Applied Anatomy of the Heart and Great Vessels

Total Page:16

File Type:pdf, Size:1020Kb

Applied Anatomy of the Heart and Great Vessels Chapter 55 Applied Anatomy of the Heart and Great Vessels Joseph G. Murphy, M.D. Pericardium This chapter reviews important topics in cardiovas- cular anatomy that pertain to the practice of clinical The pericardium surrounds the heart and consists of fibrous cardiology. The format of the chapter is to describe and serous portions. The fibrous pericardium forms a tough briefly the anatomy followed by the clinical signifi- outer sac, which envelops the heart and attaches to the great cance in italic type. vessels. The ascending aorta, pulmonary artery, terminal 2 to 4 cm of superior vena cava, and short lengths of the pulmonary veins and inferior vena cava are intrapericardial (Fig. 1). Mediastinum The fibrous pericardium is inelastic and limits the diastolic distention of the heart during exercise. Cardiac enlarge- The mediastinum contains, in addition to the heart and great ment or chronic pericardial effusions, both of which develop vessels, the distal portion of the trachea, right and left bronchi, slowly, will stretch the fibrous pericardium. However, the esophagus, thymus, autonomic nerves (cardiac and splanch- fibrous pericardium cannot stretch acutely, and the rapid nic, left recurrent laryngeal, and bilateral vagal and phrenic), accumulation of as little as 200 mL of fluid may produce various small arteries (such as bronchial and esophageal) and fatal cardiac tamponade. Hemopericardium results from veins (such as bronchial, azygos, and hemiazygos), lymph perforation of either the heart or the intrapericardial great nodes, cardiopulmonary lymphatics, and thoracic duct. vessels. Enlargement of a cardiac chamber or great vessel may dis- The serous pericardium is a delicate mesothelial layer place or compress an adjacent noncardiac structure. An that lines the inner aspect of the fibrous pericardium (pari- enlarged left atrium may displace the left bronchus superior- etal pericardium) and the outer surface of the heart and ly and the esophagus rightward. An aberrant retroesophageal intrapericardial great vessels (visceral pericardium). The right subclavian artery indents the esophagus posteriorly and visceral pericardium, or epicardium, contains the coronary may cause dysphagia. Mediastinal neoplasms can compress arteries and veins, autonomic nerves, lymphatic channels, the atria, superior vena cava, or pulmonary veins. and variable amounts of adipose tissue. Sections of the text in italic type are topics related to pathology. An atlas illustrating the anatomy of the heart is at the end of the chapter (Plates 1-24). Modified from Edwards WD: Applied anatomy of the heart. In Giuliani ER, Gersh BJ, McGoon MD, Hayes DL, Schaff HV (editors): Mayo Clinic Practice of Cardiology. Third edition. Mosby, 1996, pp 422-489. By permission of Mayo Foundation. 927 928 Applied Anatomy of the Heart and Great Vessels S Parietal pericardium Ao V Ao PA C PA SVC L P R V P V RA RV IVC A Diaphragm B Fig. 1. Parietal pericardium. A, Anterior portion of the parietal pericardium has been removed to show the intrapericardial segments of the great arteries and superior vena cava. (Anterior view from 16-year-old boy.) B, Heart has been removed from posterior portion of parietal pericardium to show the great ves- sels, the transverse sinus (dashed line), and the oblique sinus (arrows). (Anterior view from 13-year-old boy.) (See Appendix at end of chapter for abbre- viations.) (A from Mayo Clin Proc 56:479-497, 1981. By permission of Mayo Foundation.) In obese subjects, excessive epicardial depot fat may organization of such an exudate may result in fibrous adhe- encase the heart, but because pericardial fat is liquid at sions between the epicardium and the parietal pericardium. body temperature, cardiac motion is generally unhindered. Focal adhesions are usually unimportant, but occasionally Focal epicardial fibrosis along the anterior right ventricle they may allow the accumulation of loculated fluid or, rarely, or posterobasal left ventricle (so-called soldiers’ patches) tamponade of