven der graphischen Wechselstromtechnik, ZUrich, 1917. G. l!AUFFE, Ortskurven der Starkstromtechnik, Berlin, 1932. G. OBERDORFER, Die Ortskurven der Wechselstromtechnik, Munich, 1934. 7 8 FOREWORD develop, presented by an informed specialist, would be lacking in interest or timeliness; on the contrary, all our best wishes attend the efforts of the engineer who would contribute to the papers of Belgian scientific activity a work which certain foreign countries have judged useful to undertake. An engineer looking for a geometric solution to a problem born in an electrotechnical laboratory will be able, in general, to limit himself to the first two chapters. It is interesting, however, to note that H. PBieger-Haertell arrived at the determination of the affix of the center of a circle, not by the method that we give for finding the foci of a conic (article 60), but by utilizing a property of Mobius transformations (article 127); and this shows that the engineer is able to take advantage of these theories too. The table of contents states the subject matter of each of the articles, and therefore it appears unnecessary here to take up again the detailed sequence of material treated. To the friends of geometry, we hope they find in the reading of these pages the pleasure that we have experienced in writing them. No serious difficulty needs to be surmounted. Variety is assured by the appeals that we make to algebra, to the classical notions of analytic geometry, to modern plane geometry, and to some results furnished by kinematics, and the third chapter revives in a slightly modified form the essentials of the projective geometry of real binary forms, thus putting in relief all the pertinency of the title given by Mobius to the first of his papers on the subject: 2 Ueber eine Methode, um von Relationen, welche der Longimetrie angehOren, zu entsprechenden Siitzen der Planimetrie zugelangen (1852). We would like to emphasize, moreover, the importance of those circular transformations of which the particular case of inversion is so often considered, but of which the direct involutoric case does not seem to have received the same favor, which it so well deserves. The obligation of limiting ourselves has not permitted us to treat the antigraphy with the same amplification as the homography in the complex plane. Concerning these matters the reader will consult with profit the Vorlesungen iiber projektive Geometrie (Berlin, 1934) of C. Juel, the two books of J. L. Coolidge, A treatise on the circle 1 Zur Theone tier Kreisdiagramme: Archiv fur Elektrotechnik, vol. XII, 1923, pp. 486-493. • Werke, 2, pp. 191-204. FOREWORD 9 and the sphere (Oxford, 1916), The geometry of the complex domain (Oxford, 1924), as well as the Lefons de geometrie projective complexe (paris, 1931) of E. Cartan. At a time when difficulties of all sorts create much anxiety for the most cautious editors, the firm of A. De Boeck has not, however, been afraid to undertake the publication of this work. For its noble courage, and for the attentive care that it has brought to the composi­ tion as well as to the presentation of this book, we express our thanks and our gratitude. R. DEAUX Mons, October 23, 1945 TABLE OF CONTENTS CHAPTER ONE GEOMETRIC REPRESENTATION OF COMPLEX NUMBERS I. Fundamental Operations 15 1. Complex coordinate. 2. Conjugate coordinates. 3. Exponential form. 4. Case where r is positive. 5. Vector and complex number. 6. Addition. 7. Sub­ traction. 8. Multiplication. 9. Division. 10. Scalar product of two vectors. 11. Vector product of two vectors. 12. Object of the course. Exercises 1 through 11 II. Fundamental Transformations ........... .. 26 13. Transformation. 14. Translation. 15. Rotation. 16. Homothety. 17. Relation among three points. 18. Symmetry with respect to a line. 19. Inversion. 20. Point at infinity of the Gauss plane.
