Fauna Assessment of Bush Forever Site 355 (Point Peron and Adjacent Bushland)

Total Page:16

File Type:pdf, Size:1020Kb

Fauna Assessment of Bush Forever Site 355 (Point Peron and Adjacent Bushland) Fauna Assessment of Bush Forever Site 355 (Point Peron and adjacent bushland) M. J. Bamford Prepared for: strategen, PO Box 660, South Perth, 6951 . Prepared by: M.J. & A.R. Bamford, CONSULTING ECOLOGISTS. 23 Plover Way, Kingsley, WA, 6026 24 th July 2005 Point Peron Fauna assessment INTRODUCTION As part of the strategic environmental review process for a proposed marina/tourism precinct, Bamford Consulting Ecologists was commissioned to undertake a fauna assessment of Bush Forever Protection Area 355 and adjacent bushland on Point Peron. The aims of this fauna study are to collate information available on fauna of the area and place it in a regional context, so that likely impacts of the proposed development upon fauna in a local and regional setting can be assessed. The key stages in this fauna study are as follows: • Review available information to produce a list of fauna species with the potential to occur at the sites; • Identify any species of conservation significance with the potential to occur on the site; • Identify significant or sensitive habitats and locations; and • Discuss the local and regional significance of the fauna assemblage of the site. This report details the findings of the fauna assessment. METHODS Level of assessment This assessment is classified as a Level 1 survey (a background research or ‘desk-top’ study) according to the EPA Guidance Statement No. 56 (Environmental Protection Authority 2003). This was the level of assessment commissioned by the client. The approach involved a brief site visit, personal familiarity with the site from previous visits to the area, and a review of available published and unpublished information (see below). Personnel The site inspection, data review and report preparation were carried out by Dr Michael Bamford of Bamford Consulting Ecologists. Sources of Information Lists of fauna expected to occur in the study area were produced using information from a number of sources. These included publications that provide information on general patterns of distribution of frogs (Tyler et al. 2000), reptiles (Storr et al. 1983, 1990, 1999 and 2002), birds (Barrett et al . 2003; Johnstone and Storr 1998), and mammals (Menkhorst and Knight 2001; Strahan 1995). Kwinana, Rockingham and Mandurah Branch of the Naturalists’ Club (1998) provides information on fauna that is specific to the area. In addition, several databases were searched for fauna records in the general area as follows: Bamford Consulting Ecologists 1 Point Peron Fauna assessment Database Area searched Fauna included in database WA Museum 32.2 to 32.4S, 115.6 Frogs, reptiles, birds and mammals faunabase to 115.8 E CALM’s 32.2 to 32.4S, 115.6 Invertebrates and vertebrates included threatened fauna to 115.8 E under WA Wildlife Conservation Act database and CALM’s priority species list Birds Australia 32 to 33 S, 115 116 E Birds Atlas 2 Database Department for the 32.2 to 32.4S, 115.6 Fauna listed under the federal EPBC Environment and to 115.8 E Act, including threatened and Heritage EPBC migratory species Protected Matters search tool These sources of information were used to create lists of species with the potential to occur at the site. As far as possible, expected species are those that are likely to utilise the project area, and such lists exclude species that have been recorded in the general region as vagrants or for which suitable habitat is absent. Particularly among the birds, for example, vagrants can be recorded almost anywhere. Pelagic birds and marine mammals and reptiles have thus been excluded from the list of species likely to utilise the project area, but coastal species have been included. Taxonomy and nomenclature for fauna species used in this report generally follow the WA Museum (2001) for amphibians, reptiles and mammals, and Christidis and Boles (1994) for birds. Where differences in the names of birds occur between these two sources, alternative names are given in parenthesis. Assessment of conservation significance The conservation status of fauna species is assessed under Commonwealth and State Acts such as the Commonwealth Environment Protection and Biodiversity Conservation Act (EPBC Act) 1999 and the Western Australian Wildlife Conservation Act 1950. The significance levels for fauna used in the EPBC Act are those recommended by the International Union for the Conservation of Nature and Natural Resources (IUCN 2001). The WA Wildlife Conservation Act 1950 uses a set of Schedules but also classifies species using some of the IUCN categories. These categories and Schedules are described in Appendix 1. The EPBC Act also has lists of migratory species that are recognised under international treaties such as the China