A White Paper on Nematode Comparative Genomics David Mck
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Studies Reveal a Close Relative of C. Elegans Thrives in the Fresh Figs
Woodruf and Phillips BMC Ecol (2018) 18:26 https://doi.org/10.1186/s12898-018-0182-z BMC Ecology RESEARCH ARTICLE Open Access Field studies reveal a close relative of C. elegans thrives in the fresh fgs of Ficus septica and disperses on its Ceratosolen pollinating wasps Gavin C. Woodruf1,2* and Patrick C. Phillips2 Abstract Background: Biotic interactions are ubiquitous and require information from ecology, evolutionary biology, and functional genetics in order to be understood. However, study systems that are amenable to investigations across such disparate felds are rare. Figs and fg wasps are a classic system for ecology and evolutionary biology with poor functional genetics; Caenorhabditis elegans is a classic system for functional genetics with poor ecology. In order to help bridge these disciplines, here we describe the natural history of a close relative of C. elegans, Caenorhabditis inopi- nata, that is associated with the fg Ficus septica and its pollinating Ceratosolen wasps. Results: To understand the natural context of fg-associated Caenorhabditis, fresh F. septica fgs from four Okinawan islands were sampled, dissected, and observed under microscopy. C. inopinata was found in all islands where F. septica fgs were found. C.i nopinata was routinely found in the fg interior and almost never observed on the outside surface. C. inopinata was only found in pollinated fgs, and C. inopinata was more likely to be observed in fgs with more foun- dress pollinating wasps. Actively reproducing C. inopinata dominated early phase fgs, whereas late phase fgs with emerging wasp progeny harbored C. inopinata dauer larvae. Additionally, C. inopinata was observed dismounting from Ceratosolen pollinating wasps that were placed on agar plates. -
Zootaxa,Comparison of the Cryptic Nematode Species Caenorhabditis
Zootaxa 1456: 45–62 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Comparison of the cryptic nematode species Caenorhabditis brenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with the stem species pattern of the Caenorhabditis Elegans group WALTER SUDHAUS1 & KARIN KIONTKE2 1Institut für Biologie/Zoologie, AG Evolutionsbiologie, Freie Universität Berlin, Königin-Luise Straße 1-3, 14195 Berlin, Germany. [email protected] 2Department of Biology, New York University, 100 Washington Square E., New York, NY10003, USA. [email protected] Abstract The new gonochoristic member of the Caenorhabditis Elegans group, C. brenneri sp. n., is described. This species is reproductively isolated at the postmating level from its sibling species, C. remanei. Between these species, only minute morphological differences are found, but there are substantial genetic differences. The stem species pattern of the Ele- gans group is reconstructed. C. brenneri sp. n. deviates from this character pattern only in small diagnostic characters. In mating tests of C. brenneri sp. n. females with C. remanei males, fertilization takes place and juveniles occasionally hatch. In the reverse combination, no offspring were observed. Individuals from widely separated populations of each species can be crossed successfully (e.g. C. brenneri sp. n. populations from Guadeloupe and Sumatra, or C. remanei populations from Japan and Germany). Both species have been isolated only from anthropogenic habitats, rich in decom- posing organic material. C. brenneri sp. n. is distributed circumtropically, C. remanei is only found in northern temperate regions. To date, no overlap of the ranges was found. -
Downloading the Zinc-Finger Motif from the Gag Protein Must Have Assembly Files and Executing the Ipython Notebook Cells Occurred Independently Multiple Times
The evolution of tyrosine-recombinase elements in Nematoda Amir Szitenberg1, Georgios Koutsovoulos2, Mark L Blaxter2 and David H Lunt1 1Evolutionary Biology Group, School of Biological, Biomedical & Environmental Sciences, University of Hull, Hull, HU6 7RX, UK 2Institute of Evolutionary Biology, The University of Edinburgh, EH9 3JT, UK [email protected] Abstract phylogenetically-based classification scheme. Nematode Transposable elements can be categorised into DNA and model species do not represent the diversity of RNA elements based on their mechanism of transposable elements in the phylum. transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite Keywords: Nematoda; DIRS; PAT; transposable sharing characteristics with both DNA and RNA elements; phylogenetic classification; homoplasy; elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla Introduction but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. Transposable elements We explored the diversity of YREs in Nematoda by Transposable elements (TE) are mobile genetic elements sampling broadly across the phylum and including 34 capable of propagating within a genome and potentially genomes representing the three classes within transferring horizontally between organisms Nematoda. We developed a method to isolate and (Nakayashiki 2011). They typically constitute significant classify YREs based on both feature organization and proportions of bilaterian genomes, comprising 45% of phylogenetic relationships in an open and reproducible the human genome (Lander et al. 2001), 22% of the workflow. We also ensured that our phylogenetic Drosophila melanogaster genome (Kapitonov and Jurka approach to YRE classification identified truncated and 2003) and 12% of the Caenorhabditis elegans genome degenerate elements, informatively increasing the (Bessereau 2006). -