an individual cardiac chamber, usually the may result from old pericarditis or perhaps from the trauma right ventricle. After cardiac surgery, the opened pericardial of an enlarged heart’s impact against the sternum or calcified cavity may become sealed again if the parietal pericardium descending thoracic aorta. adheres to the sternum; in this setting, the raw pericardial sur- Between the great arteries (aorta and pulmonary artery) faces, which are lined by fibrovascular granulation tissue, and the atria is a tunnel-like transverse sinus (Fig. 1). may ooze enough blood to cause cardiac tamponade. Posteriorly, the pericardial reflection forms an inverted U- Densely fibrotic adhesions, with or without calcification, shaped cul-de-sac known as the oblique sinus. The liga- can hinder cardiac motion and may restrict cardiac filling. ment of Marshall is a pericardial fold that contains the The pericardium is thickened in subjects with chronic con- embryonic remnants of the left superior vena cava. striction but not necessarily so in persons with constriction that A sequential saphenous vein bypass graft to the left coro- develops relatively rapidly. In the setting of constrictive peri- nary system may be positioned posteriorly through the trans- carditis, surgical excision of only the anterior pericardium verse sinus. A persistent left superior vena cava will occupy (between the phrenic nerves) is often inadequate, because the expected site of the ligament of Marshall, along the junc- the remaining pericardium surrounds enough of the heart to tion between the appendage and body of the left atrium. maintain constriction. Between the parietal and visceral layers of the serous peri- Most postoperative pericardial adhesions are usually cardium is the pericardial cavity, which normally contains functionally unimportant, but they may obscure the location 10 to 20 mL of serous fluid that allows the tissue surfaces of the coronary arteries at subsequent cardiac operation. to glide over each other with minimal friction. Other pericardial conditions include congenital cysts or Thick and roughened surfaces associated with fibri- diverticula of the pericardium, or the parietal pericardium nous pericarditis lead to an auscultatory friction rub, and may be focally deficient or absent. Applied Anatomy of the Heart and Great Vessels 929 G The fibrous pericardium cannot adequately stretch acutely, and the rapid accumulation of as little as 200 mL of fluid may produce fatal cardiac tamponade. G A sequential saphenous vein bypass graft to the left coro- nary system may be positioned posteriorly through the transverse sinus. Great Veins Bilaterally, the subclavian and internal jugular veins merge to form bilateral innominate (or brachiocephalic) veins. The latter then join to form the superior vena cava (or superior caval vein) (Fig. 2). Superior Vena Cava The right internal jugular vein, right innominate vein, and superior vena cava afford a relatively straight intravascular route to the right atrium and tricuspid orifice. Accordingly, this route may be used for passage of a stiff endomyocardial bioptome across the tricuspid valve and into the right ventricular apex to obtain a cardiac biop- sy specimen. Similarly, both temporary and permanent transvenous pacemaker leads are inserted via either the subclavian or the internal jugular vein and are threaded into the right ventricular apex. Catheters and pacemakers within the innominate veins and superior vena cava become partially coated with thrombus and may be associated with thrombotic venous obstruction, pulmonary thromboembolism, or secondary Fig. 2. Systemic veins, excluding the portal circulation. (See Appendix at infection. Mediastinal neoplasms, fibrosis, and aortic end of chapter for abbreviations.) aneurysms may compress the thin-walled veins and result in the superior vena caval syndrome. Renal cell carcinomas may extend intravascularly within Inferior Vena Cava the renal veins and inferior vena cava and may even form The inferior vena cava receives systemic venous drainage tethered intracavitary right-sided cardiac masses. from the legs and retroperitoneal viscera