Australia Migratory Bird Agreement (CAMBA), the Japan Australia Migratory Bird Agreement (JAMBA) and the Bonn Convention (The Convention on the Conservation of Migratory Species of Wild Animals). The list of migratory species under the EPBC Act has been revised to include species only, thus excluding family listings (DEH, pers comm.). Those species listed in JAMBA are also protected under Schedule 3 of the WA Wildlife Conservation Act . There is a separate list of marine species under the EPBC Act, but this only applies to land and waters under Bamford Consulting Ecologists 2 Point Peron Fauna assessment Commonwealth management. Therefore, marine listings are not included in this report. The Department of the Environment and Heritage (DEH, formerly Environment Australia) has also supported the publication of reports on the conservation status of most vertebrate fauna species: reptiles (Cogger et al. 1993), birds (Garnett and Crowley 2000), monotremes and marsupials (Maxwell et al. 1996), rodents (Lee 1995) and bats (Duncan et al. 1999). The Threatened Species and Communities Section of Environment Australia has also produced a list of Threatened Australian Fauna (Environment Australia 1999), although this list is effectively a precursor to the list produced under the EPBC Act. These publications also use the IUCN categories, although those used by Cogger et al. (1993) differ in some respects because this report pre-dates categories reviewed by Mace and Stuart (1994) and revisited since by IUCN (2001). In Western Australia, the Department of Conservation and Land Management (CALM) has produced a supplementary list of Priority Fauna, being species that are not considered Threatened under the WA Act but for which the Department feels there is cause for concern. Some Priority species, however, are also assigned to the IUCN Conservation Dependent category. Levels of Priority are described in Appendix 1. Fauna species included under conservation acts and/or agreements are formally recognised as of conservation significance under state or federal legislation. Species listed only as Priority by CALM, or that are included in publications such as Garnett and Crowley (2000) and Cogger et al. (1993), but not in State or Commonwealth Acts, are also of recognised conservation significance. In addition, species that are at the limit of their distribution, those that have a very restricted range and those that occur in breeding colonies, such as some waterbirds, can be considered of conservation significance, although this level of significance has no legislative or published recognition and is based on interpretation of distribution information. The WA Department of Environmental Protection used this sort of interpretation to identify significant bird species in the Perth metropolitan area as part of Perth Bushplan (Dell and Banyard 2000). On the basis of the above comments, three levels of conservation significance are recognised in this report: • Conservation Significance (CS) 1 : Species listed under State or Commonwealth Acts. • Conservation Significance (CS) 2 : Species not listed under State or Commonwealth Acts, but listed in publications on threatened fauna or as Priority species by CALM. • Conservation Significance (CS) 3 : Species not listed under Acts or in publications, but considered of at least local significance because of their pattern of distribution. Bamford Consulting Ecologists 3 Point Peron Fauna assessment SITE DESCRIPTION The study area consists of Bush Forever Site 355, located at Point Peron and Shoalwater Bay in Rockingham. Descriptions of the site are presented in the Bush Forever report volume 2 (Dell and Banyard 2000) and the vegetation is described in detail by Bennett Environmental Consulting Pty Ltd (2005) as part of the present study. The vegetation had previously been investigated by Keating and Trudgen (1986). The site supports coastal and near-coastal vegetation complexes consisting largely of low heaths and shrublands, but with some tall shrubland of Acacia rostellifera in dune swales and an area of open forest (near corner of Memorial Drive and Safety Bay Road) of Tuart Eucalyptus gomphocephala, Peppermint Agonis flexuosa , Rottnest Island Pine Callitris preissii and Rottnest Island Tea-tree Melaleuca lanceolata . The lease area proposed for development supports regenerating A. rostellifera shrubland and a heath dominated by the sedge Lomandra martima , the grass Acanthocarpus preissii and the introduced wild geranium Pelargonium capitatum . Topographically, the shoreline of the site consists of a series of limestone headlands with sandy bays and tidal reef platforms. Quindalup dunes lie behind the coast. There is a drain (channel) that contains water at least seasonally. The natural landscape of the site is degraded by weed invasion and fragmented
Recommended publications