Ecology of Caenorhabditis Species* §
Ecology of Caenorhabditis species* § Karin Kiontke , Department of Biology, New York University, New York, NY 10003 USA § Walter Sudhaus , Institut für Biologie/Zoologie, Freie Universität Berlin, D-14195 Berlin, Germany Table of Contents 1. Introduction ............................................................................................................................2 2. Associations with other animals .................................................................................................. 2 2.1. Necromeny ..................................................................................................................2 2.2. Phoresy .......................................................................................................................3 2.3. Possible adaptations to nematode-invertebrate associations .................................................... 3 2.4. Vertebrate associations ................................................................................................... 3 3. Ecology of Caenorhabditis species ..............................................................................................3 3.1. Ecology of C. briggsae, C. elegans and C. remanei ..............................................................4 4. Ecology of the Caenorhabditis stem species and evolution of ecological features within Caenorhabditis .. 5 4.1. The Caenorhabditis stem species ..................................................................................... 5 4.2. Evolutionary trends within Caenorhabditis -
The Structure, Function and Evolution of the Extracellular Matrix: a Systems-Level Analysis
The Structure, Function and Evolution of the Extracellular Matrix: A Systems-Level Analysis by Graham L. Cromar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Graham L. Cromar 2014 ii The Structure, Function and Evolution of the Extracellular Matrix: A Systems-Level Analysis Graham L. Cromar Doctor of Philosophy Department of Molecular Genetics University of Toronto 2014 Abstract The extracellular matrix (ECM) is a three-dimensional meshwork of proteins, proteoglycans and polysaccharides imparting structure and mechanical stability to tissues. ECM dysfunction has been implicated in a number of debilitating conditions including cancer, atherosclerosis, asthma, fibrosis and arthritis. Identifying the components that comprise the ECM and understanding how they are organised within the matrix is key to uncovering its role in health and disease. This study defines a rigorous protocol for the rapid categorization of proteins comprising a biological system. Beginning with over 2000 candidate extracellular proteins, 357 core ECM genes and 524 functionally related (non-ECM) genes are identified. A network of high quality protein-protein interactions constructed from these core genes reveals the ECM is organised into biologically relevant functional modules whose components exhibit a mosaic of expression and conservation patterns. This suggests module innovations were widespread and evolved in parallel to convey tissue specific functionality on otherwise broadly expressed modules. Phylogenetic profiles of ECM proteins highlight components restricted and/or expanded in metazoans, vertebrates and mammals, indicating taxon-specific tissue innovations. Modules enriched for medical subject headings illustrate the potential for systems based analyses to predict new functional and disease associations on the basis of network topology. -
Caenorhabditis Elegans
Caenorhabditis elegans From Wikipedia, the free encyclopedia Caenorhabditis elegans (pronounced Caenorhabditis elegans /ˌsiːnoʊræbˈdaɪtɪs ˈɛlɪgænz/) is a free-living, transparent nematode (roundworm), about 1 mm in length, which lives in temperate soil environments. Research into the molecular and developmental biology of C. elegans was begun in 1974 by Sydney Brenner and it has since been An adult hermaphrodite C. elegans worm used extensively as a model organism.[1] Scientific classification Kingdom: Animalia Phylum: Nematoda Contents Class: Secernentea Order: Rhabditida 1 Biology 2 Ecology Family: Rhabditidae 3 Laboratory uses Genus: Caenorhabditis 4 Genome Species: C. elegans 5 Evolution 6 Scientific community Binomial name 7 In the media Caenorhabditis elegans 8 See also Maupas, 1900 9 References 10 Publications 11 Online resources 12 Nobel lectures 13 External links Biology C. elegans is unsegmented, vermiform, bilaterally symmetrical, with a cuticle integument, four main epidermal cords and a fluid- filled pseudocoelomate cavity. Members of the species have many of the same organ systems as other animals. In the wild, they feed on bacteria that develop on decaying vegetable matter. C. elegans has two sexes: hermaphrodites and males.[2] Individuals are almost Movement of Wild-type C. elegans all hermaphrodite, with males comprising just 0.05% of the total population on average. The basic anatomy of C. elegans includes a mouth, pharynx, intestine, gonad, and collagenous cuticle. Males have a single-lobed gonad, vas deferens, and a tail specialized for mating. Hermaphrodites have two ovaries, oviducts, spermatheca, and a single uterus. C. elegans eggs are laid by the hermaphrodite. After hatching, they pass through four larval stages (L1-L4). -
