Morphology of the Primary Larva of Mantispa Aphavexelte Aspöck & Aspöck, 1994 (Neuroptera: Mantispidae) and Phylogenetic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae)
The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae) Ralph A. Bram and William E. Bickley Department of Entomology INTRODUCTION Tlw green lacewings which are members of the genus Chrysopa are extreme- ly lwndicia1 insects. The larvae are commonly called aphislions and are well known as predators of aphids and other injurious insects. They play an important part in the regulation of populations of pests under natural conditions, and in California they have been cultured in mass and released for the control of mealy- bugs ( Finney, 1948 and 1950) . The positive identification of members of the genus is desirable for the use of biological-control workers and entomologists in general. Descriptions of most of the Nearctic species of Chrysopidae have relied heavily on body pigmentation and to a lesser extent on wing shape, venational patterns and coloration. Specimens fade when preserved in alcohol or on pins, and natural variation in color patterns occurs in many species ( Smith 1922, Bickley 1952). It is partly for these reasons that some of the most common and relatively abundant representatives of the family are not easily recognized. The chrysopid fauna of North America was treated comprehensively by Banks ( 1903). Smith ( 1922) contributed valuable information about the biology of the green lacewings and about the morphology and taxonomy of the larvae. He also pro- vided k<'ys and other help for the identification of species from Kansas ( 1925, 1934) and Canada ( 1932). Froeschner ( 194 7) similarly dealt with Missouri species. Bickley and MacLeod ( 1956) presented a review of the family as known to occur in the N earctic region north of Mexico. -
(Diptera: Bombyliidae), a Parasite of the Alkali Bee
Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1960 The Biology of Heterostylum rubustum (Diptera: Bombyliidae), a Parasite of the Alkali Bee George E. Bohart Utah State University W. P. Stephen R. K. Eppley Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Entomology Commons Recommended Citation Bohart, G. E., W. P. Stephen, and R. K. Eppley. 1960. The Biology of Heterostylum rubustum (Diptera: Bombyliidae), a Parasite of the Alkali Bee. Ann. Ent. Soc. Amer. 53(3): 425-435. This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ( Reprinted from fu'<NALS OF THE ENTOMOLOGICAL SOCIETY OF rumRJCA Vol. 53, No. 3, May, 1960 THE BIOLOGY OF HETEROSTYLUM ROBUSTUM (DIPTERA: BOMBYLIIDAE), A PARASITE OF THE ALKALI BEE1 G . E. BOHART,' W. P. STEPHEN, Ai\ID R. K. EPPLEY3 ABSTRACT H eterostylum robustu m. (Osten Sacken) is the principal very brief second ins ta r, and a soft, helpless third ins tar , parasite of the a lkali bee (Nomia mela11deri Ckll.) in the to a tough, more active fourth instar. Some lat vae Northwestern States. It also parasitizes other species apparently mature on a single host, but others pa rt ially of Nomia and at least one species of both Nomadopsis and drain the fluids from a second as well. In the late Halictus. It eject-s eggs into and near the nest mounds summer or fall the mature larva makes an overwin tet ing of its host, but does not readily discr iminate between nest cell in the upper few inches of soil. -
SPIDERS of WASHINGTON COUNTY, MISSISSIPPI Orrey P. Young Southern Field Crop Insect Management Laboratory USDA-ARS, P.O. Box
Young, O . P., T. C . Lockley and G . B . Edwards . 1989 . Spiders of Washington County, Mississippi . J . Arachnol ., 17 :27-41 . SPIDERS OF WASHINGTON COUNTY, MISSISSIPPI Orrey P. Young Southern Field Crop Insect Management Laboratory USDA-ARS, P.O. Box 346 Stoneville, Mississippi 38776 USA Timothy C. Lockley Imported Fire Ant Station USDA-APHIS-PPQ 3505 25th Avenue Gulfport, Mississippi 39501 USA and G. B. Edwards Florida State Collection of Arthropods Division of Plant Industry Florida Dept. Agric. & Cons . Serv. P.O. Box 1269 Gainesville, Florida 32602 USA ABSTRACT Over a seven-year period, approximately 35,000 spiders representing 26 families, 133 genera, and 234 species were captured in Washington County, Mississippi, by pitfall, sweepnet, vacuum, bag, and hand. Specimens were collected in 10 different habitat types and in four vegetational strata . Old-field habitats yielded the most species (152) and residential lawns the fewest (14) . Considering all habitats sampled, the ground layer produced 111 species, the herbaceous strata 133, the shrub layer 49, and the tree strata 30 species . The sweepnet method of capture obtained 128 species, pitfall 95, hand 61, vacuum 53, and bagging 19 species. The largest number of species were obtained in spring and early summer (maximum of 125 in May), with the fewest in mid-winter (Jan . = 24) . Twenty-one species were considered abundant, 51 common, 67 uncommon, and 95 rare . Additions to the state list of Dorris (1972) number 102 species, for a new state total of 364 species . A comparison with the North American fauna and with other surveys indicates that Washington County is underrepresented both in cursorial forms active on the soil surface and web-spinning forms typical of undisturbed habitats . -
What Do Insects Do for a Living?