Recommended publications
  • Differential Geometry
    Differential Geometry J.B. Cooper 1995 Inhaltsverzeichnis 1 CURVES AND SURFACES—INFORMAL DISCUSSION 2 1.1 Surfaces ................................ 13 2 CURVES IN THE PLANE 16 3 CURVES IN SPACE 29 4 CONSTRUCTION OF CURVES 35 5 SURFACES IN SPACE 41 6 DIFFERENTIABLEMANIFOLDS 59 6.1 Riemannmanifolds .......................... 69 1 1 CURVES AND SURFACES—INFORMAL DISCUSSION We begin with an informal discussion of curves and surfaces, concentrating on methods of describing them. We shall illustrate these with examples of classical curves and surfaces which, we hope, will give more content to the material of the following chapters. In these, we will bring a more rigorous approach. Curves in R2 are usually specified in one of two ways, the direct or parametric representation and the implicit representation. For example, straight lines have a direct representation as tx + (1 t)y : t R { − ∈ } i.e. as the range of the function φ : t tx + (1 t)y → − (here x and y are distinct points on the line) and an implicit representation: (ξ ,ξ ): aξ + bξ + c =0 { 1 2 1 2 } (where a2 + b2 = 0) as the zero set of the function f(ξ ,ξ )= aξ + bξ c. 1 2 1 2 − Similarly, the unit circle has a direct representation (cos t, sin t): t [0, 2π[ { ∈ } as the range of the function t (cos t, sin t) and an implicit representation x : 2 2 → 2 2 { ξ1 + ξ2 =1 as the set of zeros of the function f(x)= ξ1 + ξ2 1. We see from} these examples that the direct representation− displays the curve as the image of a suitable function from R (or a subset thereof, usually an in- terval) into two dimensional space, R2.
    [Show full text]
  • An Approach on Simulation of Involute Tooth Profile Used on Cylindrical Gears
    BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică „Gheorghe Asachi” din Iaşi Volumul 66 (70), Numărul 2, 2020 Secţia CONSTRUCŢII DE MAŞINI AN APPROACH ON SIMULATION OF INVOLUTE TOOTH PROFILE USED ON CYLINDRICAL GEARS BY MIHĂIȚĂ HORODINCĂ “Gheorghe Asachi” Technical University of Iaşi, Faculty of Machine Manufacturing and Industrial Management Received: April 6, 2020 Accepted for publication: June 10, 2020 Abstract. Some results on theoretical approach related by simulation of 2D involute tooth profiles on spur gears, based on rolling of a mobile generating rack around a fixed pitch circle are presented in this paper. A first main approach proves that the geometrical depiction of each generating rack position during rolling can be determined by means of a mathematical model which allows the calculus of Cartesian coordinates for some significant points placed on the rack. The 2D involute tooth profile appears to be the internal envelope bordered by plenty of different equidistant positions of the generating rack during a complete rolling. A second main approach allows the detection of Cartesian coordinates of this internal envelope as the best approximation of 2D involute tooth profile. This paper intends to provide a way for a better understanding of involute tooth profile generation procedure. Keywords: tooth profile; involute; generating rack; simulation. 1. Introduction Gear manufacturing is a major topic in industry due to a large scale utilization of gears for motion transmissions and speed reducers. Commonly the flank gear surface on cylindrical toothed wheels (gears) is described by two Corresponding author: e-mail: [email protected] 22 Mihăiţă Horodincă orthogonally curves: an involute as flank line (in a transverse plane) and a profile line.
    [Show full text]
  • On the Topology of Hypocycloid Curves
    Física Teórica, Julio Abad, 1–16 (2008) ON THE TOPOLOGY OF HYPOCYCLOIDS Enrique Artal Bartolo∗ and José Ignacio Cogolludo Agustíny Departamento de Matemáticas, Facultad de Ciencias, IUMA Universidad de Zaragoza, 50009 Zaragoza, Spain Abstract. Algebraic geometry has many connections with physics: string theory, enu- merative geometry, and mirror symmetry, among others. In particular, within the topo- logical study of algebraic varieties physicists focus on aspects involving symmetry and non-commutativity. In this paper, we study a family of classical algebraic curves, the hypocycloids, which have links to physics via the bifurcation theory. The topology of some of these curves plays an important role in string theory [3] and also appears in Zariski’s foundational work [9]. We compute the fundamental groups of some of these curves and show that they are in fact Artin groups. Keywords: hypocycloid curve, cuspidal points, fundamental group. PACS classification: 02.40.-k; 02.40.Xx; 02.40.Re . 1. Introduction Hypocycloid curves have been studied since the Renaissance (apparently Dürer in 1525 de- scribed epitrochoids in general and then Roemer in 1674 and Bernoulli in 1691 focused on some particular hypocycloids, like the astroid, see [5]). Hypocycloids are described as the roulette traced by a point P attached to a circumference S of radius r rolling about the inside r 1 of a fixed circle C of radius R, such that 0 < ρ = R < 2 (see Figure 1). If the ratio ρ is rational, an algebraic curve is obtained. The simplest (non-trivial) hypocycloid is called the deltoid or the Steiner curve and has a history of its own both as a real and complex curve.