Cultivation of the Rhabditid Poikilolaimus Oxycercus As a Laboratory Nematode for Genetic Analyses à RAY L
JOURNAL OF EXPERIMENTAL ZOOLOGY 303A:742–760 (2005) Cultivation of the Rhabditid Poikilolaimus oxycercus as a Laboratory Nematode for Genetic Analyses à RAY L. HONG , ANDREA VILLWOCK, AND RALF J. SOMMER Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37-39, 72076 Tuebingen, Germany ABSTRACT Vulva formation is a paradigm for evolutionary developmental biology in nematodes. Not only do the number of vulval precursor cells (VPCs) differ between members in the Rhabditidae and Diplogastridae, they are also sculpted via different developmental mechanisms, either by cell fusion in most Rhabditidae or by programmed cell death in the Diplogastridae. In this context, the species Poikilolaimus oxycercus is the only known species in the family Rhabditidae to have a subset of the Pn.p cells commit programmed cell death during the patterning of the VPCs. Our current study introduces P. oxycercus as a new laboratory organism. There are discrete laboratory strains that are genetically polymorphic from each other as well as heterogeneous within each strain. In order to cultivate this gonochoristic nematode into an experimental model with a tractable genetic system, we produced two inbreeding tolerant, near-isogenic strains capable of producing viable progeny with each other. We also described P. oxycera’s morphology by scanning electron microscopy (SEM), basic life history traits, hybrid viability, and mating behavior. P. oxycercus females have no preference for inter- or intra-strain matings, and can mate with multiple males in a relatively short time period, suggesting a propensity for maintaining heterozygosity through promiscuity. Interestingly, all sexes from three species in the genus Poikilolaimus show five 40,6-diamidino-2-phenylindole (DAPI) staining bodies in their germ line cells. -
Caenorhabditis Elegans
Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss Karin Kiontke, Nicholas P. Gavin, Yevgeniy Raynes, Casey Roehrig, Fabio Piano†, and David H. A. Fitch† Department of Biology, New York University, 100 Washington Square East, New York, NY 10003 Communicated by Morris Goodman, Wayne State University School of Medicine, Detroit, MI, May 3, 2004 (received for review March 3, 2004) Despite the prominence of Caenorhabditis elegans as a major tive outgroup species from the closest species groups within developmental and genetic model system, its phylogenetic rela- family Rhabditidae (Nematoda) (11), inferred from the se- tionship to its closest relatives has not been resolved. Resolution of quences of five nuclear genes: nearly complete sequences from these relationships is necessary for studying the steps that underlie SSU and large subunit (LSU) rRNA-encoding DNA (rDNA), life history, genomic, and morphological evolution of this impor- part of the gene for the largest subunit of RNA polymerase II tant system. By using data from five different nuclear genes from (RNAP2; also known as ama-1 in C. elegans), and portions of the 10 Caenorhabditis species currently in culture, we find a well par-6 and pkc-3 genes. We used this phylogeny to reevaluate resolved phylogeny that reveals three striking patterns in the the evolution of hermaphroditism within Caenorhabditis and the evolution of this animal group: (i) Hermaphroditism has evolved evolution of introns in RNAP2. Our data also allowed us to independently in C. elegans and its close relative Caenorhabditis explore the range of genetic divergence that has occurred across briggsae;(ii) there is a large degree of intron turnover within the genus of Caenorhabditis and compare it to that in other Caenorhabditis, and intron losses are much more frequent than organisms. -
Genomic Regulation of Abiotic Stress Response in the Soil Nematode Oscheius Tipulae
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2018 Genomic Regulation Of Abiotic Stress Response In The oiS l Nematode Oscheius Tipulae Riley Mcglynn Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Mcglynn, Riley, "Genomic Regulation Of Abiotic Stress Response In The oS il Nematode Oscheius Tipulae" (2018). Theses and Dissertations. 2417. https://commons.und.edu/theses/2417 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. GENOMIC REGULATION OF ABIOTIC STRESS RESPONSE IN THE SOIL NEMATODE OSCHEIUS TIPULAE by Riley D. McGlynn Bachelor of Arts, Concordia College, Moorhead, MN, 2012 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota December 2018 PERMISSION Title Genomic Regulation of Abiotic Stress Response in the Soil Nematode Oscheius tipulae Department Biology Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work, or in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. -
