fcell-08-00170 March 16, 2020 Time: 15:29 # 1 MINI REVIEW published: 18 March 2020 doi: 10.3389/fcell.2020.00170 Evolution and Developmental System Drift in the Endoderm Gene Regulatory Network of Caenorhabditis and Other Nematodes Edited by: Maike Kittelmann, Chee Kiang Ewe1,2†, Yamila N. Torres Cleuren3*† and Joel H. Rothman1,2,4*† Oxford Brookes University, United Kingdom 1 Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States, 2 Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States, Reviewed by: 3 Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway, 4 Department of Ecology, Morris Maduro, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States University of California, Riverside, United States Jose Maria Martin-Duran, Developmental gene regulatory networks (GRNs) underpin metazoan embryogenesis Queen Mary University of London, United Kingdom and have undergone substantial modification to generate the tremendous variety of *Correspondence: animal forms present on Earth today. The nematode Caenorhabditis elegans has been Yamila N. Torres Cleuren a central model for advancing many important discoveries in fundamental mechanistic
[email protected] biology and, more recently, has provided a strong base from which to explore the Joel H. Rothman
[email protected] evolutionary diversification of GRN architecture and developmental processes in other † ORCID: species. In this short review, we will focus on evolutionary diversification of the GRN for Chee Kiang Ewe the most ancient of the embryonic germ layers, the endoderm. Early embryogenesis orcid.org/0000-0003-1973-1308 Yamila N.