  • Two New Species of Australian Venomous Snake, Previously Identified As Narophis Bimaculata (Duméril, Bibron and Duméril, 1854) from Southern Australia
    Australasian Journal of Herpetology 57 Australasian Journal of Herpetology 43:57-61. Published 25 April 2020. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) Two new species of Australian venomous snake, previously identified as Narophis bimaculata (Duméril, Bibron and Duméril, 1854) from Southern Australia. LSID URN:LSID:ZOOBANK.ORG:PUB:0663D230-D753-4431-AF6C-F3305CD09B12 RAYMOND T. HOSER LSID urn:lsid:zoobank.org:author:F9D74EB5-CFB5-49A0-8C7C-9F993B8504AE 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 10 February 2020, Accepted 1 March 2020, Published 25 April 2020. ABSTRACT As part of an ongoing audit of Australian reptiles, specimens of the little-known South-west Australian Snake species Narophis bimaculata (Duméril, Bibron and Duméril, 1854) from across the known range of the putative species were examined. It was found to comprise three allopatric and geographically distinct forms, worthy of taxonomic recognition. The two unnamed forms are herein formally described as species in accordance with the rules of the International Code of Zoological Nomenclature (Ride et al. 1999) as amended. Narophis richardwellsei sp. nov. is the species from the Eyre Peninsula and nearby parts of South Australia. Narophis cliffrosswellingtoni sp. nov. is the form found in most parts of southern Western Australia, except for the lower west coast and coastal plain from Green Head south to Bunbury (including Perth and environs), being the area inhabited by the nominate form Narophis bimaculata. The genus Narophis was erected by Worrell in 1961 as monotypic for the species Furina bimaculata Duméril, Bibron and Duméril, 1854, however the name has not been used since in Australian herpetology on the basis that the original publication of Worrell was not peer reviewed (see Kaiser et al.
    [Show full text]
  • Local Biodiversity Strategy
    Local Biodiversity Strategy A strategic plan for biodiversity conservation in the City of Canning over the next 20 years FrontFront Cover: Cover: Conostylis Conostylis bracteata bracteata. .Credit: Credit: S.Mawson S.Mawson InsideInside Cover: Cover: Convict Convict Fence Fence on on the the Canning Canning River River Credit:Credit: D. D. Graham Graham Contents Executive Summary 7 1 Context 12 1.1 What is Biodiversity and its Benefits 13 1.2 What is a Local Biodiversity Strategy? 13 1.3 Definition of Conservation, Protection and Retention 13 1.4 Legislative and Policy Framework 13 1.5 Local Strategic and Planning Context 15 2 Biodiversity Assets 17 2.1 Regional Context 17 2.2 Geology, Landforms and Soils 17 2.3 Vegetation 18 2.3.1 Diversity of vegetation 19 2.3.1.1 The most common vegetation complexes in the City 19 2.3.1.2 The most threatened vegetation complexes 20 2.3.1.3 The most retained vegetation complex in the City 20 2.3.2 Protection status of vegetation 23 2.4 Threatened Species and Ecological Communities 24 2.4.1 An overview and significant flora 24 2.4.2 Fauna 27 2.4.3 Threatened ecological communities 31 2.5 Waterways and Wetlands 33 2.6 Ecological Linkages 33 2.6.1 Impact of natural area fragmentation 33 2.6.2 Regional and Local ecological linkages 33 2.7 Threats to Biodiversity 35 2.7.1 Overview 35 4 2.7.2 Feral animal control 36 2.7.3 Human activities 37 2.7.4 Climate change 38 2.7.5 Current approaches to the control of threats to biodiversity 39 3 Prioritisation of Local Natural Areas for Biodiversity Conservation 41
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • 2020 KALAMUNDA LOCAL BIODIVERSITY STRATEGY Technical Report October 2020
    Public Agenda Briefing Forum 8 December 2020 Attachments Attachment 10.2.1.2 City of Kalamunda Biodiversity Conservation Action Plan 2020 – 2030 2020 KALAMUNDA LOCAL BIODIVERSITY STRATEGY Technical Report October 2020 Prepared by Nam Natura Consulting 0 City of Kalamunda 852 Public Agenda Briefing Forum 8 December 2020 Attachments Attachment 10.2.1.2 Document Tracking Item Detail Project Name Review and update of the City of Kalamunda Local Biodiversity Strategy Client City of Kalamunda Prepared by Renata Zelinova Status Draft Technical Report Version 4 Number Last saved on Disclaimer This document may only be used for the purpose for which it was commissioned and in accordance with the contract between the City of Kalamunda and Nam Natura Consulting. The scope of services was defined in consultation with the client, by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information. Nam Natura Consulting accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited. 1 City of Kalamunda 853 Public Agenda Briefing Forum 8 December 2020 Attachments Attachment 10.2.1.2 PURPOSE .................................................................................................................... 4 1 INTRODUCTION – WHY HAVE A LOCAL BIODIVERSITY STRATEGY? ..............
