Taxonomy of the Genus Pseudonaja (Reptilia: Elapidae) in Australia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Socio-Ecology of Two Species of Australian Native Rodent—Notomys
The socio-ecology of two species of Australian native rodent— Notomys mitchelli and Notomys alexis Clare Bradley PhD candidate Environmental Biology School of Earth and Environmental Sciences University of Adelaide November 2008 Chapter One—Introduction 1. Introduction 1.1. Mammalian social systems Many mammal species live in social groups that can consist of related individuals, family groups, or unrelated animals (Alexander 1974). Animals aggregate in order to better survive and reproduce in their particular environment, possibly gaining from shared parental care, cooperative foraging, or a reduction in predation through increased vigilance (Berger & Stevens 1996; Clutton-Brock 1989a; Hughes 1998; Johnson et al. 2002; Kleiman 1977; see also Carr & Macdonald 1986). The basic determinant of social organisation in animals is the mating system, and mating systems of mammals are generally thought to be governed by the resources available in the habitat, since the distribution of resources determines the spatial distribution of females and this, in turn, determines the distribution of males (Clutton-Brock 1989a; Emlen & Oring 1977; Shier & Randall 2004; Trivers 1972; Wiens 1976; Wittenberger 1980). In very stable or predictable environments, where resources are uniformly distributed in space and time, females can be widely dispersed and monogamous mating systems are thought to be most likely (Emlen & Oring 1977; Keverne 1985; Kleiman 1977; Komers & Brotherton 1997; Reichard 2003). However, increasingly patchy resource distribution acts to ‘clump’ female distribution in areas of higher quality and promote polygynous systems (Clutton-Brock 1989a; Johnson et al. 2002; Orians 1969; Reynolds 1996). In such environments, a successful breeding strategy for a male is one where he can gain access to multiple females through controlling, in some way, the resources that govern the females’ dispersion (Greenwood 1980; Perrin & Mazalov 2000; The socio-ecology of two species of Australian native rodent—N. -
Guidelines for Keeping Venomous Snakes in the NT
GUIDELINES FOR KEEPING VENOMOUS SNAKES IN THE NT Venomous snakes are potentially dangerous to humans, and for this reason extreme caution must be exercised when keeping or handling them in captivity. Prospective venomous snake owners should be well informed about the needs and requirements for keeping these animals in captivity. Permits The keeping of protected wildlife in the Northern Territory is regulated by a permit system under the Territory Parks and Wildlife Conservation Act 2006 (TPWC Act). Conditions are included on permits, and the Parks and Wildlife Commission of the Northern Territory (“PWCNT”) may issue infringement notices or cancel permits if conditions are breached. A Permit to Keep Protected Wildlife enables people to legally possess native vertebrate animals in captivity in the Northern Territory. The permit system assists the PWCNT to monitor wildlife kept in captivity and to detect any illegal activities associated with the keeping of, and trade in, native wildlife. Venomous snakes are protected throughout the Northern Territory and may not be removed from the wild without the appropriate licences and permits. People are required to hold a Keep Permit (Category 1–3) to legally keep venomous snakes in the Northern Territory. Premises will be inspected by PWCNT staff to evaluate their suitability prior to any Keep Permit (Category 1– 3) being granted. Approvals may also be required from local councils, the Northern Territory Planning Authority, and the Department of Health and Community Services. Consignment of venomous snakes between the Northern Territory and other States and Territories can only be undertaken with an appropriate import / export permit. There are three categories of venomous snake permitted to be kept in captivity in the Northern Territory: Keep Permit (Category 1) – Mildly Dangerous Venomous Keep Permit (Category 2) – Dangerous Venomous Keep Permit (Category 3) – Highly Dangerous Venomous Venomous snakes must be obtained from a legal source (i.e. -
Raymond T. Hoser
