O 2011/091272 a L

Total Page:16

File Type:pdf, Size:1020Kb

O 2011/091272 a L (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau „ (10) International Publication Number (43) International Publication Date t -7 28 July 2011 (28.07.2011) O 2011/091272 A l (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every CI 2Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) Number: International Application CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/022085 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 2 1 January 201 1 (21 .01 .201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/297,143 2 1 January 2010 (21 .01 .2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): DANA- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, FARBER CANCER INSTITUTE, INC. [US/US]; 450 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Brookline Avenue, Boston, MA 021 15 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventors; and LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (75) Inventors/Applicants (for US only): CHIN, Lynda [US/ SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, US]; 565 Boylston Street, Brookline, MA 02445 (US). GW, ML, MR, NE, SN, TD, TG). HEFFERNAN, Timothy [US/US]; 565 Boylston Street, Brookline, MA 02445 (US). DEPINHO, Ronald Published: [US/US]; 565 Boylston Street, Brookline, MA 02445 — with international search report (Art. 21(3)) (US). (74) Agents: KOZAKIEWICZ, Cynthia, A. et al; Mintz Levin Cohn Ferris Glovsky And Popeo, P.C., One Finan cial Center, Boston, MA 02 111 (US). (54) Title: CONTEXT SPECIFIC GENETIC SCREEN PLATFORM TO AID IN GENE DISCOVERY AND TARGET VALI DATION F G. 1 (57) Abstract: The present invention relates to a context- specific forward genetic screen designed to systematically assign rela © tive weight of biological evidence to a library of high-probability driver genetic elements in a genetically defined cancer-sensitized model system whose constellation of engineered mutations reflects a particular clinically relevant genetic subclass of a given tu mor type. The screen may be formed in vivo or ex vivo. The screen allows for the formulation of clinical path hypotheses for tar o geting driver genetic elements and, in parallel, the rapid functional validation of the role of the driver genetic element(s) in the cancer. In this manner, the context-specific genetic screen can systematically assign the biological relevance of a library of genetic elements to a clinically-definable genetic and disease context, as well as inform combinations of drugs in the clinic such one uses o one drug that targets the newly discovered genetic element or its protein and another drug that targets those genetic elements or its associated proteins which have been engineered into the primary cell model. CONTEXT SPECIFIC GENETIC SCREEN PLATFORM TO AID IN GENE DISCOVERY AND TARGET VALIDATION RELATED APPLICATIONS [0001] This application claims the benefit of USSN 61/297,143, filed January 21, 2010, the content of which is incorporated herein by reference in its entirety. FIELD OF THE DISCLOSURE [0002] Embodiments of the present disclosure are directed to a context specific genetic screen platform to aid in gene discovery and target validation. BACKGROUND OF THE DISCLOSURE [0003] Cancer is genetically heterogeneous and cancer gene functions are highly context- dependent. Cancer is driven by abnormalities in DNA sequence (e.g., mutations, copy number alterations, etc.) of the genes in its genome. The identification of genes that are somatically altered and hence drive oncogenesis has been a central aim of cancer research since the advent of recombinant DNA technology. [0004] Development of targeted therapy for cancer has been shaped by the paradigms of oncogene addiction and tumor maintenance, stipulating that there are specific oncogenic lesions that a particular tumor is exquisitely dependent upon for viability. At the same time, the relative importance of these tumor maintenance targets appear to be dependent on the particular constellation of associated genetic alterations in each tumor, providing a potential basis for variable therapeutic responses in the clinic. Thus, knowledge of the genetic context in which a target serves a critical cooperative and rate-limiting role in tumor maintenance would illuminate the potential clinical development path for such targeted therapy. [0005] Throughout this description, including the foregoing description of related art, any and all publicly available documents described herein, including any and all U. S. patents, are specifically incorporated by reference herein in their entirety. The foregoing description of related art is not intended in any way as an admission that any of the documents described therein, including pending United States patent applications, are prior art to embodiments of the present disclosure. Moreover, the description herein of any disadvantages associated with the described products, methods, and/or apparatus, is not intended to limit the disclosed embodiments. Indeed, embodiments of the present disclosure may include certain features of the described products, methods, and/or apparatus without suffering from their described disadvantages. SUMMARY OF THE DISCLOSURE [0006] The present invention relates to the identification of genes and/or genetic elements that modulates a function or a phenotype associated with tumorigenesis of a cell. [0007] According to some embodiments, there is provided a method of identifying a gene that modulates a function or a phenotype associated with tumorigenesis of a cell comprising one or more of the following steps: introducing into a cell representative of a given phenotype or histological type a nucleic acid library that comprises a collection of genetic elements of interest and an oncogene, and/or other genetic element associated with the oncogenic process, to produce a genetically engineered target cell having a cancer cell genotype; transplanting, e.g. orthotopically the target cell into a non-human mammal to produce a tumor in the mammal; and identifying in the tumor expression of one or more of the genetic elements of interest. In some embodiments, the cell representative of a given phenotype or histological type is a primary cell. In some embodiments, the