    [Show full text]
  • Reptiles in and Around the House Identification and Distribution Reptiles Inhabit Every Environment in Australia
    Reptiles in and around the house Identification and Distribution Reptiles inhabit every environment in Australia. Common reptiles found in Western Australian backyards include: Tiger snakes Notechis scutatus occur in southwest WA, and are often seen near water, including rivers, dams, drains and wetlands. Unlike most other Australian elapids, tiger snakes climb well. They can range from grey, olive, brown to black in colour and often have yellow and black cross-bands, but not all have this pattern. Venomous Dugite. Photo: R. Lloyd/Fauna Track Dugites Pseudonaja affinis occur in southwest WA and Gwarda Pseudonaja nuchalis occur from Perth northwards. They live in a wide variety of habitats including coastal dunes, heathlands, shrublands, woodlands and forests. They are long and slender, with relatively large scales that have a semi-glossy appearance. They can range from brown, olive to grey in colour, and can have irregular black/dark grey spotting, but patterning varies. Venomous Mulga snakes Pseudechis australis occur in a wide variety of habitats, northwards from Perth and Narrogin. They are quite robust, with a broad, deep head and bulbous cheeks. They can range from pale brown, dark olive to reddish-brown in colour, and darker snakes often have two-toned scales with a lighter colour that contrasts with the darker colour to produce a reticulated effect. The belly is cream to salmon-coloured. Venomous There are two subspecies of carpet pythons found in a large variety of habitats in WA: Morelia spilota imbricata occurs in the southwest and Morelia spilota variegata occurs in the Kimberley. They are 1-4m in length, tend to be pale to dark brown with black blotches that sometimes have a Carpet python.
    [Show full text]
  • Venemous Snakes
    WASAH WESTERN AUSTRALIAN SOCIETY of AMATEUR HERPETOLOGISTS (Inc) K E E P I N G A D V I C E S H E E T Venomous Snakes Southern Death Adder (Acanthophis Southern Death antarcticus) – Maximum length 100 cm. Adder Category 5. Desert Death Adder (Acanthophis pyrrhus) – Acanthophis antarcticus Maximum length 75 cm. Category 5. Pilbara Death Adder (Acanthophis wellsi) – Maximum length 70 cm. Category 5. Western Tiger Snake (Notechis scutatus) - Maximum length 160 cm. Category 5. Mulga Snake (Pseudechis australis) – Maximum length 300 cm. Category 5. Spotted Mulga Snake (Pseudechis butleri) – Maximum length 180 cm. Category 5. Dugite (Pseudonaja affinis affinis) – Maximum Desert Death Adder length 180 cm. Category 5. Acanthophis pyrrhus Gwardar (Pseudonaja nuchalis) – Maximum length 100 cm. Category 5. NOTE: All species listed here are dangerously venomous and are listed as Category 5. Only the experienced herpetoculturalist should consider keeping any of them. One must be over 18 years of age to hold a category 5 license. Maintaining a large elapid carries with 1 it a considerable responsibility. Unless you are Pilbara Death Adder confident that you can comply with all your obligations and licence requirements when Acanthophis wellsi keeping dangerous animals, then look to obtaining a non-venomous species instead. NATURAL HABITS: Venomous snakes occur in a wide variety of habitats and, apart from death adders, are highly mobile. All species are active day and night. HOUSING: In all species listed except death adders, one adult (to 150 cm total length) can be kept indoors in a lockable, top-ventilated, all glass or glass-fronted wooden vivarium of Western Tiger Snake at least 90 x 45 cm floor area.