    [Show full text]
  • Around and Around ______
    Andrew Glassner’s Notebook http://www.glassner.com Around and around ________________________________ Andrew verybody loves making pictures with a Spirograph. The result is a pretty, swirly design, like the pictures Glassner EThis wonderful toy was introduced in 1966 by Kenner in Figure 1. Products and is now manufactured and sold by Hasbro. I got to thinking about this toy recently, and wondered The basic idea is simplicity itself. The box contains what might happen if we used other shapes for the a collection of plastic gears of different sizes. Every pieces, rather than circles. I wrote a program that pro- gear has several holes drilled into it, each big enough duces Spirograph-like patterns using shapes built out of to accommodate a pen tip. The box also contains some Bezier curves. I’ll describe that later on, but let’s start by rings that have gear teeth on both their inner and looking at traditional Spirograph patterns. outer edges. To make a picture, you select a gear and set it snugly against one of the rings (either inside or Roulettes outside) so that the teeth are engaged. Put a pen into Spirograph produces planar curves that are known as one of the holes, and start going around and around. roulettes. A roulette is defined by Lawrence this way: “If a curve C1 rolls, without slipping, along another fixed curve C2, any fixed point P attached to C1 describes a roulette” (see the “Further Reading” sidebar for this and other references). The word trochoid is a synonym for roulette. From here on, I’ll refer to C1 as the wheel and C2 as 1 Several the frame, even when the shapes Spirograph- aren’t circular.
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • On the Topology of Hypocycloids
    ON THE TOPOLOGY OF HYPOCYCLOIDS ENRIQUE ARTAL BARTOLO AND JOSE´ IGNACIO COGOLLUDO-AGUST´IN Abstract. Algebraic geometry has many connections with physics: string theory, enumerative geometry, and mirror symmetry, among others. In par- ticular, within the topological study of algebraic varieties physicists focus on aspects involving symmetry and non-commutativity. In this paper, we study a family of classical algebraic curves, the hypocycloids, which have links to physics via the bifurcation theory. The topology of some of these curves plays an important role in string theory [3] and also appears in Zariski’s foundational work [9]. We compute the fundamental groups of some of these curves and show that they are in fact Artin groups. 1. Introduction Hypocycloid curves have been studied since the Renaissance (apparently D¨urer in 1525 described epitrochoids in general and then Roemer in 1674 and Bernoulli in 1691 focused on some particular hypocycloids, like the astroid, see [5]). Hypocy- cloids are described as the roulette traced by a point P attached to a circumference S of radius r rolling about the inside of a fixed circle C of radius R, such that r 1 0 < ρ = R < 2 (see Figure 1). If the ratio ρ is rational, an algebraic curve is ob- tained. The simplest (non-trivial) hypocycloid is called the deltoid or the Steiner curve and has a history of its own both as a real and complex curve. S r C P arXiv:1703.08308v1 [math.AG] 24 Mar 2017 R Figure 1. Hypocycloid Key words and phrases. hypocycloid curve, cuspidal points, fundamental group.
    [Show full text]
  • Strophoids, a Family of Cubic Curves with Remarkable Properties
    Hellmuth STACHEL STROPHOIDS, A FAMILY OF CUBIC CURVES WITH REMARKABLE PROPERTIES Abstract: Strophoids are circular cubic curves which have a node with orthogonal tangents. These rational curves are characterized by a series or properties, and they show up as locus of points at various geometric problems in the Euclidean plane: Strophoids are pedal curves of parabolas if the corresponding pole lies on the parabola’s directrix, and they are inverse to equilateral hyperbolas. Strophoids are focal curves of particular pencils of conics. Moreover, the locus of points where tangents through a given point contact the conics of a confocal family is a strophoid. In descriptive geometry, strophoids appear as perspective views of particular curves of intersection, e.g., of Viviani’s curve. Bricard’s flexible octahedra of type 3 admit two flat poses; and here, after fixing two opposite vertices, strophoids are the locus for the four remaining vertices. In plane kinematics they are the circle-point curves, i.e., the locus of points whose trajectories have instantaneously a stationary curvature. Moreover, they are projections of the spherical and hyperbolic analogues. For any given triangle ABC, the equicevian cubics are strophoids, i.e., the locus of points for which two of the three cevians have the same lengths. On each strophoid there is a symmetric relation of points, so-called ‘associated’ points, with a series of properties: The lines connecting associated points P and P’ are tangent of the negative pedal curve. Tangents at associated points intersect at a point which again lies on the cubic. For all pairs (P, P’) of associated points, the midpoints lie on a line through the node N.