primary cell is immortalized. In some embodiments, the cell representative of a given phenotype or histological type is a mammalian cell. In some embodiments, the cell representative of a given phenotype or histological type is a progenitor cell or stem cell. In some embodiments, the target cell is genetically engineered to express TERT. [0008] The methods according to the present embodiments may further comprise inactivating or suppressing one of more tumor suppressor protein pathways in the cell representative of a given phenotype or histological type. The tumor suppressor protein pathway may be RB and/or p53. [0009] The methods according to the present embodiments may further comprise a validation step or steps. In some embodiments, the validation step(s) may comprise the following: introducing into the target cells produced in step (a) an nucleic acid capable of modulating (i.e., increasing or decreasing) the expression of the genetic element identified in step (c) to produced a modified target cell; orthotopically transplanting the modified target cell into a non-human mammal; and determining whether the modified target cell reduces tumor formation in the mammal as compared to a control. [0010] According to some embodiments, the nucleic acid library comprises siRNA, shRNA, microRNA or an antisense nucleic acid to the genetic elements of interest. In some embodiments, the nucleic acid library may comprise nucleic acids encoding inactive or dominant negative versions of the genetic elements of interest. [0011] According to some embodiments, the oncogene used in the methods of the present embodiments is selected from one or more of the following: a BRAF oncogene; a NRAS oncogene; a KRAS oncogene; a PI3K oncogene; a PKCi oncogene; a HER2 oncogene; a APC oncogene; an EGFR oncogene; a PTEN KD oncogene; aNFl KD oncogene; a Myr-AKT oncogene; a Myr-PllOa oncogene; β-catenin oncogene; an EGFRvIII oncogene. [0012] According the some embodiments, the one or more candidate genes or genetic elements of interest are selected from kinase genes and/or genetic elements. The kinases are wildtype kinases or activated mutant kinases. [0013] According the some embodiments, the one or more candidate genes or genetic elements of interest are selected from phosphatase genes and/or genetic elements. [0014] According the some embodiments, the one or more candidate genes or genetic elements of interest are selected from methyltransferase gene and/or genetic elements. [0015] According the some embodiments, the one or more candidate genes or genetic elements of interest are selected from genes and/or genetic elements involved in the PI3K signaling pathway. [0016] According the some embodiments, the one or more candidate genes or genetic elements of interest are selected from genes and/or genetic elements involved in a G-protein coupled receptor signaling pathway. [0017] According the some embodiments, the one or more candidate genes or genetic elements of interest are selected from genes and/or genetic elements involved in the receptor tyrosine kinase signaling pathway.
Recommended publications
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Bacillus Anthracis Edema Factor Substrate Specificity: Evidence for New Modes of Action
    Toxins 2012, 4, 505-535; doi:10.3390/toxins4070505 OPEN ACCESS toxins ISSN 2072–6651 www.mdpi.com/journal/toxins Review Bacillus anthracis Edema Factor Substrate Specificity: Evidence for New Modes of Action Martin Göttle 1,*, Stefan Dove 2 and Roland Seifert 3 1 Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA 2 Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany; E-Mail: [email protected] 3 Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-404-727-1678; Fax: +1-404-727-3157. Received: 23 April 2012; in revised form: 15 June 2012 / Accepted: 27 June 2012 / Published: 6 July 2012 Abstract: Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5′-triphosphate, uridine 5′-triphosphate and inosine 5′-triphosphate, in addition to adenosine 5′-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3′:5′-monophosphate, cyclic uridine 3′:5′-monophosphate and cyclic inosine 3′:5′-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
    [Show full text]
  • Bone-Specific Master Transcription Factor Runx2 Regulates Signaling and Metabolism Related Programs in Osteoprogenitors
    ISSN 0233-7657. Biopolymers and Cell. 2010. Vol. 26. N 4 Bone-specific master transcription factor Runx2 regulates signaling and metabolism related programs in osteoprogenitors N. M. Teplyuk1, 2, V. I. Teplyuk2 1University of Massachusetts Medical School 55, Lake Ave North, 01655, Worcester, MA, USA 2Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine 150, Zabolotnogo str., Kiev, Ukraine, 03680 [email protected] Aim. Runx2 (AML3) transcription factor is the key regulator of osteoblastic lineage progression and is indispensable for the formation of mineral bones. Runx2 expression increases during differentiation of osteoblasts to induce osteoblast-specific genes necessary for the production and deposition of bone mineral matrix. However, Runx2 is also expressed at a lower level in early osteoprogenitors, where its function is less understood. Here we study how Runx2 determines the early stages of osteoblastic commitment using the model system of Runx2 re-introduction in mouse calvaria cells with Runx2 null background. Method. Affymetrix analysis, Western blot analysis and quantitative real-time reverse transcriptase PCR (qRT-PCR) analysis were employed. Results. Gene expression profiling by Affymetrix microarrays revealed that along with the induction of extracellular matrix and bone mineral deposition related phenotypic markers, Runx2 regulates several cell programs related to signaling and metabolism in the early osteoprogenitors. Particularly, Runx2 regulates transcription of genes involved in G-protein coupled signaling network, FGF and BMP/TGF beta signaling pathways and in biogenesis and metabolism pathways of steroid hormones. Conclusion. The data indicate that the lineage specific program, regulated by the master regulatory transcription factor, includes the regulation of cellular signaling and metabolism which may allow the committed cell to react and behave differently in the same microenvironment.