Caenorhabditis Evolution: If They All Look Alike, You Aren't Looking Hard Enough
Update TRENDS in Genetics Vol.23 No.3 Research Focus Caenorhabditis evolution: if they all look alike, you aren’t looking hard enough Eric S. Haag1, Helen Chamberlin2, Avril Coghlan3, David H.A. Fitch4, Andrew D. Peters5 and Hinrich Schulenburg6 1 Department of Biology, Building number 144, University of Maryland, College Park, MD 20742, USA 2 Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA 3 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK 4 Department of Biology, New York University, Main Building, Room 1009, 100 Washington Square East, New York, NY 10003, USA 5 Department of Zoology, 454 Birge Hall, University of Wisconsin, Madison, WI 53706, USA 6 Department of Animal Evolutionary Ecology, Zoological Institute, University of Tu¨ bingen, Auf der Morgenstelle 28, Tu¨ bingen, NRW 72076, Germany Caenorhabditis elegans is widely known as a model pean Molecular Biology Organization (EMBO), the 57 organism for cell, molecular, developmental and neural participants of the workshop addressed a wide range of biology, but it is also being used for evolutionary studies. topics. Some of these (e.g. molecular systematics and sex A recent meeting of researchers in Portugal covered determination) are well established areas of research. topics as diverse as phylogenetics, genetic mapping of Others (e.g. the population genetics of natural isolates quantitative and qualitative intraspecific variation, evol- and the genetic mapping of intraspecific variation) are utionary developmental biology and population genetics. emerging areas with enormous potential. Here, we Here, we summarize the main findings of the meeting, describe the main findings that were presented at which marks the formal birth of a research community the workshop, with emphasis on these emerging areas dedicated to Caenorhabditis species evolution. -
RESEARCH ARTICLE Negative Gravitactic Behavior of Caenorhabditis Japonica Dauer Larvae
1470 The Journal of Experimental Biology 216, 1470-1474 © 2013. Published by The Company of Biologists Ltd doi:10.1242/jeb.075739 RESEARCH ARTICLE Negative gravitactic behavior of Caenorhabditis japonica dauer larvae Etsuko Okumura1,2, Ryusei Tanaka1 and Toyoshi Yoshiga1,2,* 1Laboratory of Nematology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga 840-8502, Japan and 2The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan *Author for correspondence ([email protected]) SUMMARY Gravity on Earth is a constant stimulus and many organisms are able to perceive and respond to it. However, there is no clear evidence that nematodes respond to gravity. In this study, we demonstrated negative gravitaxis in a nematode using dauer larvae (DL) of Caenorhabditis japonica, which form an association with their carrier insect Parastrachia japonensis. Caenorhabditis japonica DL demonstrating nictation, a typical host-finding behavior, had a negative gravitactic behavior, whereas non-nictating C. japonica and C. elegans DL did not. The negative gravitactic index of nictating DL collected from younger nematode cultures was higher than that from older cultures. After a 24h incubation in M9 buffer, nictating DL did not alter their negative gravitactic behavior, but a longer incubation resulted in less pronounced negative gravitaxis. These results are indicative of negative gravitaxis in nictating C. japonica DL, which is maintained once initiated, seems to be affected by the age of DL and does not appear to be a simple passive mechanism. Supplementary material available online at http://jeb.biologists.org/cgi/content/full/216/8/1470/DC1 Key words: graviperception, geotaxis, phoresy, nictation, waving. -
Comparative Genomics of Ten New Caenorhabditis Species
bioRxiv preprint doi: https://doi.org/10.1101/398446; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Comparative genomics of ten new Caenorhabditis species Authors: Lewis Stevens1 Marie-Anne Félix2 Toni Beltran3 Christian Braendle4 Carlos Caurcel1 Sarah Fausett4 David Fitch5 Lise Frézal2 Taniya Kaur6 Karin Kiontke5 Matt D. Newton3,7 Luke M. Noble6 Aurélien Richaud2 Matthew V. Rockman6 Walter Sudhaus8 Mark Blaxter1 Author Affiliations: 1. Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom 2. Institut de Biologie de l’Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, Paris Sciences et Lettres, 75005 Paris, France 3. MRC London Institute of Medical Sciences, London, W12 0NN, UK 4. Université Côte d'Azur, Centre National de la Recherche Scientifique, Inserm, Institute of Biology Valrose, 06108 Nice, France 5. Department of Biology, New York University, New York, NY 10003, USA 6. Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA 7. Molecular Virology, Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK 8. Institut für Biologie/Zoologie, Freie Universität Berlin, D-14195 Berlin, Germany Author for correspondence: Lewis Stevens, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/398446; this version posted August 30, 2018.