    [Show full text]
  • A Special Conic Associated with the Reuleaux Negative Pedal Curve
    INTERNATIONAL JOURNAL OF GEOMETRY Vol. 10 (2021), No. 2, 33–49 A SPECIAL CONIC ASSOCIATED WITH THE REULEAUX NEGATIVE PEDAL CURVE LILIANA GABRIELA GHEORGHE and DAN REZNIK Abstract. The Negative Pedal Curve of the Reuleaux Triangle w.r. to a pedal point M located on its boundary consists of two elliptic arcs and a point P0. Intriguingly, the conic passing through the four arc endpoints and by P0 has one focus at M. We provide a synthetic proof for this fact using Poncelet’s porism, polar duality and inversive techniques. Additional interesting properties of the Reuleaux negative pedal w.r. to pedal point M are also included. 1. Introduction Figure 1. The sides of the Reuleaux Triangle R are three circular arcs of circles centered at each Reuleaux vertex Vi; i = 1; 2; 3. of an equilateral triangle. The Reuleaux triangle R is the convex curve formed by the arcs of three circles of equal radii r centered on the vertices V1;V2;V3 of an equilateral triangle and that mutually intercepts in these vertices; see Figure1. This triangle is mostly known due to its constant width property [4]. Keywords and phrases: conic, inversion, pole, polar, dual curve, negative pedal curve. (2020)Mathematics Subject Classification: 51M04,51M15, 51A05. Received: 19.08.2020. In revised form: 26.01.2021. Accepted: 08.10.2020 34 Liliana Gabriela Gheorghe and Dan Reznik Figure 2. The negative pedal curve N of the Reuleaux Triangle R w.r. to a point M on its boundary consist on an point P0 (the antipedal of M through V3) and two elliptic arcs A1A2 and B1B2 (green and blue).
    [Show full text]
  • Generating Negative Pedal Curve Through Inverse Function – an Overview *Ramesha
    © 2017 JETIR March 2017, Volume 4, Issue 3 www.jetir.org (ISSN-2349-5162) Generating Negative pedal curve through Inverse function – An Overview *Ramesha. H.G. Asst Professor of Mathematics. Govt First Grade College, Tiptur. Abstract This paper attempts to study the negative pedal of a curve with fixed point O is therefore the envelope of the lines perpendicular at the point M to the lines. In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k2. The inverse of the curve C is then the locus of P as Q runs over C. The point O in this construction is called the center of inversion, the circle the circle of inversion, and k the radius of inversion. An inversion applied twice is the identity transformation, so the inverse of an inverse curve with respect to the same circle is the original curve. Points on the circle of inversion are fixed by the inversion, so its inverse is itself. is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, and vice versa, i.e., f(x) = y if and only if g(y) = x. The inverse function of f is also denoted.