and, at the level Hepatocellular carcinomas often involve the hepatic veins of the liver, from the intra-abdominal systemic venous and occasionally may enter the suprahepatic inferior vena drainage (portal circulation) via the hepatic veins. cava or right atrium. The inferior vena cava, which is retroperitoneal, may The superior and inferior pulmonary veins from each become trapped and compressed between the vertebral lung enter the left atrium. The proximal 1 to 3 cm of the column posteriorly and either an adjacent retroperitoneal pulmonary veins contain cardiac muscle within the media structure (for example, an abdominal aortic aneurysm) or and may thereby function like sphincters during atrial sys- an intraperitoneal structure (for example, a neoplasm) and tole as well as when significant mitral valve disease exists. thereby produce the inferior vena caval syndrome. The thin-walled and low-pressure pulmonary veins may Venous thrombi in the lower extremities may extend into be compressed extrinsically by mediastinal neoplasms or the inferior vena cava or may become dislodged and fibrosis. Rarely, a primary neoplasm may cause luminal embolize to the right heart and pulmonary circulation. obstruction in the major pulmonary veins. 930 Applied Anatomy of the Heart and Great Vessels Congenital Abnormalities of the Venous System Cardiac Chambers Congenital anomalies of
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Cardiovascular System 9
    Chapter Cardiovascular System 9 Learning Outcomes On completion of this chapter, you will be able to: 1. State the description and primary functions of the organs/structures of the car- diovascular system. 2. Explain the circulation of blood through the chambers of the heart. 3. Identify and locate the commonly used sites for taking a pulse. 4. Explain blood pressure. 5. Recognize terminology included in the ICD-10-CM. 6. Analyze, build, spell, and pronounce medical words. 7. Comprehend the drugs highlighted in this chapter. 8. Describe diagnostic and laboratory tests related to the cardiovascular system. 9. Identify and define selected abbreviations. 10. Apply your acquired knowledge of medical terms by successfully completing the Practical Application exercise. 255 Anatomy and Physiology The cardiovascular (CV) system, also called the circulatory system, circulates blood to all parts of the body by the action of the heart. This process provides the body’s cells with oxygen and nutritive ele- ments and removes waste materials and carbon dioxide. The heart, a muscular pump, is the central organ of the system. It beats approximately 100,000 times each day, pumping roughly 8,000 liters of blood, enough to fill about 8,500 quart-sized milk cartons. Arteries, veins, and capillaries comprise the network of vessels that transport blood (fluid consisting of blood cells and plasma) throughout the body. Blood flows through the heart, to the lungs, back to the heart, and on to the various body parts. Table 9.1 provides an at-a-glance look at the cardiovascular system. Figure 9.1 shows a schematic overview of the cardiovascular system.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Abnormalities Caused by Left Bundle Branch Block - Print Article - JAAPA
    Marquette University e-Publications@Marquette Physician Assistant Studies Faculty Research and Physician Assistant Studies, Department Publications 12-17-2010 Abnormalities Caused by Left undB le Branch Block James F. Ginter Aurora Cardiovascular Services Patrick Loftis Marquette University, [email protected] Published version. Journal of the American Academy of Physician Assistants, Vol. 23, No. 12 (December 2010). Permalink. © 2010, American Academy of Physician Assistants and Haymarket Media Inc. Useded with permission. Abnormalities caused by left bundle branch block - Print Article - JAAPA http://www.jaapa.com/abnormalities-caused-by-left-bundle-branch-block/... << Return to Abnormalities caused by left bundle branch block James F. Ginter, MPAS, PA-C, Patrick Loftis, PA-C, MPAS, RN December 17 2010 One of the keys to achieving maximal cardiac output is simultaneous contraction of the atria followed by