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • Herpetological Notes. No.5
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Kinghorn, J. Roy, 1955. Herpetological notes. No. 5. Records of the Australian Museum 23(5): 283–286, plate xiv. [1 September 1955]. doi:10.3853/j.0067-1975.23.1955.638 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia HERPETOLOGICAL NOTES No. 5. By J. R. KINGHORN. (Plate xiv; two Text-figures.) 1. TAXONOMIC OHANGES IN THE GENUS RHYNOHOELAPS. Recent investigation shows that Rhynchoelaps bertholdi belongs to an entirely different genus of snakes from other species generally placed in the same genus. R. b61,tholdi has what may be described as typical elapine type head scalation, whilst other members of the group have a shovel-shaped snout, with a more or less oblique arrangement of head shields, naturally conforming to the disposition of the bones of the skull. Only one member of the shovel-snouted group has a more or less normal type arrangement of shields, but it is quite distinct from bertholdi. This species is fasciolata, originally named Rhinelaps fasciolatus Gunther, but in this the nasal is widely separated from the preocular: J an, in Rev. et ];Jag. Zool., p. 5UI, Dec. 1858, first mentioned E. bertholdi with Rhynchoelap8 proposed as a subgenus, but there was no description. In the same magazine, 1859, 2, ii, p. 123 he uses the name Simoselaps, genotype E. bertholdi and gave a fairly full description; so it would appear that Simoselaps should be used; but bec,wse of common usage I propose a~ present to refer it to Rhynchoelaps bertholdi.
    [Show full text]
  • Pirra Jungku Project Species Guide
    The Pirra Jungku Project is a collaboration between the Karajarri Rangers, Environs Kimberley Pirra Jungku Project and the Threatened Species Recovery Hub with funding from the Australian Government’s National Environmental Science Program and the species guide Western Australian Government’s NRM Program. Reptiles * Asterix means the animal can be tricky to ID. Take a good photo, or bring it back to camp for checking, but do this as a last resort. Don’t bring back any snakes, in case they are poisonous. Dragons Upright posture (stick their heads up), have small, rough scales, each leg has 5 clawed fingers/toes. MATT FROM MELBOURNE, AUSTRALIA CC BY 2.0 WIKIMEDIA COMMONS JESSSARAH MILLER LEGGE Slater’s ring-tailed dragon Central military dragon (Ctenophorus slaterii) (Ctenophorus isolepis) Rocky country. Reddish colour with black Sandy country. Very fast on ground. spots on back and dark rings on the tail. Reddish colour with white spots and stripes. JESSCHRISTOPHER MILLER WATSON CC BY SA 3.0 WIKIMEDIA COMMONS ARTHUR CHAPMAN NICOLAS RAKOTOPARE Pindan dragon Horner’s dragon Northern Pilbara tree dragon (Diporiphora pindan) (Lophognathus horneri) (Diporiphora vescus) Thin, slender body. Two long white stripes Ta-ta lizard. White stripe from lip to back legs. Lives in spinifex. Plain colour, sometimes down back that cross over black and orange Tiny white spot in ear. with orange tail, and long white and grey tiger stripes.* stripes down body.* CHRISTOPHERSARAH LEGGE WATSON CC BY SA 3.0 WIKIMEDIA COMMONS Dwarf bearded dragon (Pogona minor) Grey with flat body with spiny edges. Has small spines on either side of the jaw and on the back of the head.