    [Show full text]
  • Dissecting Signaling and Functions of Adhesion G Proteincoupled Receptors
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: Annals Meeting Reports Dissecting signaling and functions of adhesion G protein–coupled receptors Demet Arac¸,1 Gabriela Aust,2 Davide Calebiro,3 Felix B. Engel,4 Caroline Formstone,5 Andre´ Goffinet,6 Jorg¨ Hamann,7 Robert J. Kittel,8 Ines Liebscher,9 Hsi-Hsien Lin,10 Kelly R. Monk,11 Alexander Petrenko,12 Xianhua Piao,13 Simone Promel,¨ 9 HelgiB.Schioth,¨ 14 Thue W. Schwartz,15 Martin Stacey,16 Yuri A. Ushkaryov,17 Manja Wobus,18 Uwe Wolfrum,19 Lei Xu,20 and Tobias Langenhan8 1Stanford University, Stanford, California. 2Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany. 3Institute of Pharmacology and Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Wurzburg,¨ Wurzburg,¨ Germany. 4Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany, and Laboratory of Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nurnberg,¨ Erlangen, Germany. 5MRC Centre for Developmental Neurobiology, King’s College London, New Hunts House, London, United Kingdom. 6Universite´ Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium. 7Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 8Institute of Physiology, Department of Neurophysiology, University of Wurzburg,¨ Wurzburg,¨ Germany. 9Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany. 10Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan. 11Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri. 12Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
    [Show full text]
  • Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2010 Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis Ryan Fassnacht Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Physiology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2246 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Ryan C. Fassnacht 2010 All Rights Reserved Molecular Mechanisms Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by Ryan Christopher Fassnacht, B.S. Hampden Sydney University, 2005 M.S. Virginia Commonwealth University, 2010 Director: Valeria Mas, Ph.D., Associate Professor of Surgery and Pathology Division of Transplant Department of Surgery Virginia Commonwealth University Richmond, Virginia July 9, 2010 Acknowledgement The Author wishes to thank his family and close friends for their support. He would also like to thank the members of the molecular transplant team for their help and advice. This project would not have been possible with out the help of Dr. Valeria Mas and her endearing
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The 'C3ar Antagonist' SB290157 Is a Partial C5ar2 Agonist
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.01.232090; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The ‘C3aR antagonist’ SB290157 is a partial C5aR2 agonist Xaria X. Li1, Vinod Kumar1, John D. Lee1, Trent M. Woodruff1* 1School of Biomedical Sciences, The University of Queensland, St Lucia, 4072 Australia. * Correspondence: Prof. Trent M. Woodruff School of Biomedical Sciences, The University of Queensland, St Lucia, 4072 Australia. Ph: +61 7 3365 2924; Fax: +61 7 3365 1766; E-mail: [email protected] Keywords: Complement C3a, C3aR, SB290157, C5aR1, C5aR2 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.01.232090; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abbreviations used in this article: BRET, bioluminescence resonance energy transfer; BSA, bovine serum albumin; C3aR, C3a receptor C5aR1, C5a receptor 1; CHO-C3aR, Chinese hamster ovary cells stably expressing C3aR; CHO-C5aR1, Chinese hamster ovary cells stably expressing C5aR1; DMEM, Dulbecco's Modified Eagle's Medium; ERK1/2, extracellular signal-regulated kinase 1/2; FBS, foetal bovine serum; HEK293, human embryonic kidney 293 cells; HMDM, human monocyte-derived macrophage; i.p., intraperitoneal; i.v., intravenous; rhC5a, recombinant human C5a; RT, room temperature; S.E.M.