simultaneous contraction of the ventricles. The cardiac conduction system (Figure 1) coordinates the polarization and contraction of the heart chambers. As reviewed in the earlier segment of this department on right bundle branch block (RBBB), the process begins with a stimulus from the sinoatrial (SA) node. The stimulus is then slowed in the atrioventricular (AV) node, allowing complete contraction of the atria. From there, the stimulus proceeds to the His bundle and then to the left and right bundle branches. The bundle branches are responsible for delivering the stimulus to the Purkinje fibers of the left and right ventricles at the same speed, which allows simultaneous contraction of the ventricles. Bundle branch blocks are common disorders of the cardiac conduction system. They can affect the right bundle, the left bundle, or one of its branches (fascicular block), or they may occur in combination.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Readingsample
    Integrating Cardiology for Nuclear Medicine Physicians A Guide to Nuclear Medicine Physicians Bearbeitet von Assad Movahed, Gopinath Gnanasegaran, John Buscombe, Margaret Hall 1. Auflage 2008. Buch. xiv, 544 S. Hardcover ISBN 978 3 540 78673 3 Format (B x L): 21 x 27,9 cm Weitere Fachgebiete > Medizin > Sonstige Medizinische Fachgebiete > Nuklearmedizin, Radiotherapie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter The Heart: Anatomy, Physiology and 1 Exercise Physiology Syed Shah, Gopinath Gnanasegaran, Jeanette Sundberg-Cohon, and John R Buscombe Contents 1.1 Introduction 1.1 Introduction . 3 1.2 Anatomy of the Heart . 3 The impact of anatomy on medicine was first recognised 1.2.1 Chamber and Valves . 4 by Andreas Vesalius during the 16th century [1] and 1.2.2 Cardiac Cell and Cardiac Muscle ......... 4 from birth to death, the heart is the most talked about 1.2.3 Coronary Arteries and Cardiac Veins . 6 organ of the human body. It is the centre of attraction 1.2.4 Venous Circulation ..................... 6 for people from many lifestyles, such as philosophers, 1.2.5 Nerve Supply of the Heart ............... 9 artists, poets and physicians/surgeons. The heart is one 1.2.6 Conduction System of the Heart . 10 of the most efficient organs in the human body and 1.3 Physiology of the Heart .
    [Show full text]
  • Arterial Switch Operation Surgery Surgical Solutions to Complex Problems
    Pediatric Cardiovascular Arterial Switch Operation Surgery Surgical Solutions to Complex Problems Tom R. Karl, MS, MD The arterial switch operation is appropriate treatment for most forms of transposition of Andrew Cochrane, FRACS the great arteries. In this review we analyze indications, techniques, and outcome for Christian P.R. Brizard, MD various subsets of patients with transposition of the great arteries, including those with an intact septum beyond 21 days of age, intramural coronary arteries, aortic arch ob- struction, the Taussig-Bing anomaly, discordant (corrected) transposition, transposition of the great arteries with left ventricular outflow tract obstruction, and univentricular hearts with transposition of the great arteries and subaortic stenosis. (Tex Heart Inst J 1997;24:322-33) T ransposition of the great arteries (TGA) is a prototypical lesion for pediat- ric cardiac surgeons, a lethal malformation that can often be converted (with a single operation) to a nearly normal heart. The arterial switch operation (ASO) has evolved to become the treatment of choice for most forms of TGA, and success with this operation has become a standard by which pediatric cardiac surgical units are judged. This is appropriate, because without expertise in neonatal anesthetic management, perfusion, intensive care, cardiology, and surgery, consistently good results are impossible to achieve. Surgical Anatomy of TGA In the broad sense, the term "TGA" describes any heart with a discordant ven- triculoatrial (VA) connection (aorta from right ventricle, pulmonary artery from left ventricle). The anatomic diagnosis is further defined by the intracardiac fea- tures. Most frequently, TGA is used to describe the solitus/concordant/discordant heart.