4/19/15 What do insects do for a living? Insect Ecology Ground-dwelling: Where are they found and what are they doing? Common habits • Detritivores and saprophages • Rhizophagous insects • Predators and ground-nesting insects • Decaying wood • Coprophages • Necrophages • Fungivores 1 4/19/15 Predators & Ground-nesters Decaying Wood • Usually associated with fungi – What else is there? • Numerous taxa – Wood wasps, bark beetles, ambrosia beetles, scavenger beetles, silken fungus beetles, dance flies, termites, cockroaches. Associations with fungi • Most have specialized Sirex wood wasp structures for carrying fungal spores: mycangia. • Why are most attracted to forest fires?: pyrophilous. 2 4/19/15 Coprophages • What are these? • What are they feeding on? • Why is this such a good lifestyle? • First colonization usually dung flies. • ~45 independent origins of viviparity. Why? Coprophages • These can get to nuisance levels. • Dung dispersers therefore provide an important ecosystem service. • Almost always Scarabaeidae 3 4/19/15 Necrophages • Often a very similar lifestyle to coprophages. • Often very closely related. • Most other origins of viviparity here. Necrophages • Often distinct succession. • Very useful for forensic entomology. • Most initial colonizers are Diptera. • Later are Coleoptera (e.g. Silphidae). • Dried are more Coleoptera (e.g. Dermestidae) • Final stages are tineid larvae (keratin) Fungivores • The true decomposers are fungi. • There is a whole guild of insects that specialize on these. 4 4/19/15 Aquatic Insects • Insecta (even Hexapoda) are plesiomorphically terrestrial. • But there have been numerous colonizations of the freshwater aquatic environment. • Far fewer colonizations of marine aquatic environment. Hemimetabolous Aquatic Insects • Some lineages have almost* exclusively aquatic naiads. – Ephemeroptera – Odonata* – Plecoptera (the only aquatic Polyneoptera) • All of these have terrestrial adults. -
Green Lacewings Family Chrysopidae
Beneficial Insects Class Insecta, Insects Order Neuroptera, Lacewings, mantids and others Neuroptera means “nerve wings” and refers to the hundreds of veins in their wings. The order Neuroptera is comprised of several small families. Larvae and adults are usually predaceous. Some families are uncommon while others are present more in the south and west. All neuropterans have chewing mouthparts. Green lacewings Family Chrysopidae Description and life history: Adults are green, 15–20 mm long, and slender. They have large, clear membranous wings with green veins and margins, which they hold over their body like a roof. Most have long hair-like antennae and golden eyes. Oval, white eggs are laid singly on a stalk approximately 8 mm long. Larvae are small, gray, and slender, and have large sickle-shaped mouthparts with which to puncture prey. When they reach approximately 10 mm, they spin a silken cocoon and pupate on the underside of a leaf. There are one to ten generations per year. Prey species: Green lacewing adults require high-energy foods such as honeydew and pollen. Larvae prey on aphids and other small, soft-bodied insects, and are nicknamed “aphid-lions.” Some adults are also preda- Green lacewing cocoons containing pupa. (357) ceous. Eggs, larvae, and adults are commercially avail- Photo: John Davidson able and may be purchased from insectaries. These common insects feed in fields, orchards, and gardens. They are commercially available. Chrysoperla carnea, green lacewing adult. (356) Photo: David Laughlin Green lacewing eggs on stalks. (359) Photo: John Davidson Green lacewing larva. (358) Photo: John Davidson IPM of Midwest Landscapes 278. -
Pidae, Osmylin