32 Australasian Journal of Herpetology Australasian Journal of herpetology 11:32-50. Published 8 April 2012. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) THE DESCRIPTION OF A NEW GENUS OF WEST AUSTRALIAN SNAKE AND EIGHT NEW TAXA IN THE GENERA PSEUDONAJA GUNTHER, 1858, OXYURANUS KINGHORN, 1923 AND PANACEDECHIS WELLS AND WELLINGTON, 1985 (SERPENTES: ELAPIDAE) RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: [email protected] Submitted 20 March 2012, Accepted 30 March 2012, Published 8 April 2012. ABSTRACT This paper defines and names new taxa from Australasia. The taxon Denisonia fasciata Rosen 1905, placed most recently by most authors in the genus Suta, is formally removed from that genus and placed in a monotypic genus formally named and described herein. Other taxa formally named and described for the first time include subspecies of the following; the broadly recognized species Pseudonaja textilis (known as the Eastern Brown Snake), P. guttata (Speckled Brown Snake) and P. affinis (Dugite), Oxyuranus scutellatus (Taipan) from Irian Jaya and western Papua as well as a second subspecies from north-west Australia and a hitherto unnamed subspecies of Panacedechis papuanus (Papuan Blacksnake) from the same general region. The newly named taxa are: Hulimkai gen. nov., Pseudonaja textilis cliveevatti subsp. nov., Pseudonaja textilis leswilliamsi subsp. nov., Pseudonaja textilis rollinsoni subsp. nov., Pseudonaja textilis jackyhoserae subsp. nov., Pseudonaja guttata -
Controlled Animals
Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3. -
Draft Animal Keepers Species List
Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290, -
An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)]. -
Reptiles in and Around the House Identification and Distribution Reptiles Inhabit Every Environment in Australia
Reptiles in and around the house Identification and Distribution Reptiles inhabit every environment in Australia. Common reptiles found in Western Australian backyards include: Tiger snakes Notechis scutatus occur in southwest WA, and are often seen near water, including rivers, dams, drains and wetlands. Unlike most other Australian elapids, tiger snakes climb well. They can range from grey, olive, brown to black in colour and often have yellow and black cross-bands, but not all have this pattern. Venomous Dugite. Photo: R. Lloyd/Fauna Track Dugites Pseudonaja affinis occur in southwest WA and Gwarda Pseudonaja nuchalis occur from Perth northwards. They live in a wide variety of habitats including coastal dunes, heathlands, shrublands, woodlands and forests. They are long and slender, with relatively large scales that have a semi-glossy appearance. They can range from brown, olive to grey in colour, and can have irregular black/dark grey spotting, but patterning varies. Venomous Mulga snakes Pseudechis australis occur in a wide variety of habitats, northwards from Perth and Narrogin. They are quite robust, with a broad, deep head and bulbous cheeks. They can range from pale brown, dark olive to reddish-brown in colour, and darker snakes often have two-toned scales with a lighter colour that contrasts with the darker colour to produce a reticulated effect. The belly is cream to salmon-coloured. Venomous There are two subspecies of carpet pythons found in a large variety of habitats in WA: Morelia spilota imbricata occurs in the southwest and Morelia spilota variegata occurs in the Kimberley. They are 1-4m in length, tend to be pale to dark brown with black blotches that sometimes have a Carpet python. -
Venemous Snakes
WASAH WESTERN AUSTRALIAN SOCIETY of AMATEUR HERPETOLOGISTS (Inc) K E E P I N G A D V I C E S H E E T Venomous Snakes Southern Death Adder (Acanthophis Southern Death antarcticus) – Maximum length 100 cm. Adder Category 5. Desert Death Adder (Acanthophis pyrrhus) – Acanthophis antarcticus Maximum length 75 cm. Category 5. Pilbara Death Adder (Acanthophis wellsi) – Maximum length 70 cm. Category 5. Western Tiger Snake (Notechis scutatus) - Maximum length 160 cm. Category 5. Mulga Snake (Pseudechis australis) – Maximum length 300 cm. Category 5. Spotted Mulga Snake (Pseudechis butleri) – Maximum length 180 cm. Category 5. Dugite (Pseudonaja affinis affinis) – Maximum Desert Death Adder length 180 cm. Category 5. Acanthophis pyrrhus Gwardar (Pseudonaja nuchalis) – Maximum length 100 cm. Category 5. NOTE: All species listed here are dangerously venomous and are listed as Category 5. Only the experienced herpetoculturalist should consider keeping any of them. One must be over 18 years of age to hold a category 5 license. Maintaining a large elapid carries with 1 it a considerable responsibility. Unless you are Pilbara Death Adder confident that you can comply with all your obligations and licence requirements when Acanthophis wellsi keeping dangerous animals, then look to obtaining a non-venomous species instead. NATURAL HABITS: Venomous snakes occur in a wide variety of habitats and, apart from death adders, are highly mobile. All species are active day and night. HOUSING: In all species listed except death adders, one adult (to 150 cm total length) can be kept indoors in a lockable, top-ventilated, all glass or glass-fronted wooden vivarium of Western Tiger Snake at least 90 x 45 cm floor area. -
Does Urbanization Influence the Diet of a Large Snake?