    [Show full text]
  • Anomalies of the Aorta and Pulmonary Arteries Complicating Ventricular Septal Defect
    Br Heart J: first published as 10.1136/hrt.24.3.279 on 1 May 1962. Downloaded from ANOMALIES OF THE AORTA AND PULMONARY ARTERIES COMPLICATING VENTRICULAR SEPTAL DEFECT BY J. MORGAN, R. PITMAN, J. F. GOODWIN, R. E. STEINER, AND A. HOLLMAN From the Departments of Medicine and Radiodiagnosis, Postgraduate Medical School and Hammersmith Hospital Received August 15, 1961 Ventricular septal defect is not always a simple lesion, but may be associated with other congenital cardiac disorders. The object of this paper is to present anomalies of the great vessels that have been found on angiocardiography or at operation in a series of patients with a ventricular septal defect investigated and treated at Hammersmith Hospital. During the last three years selective angiocardiography has been performed on 165 patients diagnosed as having ventricular septal defect. In 24 of them associated anomalies of the aorta and pulmonary arteries have been found. These patients will be presented in three groups according to the type of anomalies found; Group 1, corrected transposition of the great vessels, Group 2, double outlet right ventricle, Group 3, anomalies of the pulmonary arteries. 1. CORRECTED OF THE GREAT VESSELS GROUP TRANSPOSITION http://heart.bmj.com/ In this anomaly there is anatomical transposition. Viewed from above the aorta is anterior and to the left and the pulmonary trunk posterior and to the right. This is corrected functionally by bulboventricular inversion. Corrected transposition is usually associated with other defects, but the circulation is normal, for venous blood enters the pulmonary circulation and arterial blood the systemic circulation. The systemic ventricle from which the aorta arises has the anatomical features of a right ventricle, and the venous ventricle, from which the pulmonary artery arises, has the anatomical characteristics of a left ventricle.
    [Show full text]
  • Basic ECG Interpretation
    12/2/2016 Basic Cardiac Anatomy Blood Flow Through the Heart 1. Blood enters right atrium via inferior & superior vena cava 2. Right atrium contracts, sending blood through the tricuspid valve and into the right ventricle 3. Right ventricle contracts, sending blood through the pulmonic valve and to the lungs via the pulmonary artery 4. Re-oxygenated blood is returned to the left atrium via the right and left pulmonary veins 5. Left atrium contracts, sending blood through the mitral valve and into the left ventricle 6. Left ventricle contracts, sending blood through the aortic Septum valve and to the body via the aorta 1 http://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart 2 _(cropped).svg Fun Fact….. Layers of the Heart Pulmonary Artery – The ONLY artery in the body that carries de-oxygenated blood Pulmonary Vein – The ONLY vein in the body that carries oxygenated blood 3 4 Layers of the Heart Endocardium Lines inner cavities of the heart & covers heart valves (Supplies left ventricle) Continuous with the inner lining of blood vessels Purkinje fibers located here; (electrical conduction system) Myocardium Muscular layer – the pump or workhorse of the heart “Time is Muscle” Epicardium Protective outer layer of heart (Supplies SA node Pericardium in most people) Fluid filled sac surrounding heart 5 6 http://stanfordhospital.org/images/greystone/heartCenter/images/ei_0028.gif 1 12/2/2016 What Makes the Heart Pump? Electrical impulses originating in the right atrium stimulate cardiac muscle contraction Your heart's
    [Show full text]
  • Ventricular Anatomy for the Electrophysiologist (Part
    Ventricular Anatomy for the REVIEW Electrophysiologist (Part II) SPECIAL 서울대학교 의과대학 병리학교실 서정욱 이화여자대학교 의학전문대학원 김문영 ABSTRACT The conduction fibers and Purkinje network of the ventricular myocardium have their peculiar location and immuno-histochemical characteristics. The bundle of His is located at the inferior border of the membranous septum, where the single trunk ramifies into the left and right bundle branches. The left bundle branches are clearly visible at the surface. The right bundles are hidden in the septal myocardium and it is not easy to recognize them. The cellular characters of the conduction bundles are modified myocardial cells with less cytoplasmic filaments. Myoglobin is expressed at the contractile part, whereas CD56 is expressed at the intercalated disc. A fine meshwork of synaptophysin positive processes is noted particularly at the nodal tissue. C-kit positive cells are scattered, but their role is not well understood. Purkinje cells are a peripheral continuation of bundles seen at the immediate subendocardium of the left ventricle. Key words: ■ conduction system ■ Purkinje network ■ pathology ■ arrhythmia ■ electrophysiology Introduction human heart. In this brief review, the histological characteristics of conduction cells, stained by The functional assessment of abnormal cardiac conventional and immuno-histochemical staining, are 3 rhythm and a targeted treatment based on demonstrated in the second part of the review. electrophysiologic studies are successful advances in cardiology.1 Morphological assessment or confirmation The characteristic location of the ventricular of hearts with such abnormalities is rare, not only due conduction system to the limited availability of human hearts but also inherent technological limitations of existing The atrioventricular node is situated in its technology.2 Classical morphological approaches and subendocardial location at the triangle of Koch.