    [Show full text]
  • Reintroducing the Dingo: the Risk of Dingo Predation to Threatened Vertebrates of Western New South Wales
    CSIRO PUBLISHING Wildlife Research http://dx.doi.org/10.1071/WR11128 Reintroducing the dingo: the risk of dingo predation to threatened vertebrates of western New South Wales B. L. Allen A,C and P. J. S. Fleming B AThe University of Queensland, School of Animal Studies, Gatton, Qld 4343, Australia. BVertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, Forest Road, Orange, NSW 2800, Australia. CCorresponding author. Present address: Vertebrate Pest Research Unit, NSW Department of Primary Industries, Sulfide Street, Broken Hill, NSW 2880, Australia. Email: [email protected] Abstract Context. The reintroduction of dingoes into sheep-grazing areas south-east of the dingo barrier fence has been suggested as a mechanism to suppress fox and feral-cat impacts. Using the Western Division of New South Wales as a case study, Dickman et al. (2009) recently assessed the risk of fox and cat predation to extant threatened species and concluded that reintroducing dingoes into the area would have positive effects for most of the threatened vertebrates there, aiding their recovery through trophic cascade effects. However, they did not formally assess the risk of dingo predation to the same threatened species. Aims. To assess the risk of dingo predation to the extant and locally extinct threatened vertebrates of western New South Wales using methods amenable to comparison with Dickman et al. (2009). Methods. The predation-risk assessment method used in Dickman et al. (2009) for foxes and cats was applied here to dingoes, with minor modification to accommodate the dietary differences of dingoes. This method is based on six independent biological attributes, primarily reflective of potential vulnerability characteristics of the prey.
    [Show full text]
  • Australian Society of Herpetologists
    1 THE AUSTRALIAN SOCIETY OF HERPETOLOGISTS INCORPORATED NEWSLETTER 48 Published 29 October 2014 2 Letter from the editor This letter finds itself far removed from last year’s ASH conference, held in Point Wolstoncroft, New South Wales. Run by Frank Lemckert and Michael Mahony and their team of froglab strong, the conference featured some new additions including the hospitality suite (as inspired by the Turtle Survival Alliance conference in Tuscon, Arizona though sadly lacking of the naked basketball), egg and goon race and bouncing castle (Simon’s was a deprived childhood), as well as the more traditional elements of ASH such as the cricket match and Glenn Shea’s trivia quiz. May I just add that Glenn Shea wowed everyone with his delightful skin tight, anatomically correct, and multi-coloured, leggings! To the joy of everybody in the world, the conference was opened by our very own Hal Cogger (I love you Hal). Plenary speeches were given by Dale Roberts, Lin Schwarzkopf and Gordon Grigg and concurrent sessions were run about all that is cutting edge in science and herpetology. Of note, award winning speeches were given by Kate Hodges (Ph.D) and Grant Webster (Honours) and the poster prize was awarded to Claire Treilibs. Thank you to everyone who contributed towards an update and Jacquie Herbert for all the fantastic photos. By now I trust you are all preparing for the fast approaching ASH 2014, the 50 year reunion and set to have many treats in store. I am sad to not be able to join you all in celebrating what is sure to be, an informative and fun spectacle.
    [Show full text]
  • (Reptilia: Squamata: Scincidae) Species Group and a New Species of Immediate Conservation Concern in the Southwestern Australian Biodiversity Hotspot
    Zootaxa 3390: 1–18 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Molecular phylogeny and morphological revision of the Ctenotus labillardieri (Reptilia: Squamata: Scincidae) species group and a new species of immediate conservation concern in the southwestern Australian biodiversity hotspot GEOFFREY M. KAY & J. SCOTT KEOGH 1 Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia 1 Corresponding author. E-mail: [email protected] Abstract Ctenotus is the largest and most diverse genus of skinks in Australia with at least 97 described species. We generated large mitochondrial and nuclear DNA data sets for 70 individuals representing all available species in the C. labillardieri species- group to produce the first comprehensive phylogeny for this clade. The widespread C. labillardieri was sampled extensively to provide the first detailed phylogeographic data set for a reptile in the southwestern Australian biodiversity hotspot. We supplemented our molecular data with a comprehensive morphological dataset for the entire group, and together these data are used to revise the group and describe a new species. The morphologically highly variable species C. labillardieri comprises seven well-supported genetic clades that each occupy distinct geographic regions. The phylogeographic patterns observed in this taxon are consistent with studies of frogs, plants and invertebrates, adding strength to emerging biogeographic hypotheses in this iconic region. The species C. catenifer, C. youngsoni, and C. gemmula are well supported, and despite limited sampling both C. catenifer and C. gemmula show substantial genetic structure.
    [Show full text]