    [Show full text]
  • Negative Regulation of Diacylglycerol Kinase &Theta
    Cell Death and Differentiation (2010) 17, 1059–1068 & 2010 Macmillan Publishers Limited All rights reserved 1350-9047/10 $32.00 www.nature.com/cdd Negative regulation of diacylglycerol kinase h mediates adenosine-dependent hepatocyte preconditioning G Baldanzi1,5, E Alchera2,5, C Imarisio2, M Gaggianesi1, C Dal Ponte2, M Nitti3, C Domenicotti3, WJ van Blitterswijk4, E Albano2, A Graziani1,5 and R Carini*,2,5 In liver ischemic preconditioning (IP), stimulation of adenosine A2a receptors (A2aR) prevents ischemia/reperfusion injury by promoting diacylglycerol-mediated activation of protein kinase C (PKC). By concerting diacylglycerol to phosphatidic acid, diacylglycerol kinases (DGKs) act as terminator of diacylglycerol signalling. This study investigates the role of DGK in the development of hepatocyte IP. DGK activity and cell viability were evaluated in isolated rat hepatocytes preconditioned by 10 min hypoxia followed by 10 min re-oxygenation or by the treatment with the A2aR agonist, CGS21680, and subsequently exposed to prolonged hypoxia. We observed that after IP or A2aR activation, a decrease in DGK activity was associated with the onset of hepatocyte tolerance to hypoxia. CGS21680-induced stimulation of A2aR specifically inhibited DGK isoform h by activating RhoA–GTPase. Consistently, both siRNA-mediated downregulation of DGK h and hepatocyte pretreatment with the DGK inhibitor R59949 induced cell tolerance to hypoxia. The pharmacological inhibition of DGK was associated with the diacylglycerol- dependent activation of PKC d and e and of their downstream target p38 MAPK. In conclusion, we unveil a novel signalling pathway contributing to the onset of hepatocyte preconditioning, which through RhoA–GTPase, couples A2aR to the downregulation of DGK.
    [Show full text]
  • Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview
    [Show full text]
  • Targeting Lysophosphatidic Acid in Cancer: the Issues in Moving from Bench to Bedside
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUPUIScholarWorks cancers Review Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside Yan Xu Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA; [email protected]; Tel.: +1-317-274-3972 Received: 28 August 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: Since the clear demonstration of lysophosphatidic acid (LPA)’s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications. Keywords: Autotaxin (ATX); ovarian cancer (OC); cancer stem cell (CSC); electrospray ionization tandem mass spectrometry (ESI-MS/MS); G-protein coupled receptor (GPCR); lipid phosphate phosphatase enzymes (LPPs); lysophosphatidic acid (LPA); phospholipase A2 enzymes (PLA2s); nuclear receptor peroxisome proliferator-activated receptor (PPAR); sphingosine-1 phosphate (S1P) 1.
    [Show full text]
  • Mapping of Diabetes Susceptibility Loci in a Domestic Cat Breed with an Unusually High Incidence of Diabetes Mellitus
    G C A T T A C G G C A T genes Article Mapping of Diabetes Susceptibility Loci in a Domestic Cat Breed with an Unusually High Incidence of Diabetes Mellitus 1,2, 3, 4 5 Lois Balmer y , Caroline Ann O’Leary y, Marilyn Menotti-Raymond , Victor David , Stephen O’Brien 6,7, Belinda Penglis 8, Sher Hendrickson 9, Mia Reeves-Johnson 3, 3 10 3 3,11, Susan Gottlieb , Linda Fleeman , Dianne Vankan , Jacquie Rand z and 1, , Grant Morahan * z 1 Centre for Diabetes Research, Harry Perkins Institute for Medical Research, University of Western Australia, Nedlands 6009, Australia; [email protected] 2 School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth 6027, Australia 3 School of Veterinary Science, the University of Queensland, Gottan 4343, Australia; [email protected] (C.A.O.); [email protected] (M.R.-J.); [email protected] (S.G.); [email protected] (D.V.); [email protected] (J.R.) 4 Laboratory of Genomic Diversity, Center for Cancer Research (FNLCR), Frederick, MD 21702, USA; [email protected] 5 Laboratory of Basic Research, Center for Cancer Research (FNLCR), National Cancer Institute, Frederick, MD 21702, USA; [email protected] 6 Laboratory of Genomics Diversity, Center for Computer Technologies, ITMO University, 197101 St. Petersburg, Russia; [email protected] 7 Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Ft Lauderdale, FL 33004, USA 8 IDEXX Laboratories, East Brisbane 4169, Australia; [email protected] 9 Department of Biology, Shepherd University, Shepherdstown, WV 25443, USA; [email protected] 10 Animal Diabetes Australia, Melbourne 3155, Australia; l.fl[email protected] 11 American College of Veterinary Internal Medicine, University of Zurich, 8006 Zurich, Switzerland * Correspondence: [email protected] These authors contributed equally to this work.
    [Show full text]