Current Zoology, 2018, 64(3), 311–318 doi: 10.1093/cz/zox039 Advance Access Publication Date: 27 June 2017 Article Article Does urbanization influence the diet of a large snake? a, a b Ashleigh K. WOLFE *, Philip W. BATEMAN , and Patricia A. FLEMING aDepartment of Environment and Agriculture, Curtin University, Perth, Bentley, WA, 6102, Australia and bSchool of Veterinary and Life Sciences, Murdoch University, Perth, Murdoch, WA, 6150, Australia *Address correspondence to Ashleigh K. Wolfe. E-mail: [email protected] Received on 10 April 2017; accepted on 21 May 2017 Abstract Urbanization facilitates synanthropic species such as rodents, which benefit the diets of many preda- tors in cities. We investigated how urbanization affects the feeding ecology of dugites Pseudonaja affi- nis, a common elapid snake in south-west Western Australia. We predicted that urban snakes: 1) more frequently contain prey and eat larger meals, 2) eat proportionally more non-native prey, 3) eat a lower diversity of prey species, and 4) are relatively heavier, than non-urban dugites. We analyzed the diet of 453 specimens obtained from the Western Australian Museum and opportunistic road-kill collections. Correcting for size, sex, season, and temporal biases, we tested whether location influenced diet for our 4 predictions. Body size was a strong predictor of diet (larger snakes had larger prey present, a greater number of prey items, and a greater diversity of prey). We identified potential collection biases: urban dugites were relatively smaller (snout-vent length) than non-urban specimens, and females were relatively lighter than males. Accounting for these effects, urban snakes were less likely to have prey present in their stomachs and were relatively lighter than non-urban snakes. -
Habitat Types
Habitat Types The following section features ten predominant habitat types on the West Coast of the Eyre Peninsula, South Australia. It provides a description of each habitat type and the native plant and fauna species that commonly occur there. The fauna species lists in this section are not limited to the species included in this publication and include other coastal fauna species. Fauna species included in this publication are printed in bold. Information is also provided on specific threats and reference sites for each habitat type. The habitat types presented are generally either characteristic of high-energy exposed coastline or low-energy sheltered coastline. Open sandy beaches, non-vegetated dunefields, coastal cliffs and cliff tops are all typically found along high energy, exposed coastline, while mangroves, sand flats and saltmarsh/samphire are characteristic of low energy, sheltered coastline. Habitat Types Coastal Dune Shrublands NATURAL DISTRIBUTION shrublands of larger vegetation occur on more stable dunes and Found throughout the coastal environment, from low beachfront cliff-top dunes with deep stable sand. Most large dune shrublands locations to elevated clifftops, wherever sand can accumulate. will be composed of a mosaic of transitional vegetation patches ranging from bare sand to dense shrub cover. DESCRIPTION This habitat type is associated with sandy coastal dunes occurring The understory generally consists of moderate to high diversity of along exposed and sometimes more sheltered coastline. Dunes are low shrubs, sedges and groundcovers. Understory diversity is often created by the deposition of dry sand particles from the beach by driven by the position and aspect of the dune slope. -
Berriquin LWMP Wildlife
Berriquin Wildlife Murray Land & Water Management Plan Wildlife Survey 2005-2006 Matthew Herring David Webb Michael Pisasale INTRODUCTION Why do a wildlife survey? 106 farms and were surveyed One of the great things about between June 2005 and March living in rural Australia is all the 2006. They incorporated a range wildlife that we share the land- of vegetation types (e.g. Black scape with. Historically, humans Box Woodland) as well as reveg- have impacted on the survival of etation on previously cleared many native plants and animals. land and constructed wetlands. Fortunately, there is a grow- Methods used to survey wildlife ing commitment in the country included: to wildlife conservation on the farm. As we improve our knowl- - Bird surveys edge and understanding of the - Log rolling for reptiles and local landscape and the animals frogs and plants that live in it we will - Spotlighting for mammals, rep be in a much better position to tiles and nocturnal birds conserve and enhance our natu- - Elliot traps for small mammals ral heritage for future genera- and reptiles tions. - Pitfall trapping for reptiles and frogs This wildlife survey was an ini- - Harp traps for bats tiative of the Berriquin Land & - Using the “Anabat” to record Water Management Plan (LWMP) bat calls M.Herring Working Group and is the largest - Call broadcasting to attract Wildlife expert Adam Bester and most extensive ever un- birds with 11 Little Forest Bats, one dertaken in the area. Berriquin of Berriquin’s most abundant was one of four LWMP areas that Other targeted methods were mammals. -
The Brown Snake Complex Genus Pseudonaja Formally Demansia
The Brown Snake Complex Genus Pseudonaja formally Demansia All Brown Snakes are egg layers not live bearers and all but one species the Ringed Brown (Pseudonaja modesta) should be classed as deadly. Specific antivenom is Brown snake antivenom. The Common or Eastern Brown (Pseudonaja textilis textilis) Found over much of Victoria especially in the drier areas. It is to be found in the south eastern corner of South Australia and most of New South Wales. Its range covers most of Queensland and has been recorded in a few spots of the Northern Territory; it is also found in parts of New Guinea. The venom of this snake is strongly coagulant and neurotoxic though other toxins are also present. The Eastern brown usually produces from 10 to 30 eggs. Egg counts will usually depend on the size of the snake. Browns are quite common in the wheat and other grain growing areas and their numbers have multiplied to take advantage of the mice that follow the grain. Browns being rather slender snakes can get their heads down mouse burrows or into places where mice would otherwise be safe. The Browns eat all the mice meaning the whole family. After taking care of the larger mice they’ll consume all the baby mice. If the mother gets away and these baby mice were left then she would return and rear them. Within a few more weeks all the females would be pregnant and then they would of course, start to breed like mice. My belief is that without Brown snakes in Australia we would find it very difficult to grow any grain (cereal) crops at all.