NATHAN BANKS. 201 SYNOPSES AND DESCRIPTIONS OF EXOTIC NEUROPTERA. Included below, with the descriptions of various new genera and species, are synopses of the genera of Panos- pidae, Osmylinae, Hemerobiinae, Mantispidae, South Ameri- can Myrmeleonidae and a new classification of the Perlidae ; most of the synoptic work is a result of a study of several European collections. The types of all the new species described in this paper are in the author's collection. PERLIDAE. Twice I have published classifications of the American Perlidae. After seeing several genera (hitherto unknown to me) in European museums I have prepared a new ar- rangement, which, however, differs little from the others as far as American species are concerned, but places in the same scheme the various exotic genera. For the principal character I would use the shape of the anterior part of the head. 1. Clypeus practically invisible, or only projecting from beneath the raised margin of the front of the head ; tarsi with the last joint very much longer than the first and second together, the first joint barely, if any longer, than the width of the tibia at tip; coxae I widely separate; setae present; no series of cross-veins in the cubito-anal space..... PERLINAE. Clypeus visible in continuation of the general surface of the head, and separated by a suture from the head ; tarsi with the last joint but little or not longer than the first and second together, the first joint longer than the width of the tibiae at tip, last joint of palpi as large as others ....................... -
UFRJ a Paleoentomofauna Brasileira
Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004). -
Dustywings on Citrus These Natural Enemies of Mites and Scales May Be Helped by Miticides but Are Killed by Insecticides
Dustywings on Citrus these natural enemies of mites and scales may be helped by miticides but are killed by insecticides C. A. Fleschner Dustywings-natural enemies of citrus which are free of mites if honeydew- mites and scales-need their prey as well secreting insects are present. Thus, it is as honeydew-secreting insects to survive. possible to treat citrus trees with mite In the insectary adult dustywings live toxicants which do not kill insects and for weeks on a diet of certain sugars still allow a dustywing population to exist alone. These sugars may be in the form in the grove. of honey, plant nectar or honeydew, the Field experiments in co-operation with latter being secreted by such insects as the Division of Entomology have shown scales, mealybugs, or aphids. Dustywings that when noninsecticidal sprays and restricted to such a diet, however, rarely dust materials, such as Ovotran and Ara- produce eggs. But when mites or scales mite, are used for mite control, existing are added to this honey diet, egg produc- dustywing populations are sustained by tion soon begins. Adult dustywings fed The dustywing, Parasamidalis flaviceps, adult. low populations of the various species of honey and mites, or honey and scale in- Actual sire 3.7 millimeters. insects remaining alive in the grove. The sects, live and produce eggs for a period predaceous activity of the dustywings of several months in the insectary. When their prey. The adults consume whole in- thus maintained serves to prolong the fed on mites or scale alone, with no honey dividuals of the prey, legs and all. -
(Neuroptera) from the Upper Cenomanian Nizhnyaya Agapa Amber, Northern Siberia
Cretaceous Research 93 (2019) 107e113 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication New Coniopterygidae (Neuroptera) from the upper Cenomanian Nizhnyaya Agapa amber, northern Siberia * Vladimir N. Makarkin a, Evgeny E. Perkovsky b, a Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia b Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel'nitskogo 15, Kiev, 01601, Ukraine article info abstract Article history: Libanoconis siberica sp. nov. and two specimens of uncertain affinities (Neuroptera: Coniopterygidae) are Received 28 April 2018 described from the Upper Cretaceous (upper Cenomanian) Nizhnyaya Agapa amber, northern Siberia. Received in revised form The new species is distinguished from L. fadiacra (Whalley, 1980) by the position of the crossvein 3r-m 9 August 2018 being at a right angle to both RP1 and the anterior trace of M in both wings. The validity of the genus Accepted in revised form 11 September Libanoconis is discussed. It easily differs from all other Aleuropteryginae by a set of plesiomorphic 2018 Available online 15 September 2018 character states. The climatic conditions at high latitudes in the late Cenomanian were favourable enough for this tropical genus, hitherto known from the Gondwanan Lebanese amber. Therefore, the Keywords: record of a species of Libanoconis in northern Siberia is highly likely. © Neuroptera 2018 Elsevier Ltd. All rights reserved. Coniopterygidae Aleuropteryginae Cenomanian Nizhnyaya Agapa amber 1. Introduction 2. Material and methods The small-sized neuropteran family Coniopterygidae comprises This study is based on three specimens originally embedded in ca. -