    [Show full text]
  • Cardiology Self Learning Package
    Cardiology Self Learning Package Module 1: Anatomy and Physiology of the Module 1: Anatomy and Physiology of the Heart Heart. Page 1 Developed by Tony Curran (Clinical Nurse Educator) and Gill Sheppard (Clinical Nurse Specialist) Cardiology (October 2011) CONTENT Introduction…………………………………………………………………………………Page 3 How to use the ECG Self Learning package………………………………………….Page 4 Overview of the Heart…………………………………………………...…………..…….Page 5 Location, Size and Shape of the Heart…………………………………………………Page 5 The Chambers of the Heart…………….………………………………………..……….Page 7 The Circulation System……………………………………….………………..…………Page 8 The Heart Valve Anatomy………………………….…………………………..…………Page 9 Coronary Arteries…………………………………………….……………………..……Page 10 Coronary Veins…………………………………………………………………..……….Page 11 Cardiac Muscle Tissue……………………………………………………………..……Page 12 The Conduction System………………………………………………………………...Page 13 Cardiac Cycle……………………………………………………………………………..Page 15 References…………………………………………………………………………………Page 18 Module Questions………………………………………………………………………..Page 19 Module Evaluation Form………………………………………………………………..Page 22 [Module 1: Anatomy and Physiology of the Heart Page 2 Developed by Tony Curran (Clinical Nurse Educator) and Gill Sheppard (Clinical Nurse Specialist) Cardiology (October 2011) INTRODUCTION Welcome to Module 1: Anatomy and Physiology of the Heart. This self leaning package is designed to as tool to assist nurse in understanding the hearts structure and how the heart works. The goal of this module is to review: Location , size and shape of the heart The chambers of the heart The circulation system of the heart The heart’s valve anatomy Coronary arteries and veins Cardiac muscle tissue The conduction system The cardiac cycle This module will form the foundation of your cardiac knowledge and enable you to understand workings of the heart that will assist you in completing other modules. Learning outcomes form this module are: To state the position of the heart, the size and shape.
    [Show full text]
  • The Cardiac Conduction System in the Rat Expresses the A2 and A3
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 99-103, January 1992 Medical Sciences The cardiac conduction system in the rat expresses the a2 and a3 isoforms of the Na+,K+-ATPase (in situ hybridization/heart conduction system/atrioventricular node/Purkinje strand) RAPHAEL ZAHLER*t, MICHAEL BRINES*, MICHAEL KASHGARIANt, E. J. BENZ, JR.*, AND MAUREEN GILMORE-HEBERT§ Departments of *Internal Medicine, SPathology, and §Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510 Communicated by Vincent T. Marchesi, September 5, 1991 ABSTRACT The sodium pump is crucial for the function tially expressed in specialized cardiac conduction tissue. This of the heart and of the cardiac conduction system, which conjecture is reasonable because (i) the cardiac effects of initiates the heartbeat. The a (catalytic) subunit of this pump glycosides are especially prominent in the conduction system has three isoforms; the al isoform is ubiquitous, but the a2 and (although this action is also mediated indirectly via the a3 isoforms are localized to excitable tissue. Because rodent a2 nervous system), (ii) Purkinje fibers contain pumps that are and a3 isoforms are relatively sensitive to ouabain, which also more ouabain-sensitive than those of ventricular muscle, slows cardiac conduction, we studied heart-cell-specific expres- both by electrophysiologic and transport criteria (16-18), (iii) sion of pump isoform genes. Multiple conduction-system struc- electrophysiologic parameters have been found to differ tures, including sinoatrial node, bundle branches, and Pur- between Purkinje myocytes and working ventricular fibers kinje strands, had prominent, specific hybridization signal for (19-22). We thus used the technique of in situ hybridization a2 and a3 isoforms compared with adjacent working myo- to address this issue.
    [Show full text]