    [Show full text]
  • Final Projects 1 Envelopes, Evolutes, and Euclidean Distance Degree
    Final Projects Directions: Work together in groups of 1-5 on the following four projects. We suggest, but do not insist, that you work in a group of > 1 people. For projects 1,2, and 3, your group should write a text le with (working!) code which answers the questions. Please provide documentation for your code so that we can understand what the code is doing. For project 4, your group should turn in a summary of observations and/or conjectures, but not necessarily code. Send your les via e-mail to [email protected] and [email protected]. It is preferable that the work is turned in by Thursday night. However, at the very latest, please send your work by 12:00 p.m. (noon) on Friday, August 16. 1 Envelopes, Evolutes, and Euclidean Distance Degree Read the section in Cox-Little-O'Shea's Ideals, Varieties, and Algorithms on envelopes of families of curves - this is in Chapter 3, section 4. We will expand slightly on the setup in Chapter 3 as follows. A rational family of lines is dened as a polynomial of the form Lt(x; y) 2 Q(t)[x; y] 1 L (x; y) = (A(t)x + B(t)y + C(t)); t G(t) where A(t);B(t);C(t); and G(t) are polynomials in t. The envelope of Lt(x; y) is the locus of and so that there is some satisfying and @Lt(x;y) . As usual, x y t Lt(x; y) = 0 @t = 0 we can handle this by introducing a new variable s which plays the role of 1=G(t).
    [Show full text]
  • Cissoid ∗ History Diocles ( 250 – ∼100 BC) Invented This Curve to Solve the Dou- Bling of the Cube Problem (Also Know As the the Delian Prob- Lem)
    Cissoid ∗ History Diocles ( 250 – ∼100 BC) invented this curve to solve the dou- bling of the cube problem (also know as the the Delian prob- lem). The name cissoid (ivy-shaped) derives from the shape of the curve. Later the method used to generate this curve was generalized, and we call all curves generated in a similar way cissoids. Newton (see below) found a way to generate the cis- soid mechanically. The same kinematic motion with a different choice of drawing pin generates the (right) strophoid. From Thomas L. Heath’s Euclid’s Elements translation (1925) (comments on definition 2, book one): This curve is assumed to be the same as that by means of which, according to Eutocius, Diocles in his book On burning-glasses solved the problem of doubling the cube. From Robert C. Yates’ Curves and their properties (1952): As early as 1689, J. C. Sturm, in his Mathesis Enucleata, gave a mechanical device for the constructions of the cissoid of Diocles. From E.H.Lockwood A book of Curves (1961): The name cissoid (“Ivy-shaped”) is mentioned by Gemi- nus in the first century B.C., that is, about a century ∗This file is from the 3D-XploreMath project. Please see http://rsp.math.brandeis.edu/3D-XplorMath/index.html 1 after the death of the inventor Diocles. In the commen- taries on the work by Archimedes On the Sphere and the Cylinder, the curve is referred to as Diocles’ contribution to the classic problem of doubling the cube. ... Fermat and Roberval constructed the tangent (1634); Huygens and Wallis found the area (1658); while Newton gives it as an example, in his Arithmetica Universalis, of the an- cients’ attempts at solving cubic problems and again as a specimen in his Enumeratio Linearum Tertii Ordinis.
    [Show full text]
  • Unified Higher Order Path and Envelope Curvature Theories in Kinematics
    UNIFIED HIGHER ORDER PATH AND ENVELOPE CURVATURE THEORIES IN KINEMATICS By MALLADI NARASH1HA SIDDHANTY I; Bachelor of Engineering Osmania University Hyderabad, India 1965 Master of Technology Indian Institute of Technology Madras, India 1969 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1979 UNIFIED HIGHER ORDER PATH AND ENVELOPE CURVATURE THEORIES IN KINEMATICS Thesis Approved: Thesis Adviser J ~~(}W>p~ Dean of the Graduate College To Mukunda, Ananta, and the Mothers ACKNOWLEDGMENTS I take this opportunity to express my deep sense of gratitude and thanks to Professor A. H. Soni, chairman of my doctoral committee, for his keen interest in introducing me to various aspects of research in kinematics and his continued guidance with proper financial support. I thank the "Soni Family" for many warm dinners and hospitality. I am thankful to Professors L. J. Fila, P. F. Duvall, J. P. Chandler, and T. E. Blejwas for serving on my committee and for their advice and encouragement. Thanks are also due to Professor F. Freudenstein of Columbia University for serving on my committee and for many encouraging discussions on the subject. I thank Magnetic Peripherals, Inc., Oklahoma City, Oklahoma, my em­ ployer since the fall of 1977, for the computer facilities and the tui­ tion fee reimbursement. I thank all my fellow graduate students and friends at Stillwater and Oklahoma City for their warm friendship and discussions that made my studies in Oklahoma really rewarding. I remember and thank my former professors, B.
    [Show full text]