Estimating Spider Species Richness in a Southern Appalachian Cove Hardwood Forest
1996. The Journal of Arachnology 24:111-128 ESTIMATING SPIDER SPECIES RICHNESS IN A SOUTHERN APPALACHIAN COVE HARDWOOD FOREST Jonathan A. Coddington: Dept. of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 USA Laurel H. Young and Frederick A. Coyle: Dept. of Biology, Western Carolina University, Cullowhee, North Carolina 28723 USA ABSTRACT. Variation in species richness at the landscape scale is an important consideration in con- servation planning and natural resource management. To assess the ability of rapid inventory techniques to estimate local species richness, three collectors sampled the spider fauna of a "wilderness" cove forest in the southern Appalachians for 133 person-hours during September and early October 1991 using four methods: aerial hand collecting, ground hand collecting, beating, and leaf litter extraction. Eighty-nine species in 64 genera and 19 families were found. To these data we applied various statistical techniques (lognormal, Poisson lognormal, Chao 1, Chao 2, jackknife, and species accumulation curve) to estimate the number of species present as adults at this site. Estimates clustered between roughly 100-130 species with an outlier (Poisson lognormal) at 182 species. We compare these estimates to those from Bolivian tropical forest sites sampled in much the same way but less intensively. We discuss the biases and errors such estimates may entail and their utility for inventory design. We also assess the effects of method, time of day and collector on the number of adults, number of species and taxonomic composition of the samples and discuss the nature and importance of such effects. Method, collector and method-time of day interaction significantly affected the numbers of adults and species per sample; and each of the four methods collected clearly different sets of species. -
Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies. -
From Chewing to Sucking Via Phylogeny—From Sucking to Chewing Via Ontogeny: Mouthparts of Neuroptera
Chapter 11 From Chewing to Sucking via Phylogeny—From Sucking to Chewing via Ontogeny: Mouthparts of Neuroptera Dominique Zimmermann, Susanne Randolf, and Ulrike Aspöck Abstract The Neuroptera are highly heterogeneous endopterygote insects. While their relatives Megaloptera and Raphidioptera have biting mouthparts also in their larval stage, the larvae of Neuroptera are characterized by conspicuous sucking jaws that are used to imbibe fluids, mostly the haemolymph of prey. They comprise a mandibular and a maxillary part and can be curved or straight, long or short. In the pupal stages, a transformation from the larval sucking to adult biting and chewing mouthparts takes place. The development during metamorphosis indicates that the larval maxillary stylet contains the Anlagen of different parts of the adult maxilla and that the larval mandibular stylet is a lateral outgrowth of the mandible. The mouth- parts of extant adult Neuroptera are of the biting and chewing functional type, whereas from the Mesozoic era forms with siphonate mouthparts are also known. Various food sources are used in larvae and in particular in adult Neuroptera. Morphological adaptations of the mouthparts of adult Neuroptera to the feeding on honeydew, pollen and arthropods are described in several examples. New hypoth- eses on the diet of adult Nevrorthidae and Dilaridae are presented. 11.1 Introduction The order Neuroptera, comprising about 5820 species (Oswald and Machado 2018), constitutes together with its sister group, the order Megaloptera (about 370 species), and their joint sister group Raphidioptera (about 250 species) the superorder Neuropterida. Neuroptera, formerly called Planipennia, are distributed worldwide and comprise 16 families of extremely heterogeneous insects.