Orthologous Gene Swapping and Experimental Evolution Provide Novel Way to Study Essential Poxvirus Genes

Total Page:16

File Type:pdf, Size:1020Kb

Orthologous Gene Swapping and Experimental Evolution Provide Novel Way to Study Essential Poxvirus Genes ABSTRACT Title of Dissertation: ORTHOLOGOUS GENE SWAPPING AND EXPERIMENTAL EVOLUTION PROVIDE NOVEL WAY TO STUDY ESSENTIAL POXVIRUS GENES Carey A. Stuart, Doctor of Philosophy, 2018 Dissertation directed by: Dr. Bernard Moss, Adjunct Professor, National Institutes of Health and Dr. Jeffrey DeStefano, Professor, Biological Sciences Program The transcriptional program of poxviruses is divided into early, intermediate and late phases enabled by a multisubunit DNA-dependent RNA polymerase and stage-specific transcription factors that recognize cognate promoters. Although promoter sequences are highly conserved among the different chordopoxvirus genera, the transcription factors exhibit considerable amino acid divergence that parallels the evolutionary distance of the host species. Thus, the large/small subunits of the intermediate transcription factors (ITFs) of salmon gill poxvirus, crocodilepox, canarypox, and myxoma have 23/29, 40/31, 51/38 and 58/65 % amino acid identity, respectively, to the vaccinia virus (VACV) orthologs. The purpose of the present study was to determine the functional interchangeability of the ITF subunits and their putative interactions with other elements of the transcriptional machinery. A quantitative readout of ITF function using firefly luciferase (Fluc) was obtained. The activity of the large subunit orthologs was greater than that of the small subunit orthologs, with both sets following the degree of sequence similarity in relation to VACV. The same pattern was obtained with both heterospecific (e.g., myxoma large and VACV small subunits) and homospecific (e.g., myxoma large and small subunits) pairings, suggesting inefficient interactions with other elements of the transcription system. When recombinant hybrid VACV expressing the Myxoma virus (MYXV) ortholog of the small subunit (A8) were blind passaged multiple times, their replicative abilities were enhanced. Complete genome sequencing of the virus populations revealed five mutations present in the two largest subunits of the viral RNA polymerase (RNAP) and two predicted expression-enhancing mutations around the translation initiation site of the MYXV A8 ortholog. Amplicon sequencing was used to quantify the frequency of each mutation in its respective population, which revealed that they increased as passaging occurred. This indicated a correlation with increased fitness, which then needed to be confirmed, so these mutations were all experimentally introduced into the original hybrid virus and demonstrated to enhance virus replication independently. These mutations were then characterized to determine their specific effects on the viral RNAP (vRNAP) and viral replication and transcription. This approach could have broader applications for studying essential genes in poxviruses and other viruses as well. ORTHOLOGOUS GENE SWAPPING AND EXPERIMENTAL EVOLUTION PROVIDE NOVEL WAY TO STUDY ESSENTIAL POXVIRUS GENES by Carey A. Stuart Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2018 Advisory Committee: Professor Jeffrey DeStefano, Chair Dr. Bernard Moss, Co-Chair Assistant Professor George Belov Professor James Culver Dr. Alison McBride © Copyright by Carey A. Stuart 2018 Dedication To my parents, Colin and Marcia Stuart, to whom I am eternally grateful for everything you have given me, and to Caspar, my cousins, and the rest of my family, for always supporting me. ii Acknowledgements I would like to thank my PI, Dr. Bernard Moss, for his seemingly limitless patience mentoring me. I would also like to thank the members of my committee for their guidance during my thesis. In addition, I would like to extend special thanks to Dr. Linda Wyatt, Catherine Cotter, Dr. Sara Reynolds, Dr. Seong-In Hyun, Dr. Tatiana Senkevich, Erik Zhivkoplias, and The Science Wives, who gave me an immeasurable amount of technical advice and moral support over the years. Finally, to all the past and current members of the Moss and Berger labs, past and current LVD Administrative Staff, and past and current people in the UMD BISI and Virology Programs, I say thank you for all your help and support over these last few years. iii Table of Contents Dedication ..................................................................................................................... ii Acknowledgements ...................................................................................................... iii Table of Contents ......................................................................................................... iv List of Tables ................................................................................................................ x List of Figures .............................................................................................................. xi List of Abbreviations .................................................................................................. xii Chapter 1: Introduction ................................................................................................. 1 Chapter 2: Literature Review ........................................................................................ 5 2.1 The Poxviridae .............................................................................................. 5 2.1.1 Classification............................................................................................. 5 2.1.2 Orthopoxviruses ........................................................................................ 7 2.1.3 Virion Chemical Composition .................................................................. 8 2.1.4 Virion Morphology ................................................................................... 9 2.1.5 Polypeptide Components of the Virion................................................... 10 2.1.6 Genome Organization ............................................................................. 12 2.1.7 Genome Nomenclature ........................................................................... 14 2.2 Virus Lifecycle............................................................................................ 17 2.2.1 Attachment and Entry into Cells ............................................................. 17 2.2.2 MV Entry ................................................................................................ 17 2.2.3 Attachment Proteins ................................................................................ 19 2.2.4 Entry Proteins.......................................................................................... 20 2.2.5 EV Entry ................................................................................................. 23 2.2.6 Signaling Receptors ................................................................................ 24 iv 2.2.7 Cellular Lipid Composition .................................................................... 25 2.2.8 Syncytia Formation ................................................................................. 27 2.2.9 Superinfection Inhibition ........................................................................ 28 2.3 Genome Replication.................................................................................... 29 2.3.1 Uncoating and DNA Synthesis ............................................................... 30 2.3.2 Origin of Replication .............................................................................. 31 2.3.3 DNA Replication Model ......................................................................... 32 2.3.4 Enzymes Involved in DNA Precursor Metabolism ................................ 33 2.3.5 Viral Proteins Involved in DNA Replication .......................................... 36 2.3.6 Concatemer Resolution ........................................................................... 39 2.3.7 Homologous Recombination .................................................................. 42 2.3.8 Viral DNA-Associated Proteins .............................................................. 44 2.4 Virion Morphogenesis, Maturation, and Egress ......................................... 47 2.4.1 Crescent and IV Formation ..................................................................... 48 2.4.2 VMAPs ................................................................................................... 51 2.4.3 Core Protein Association with IVs ......................................................... 55 2.4.4 D13 Scaffold and Rifampicin ................................................................. 56 2.4.5 Genome Packaging ................................................................................. 57 2.4.6 Packaging of the Transcriptional Complex............................................. 58 2.4.7 MV Formation ........................................................................................ 59 2.4.8 Intramolecular Disulfide Bonds .............................................................. 60 2.4.9 Proteolytic Processing ................................................................................ 61 2.4.10 MV Occlusion .......................................................................................... 61 2.4.11 EV Formation........................................................................................... 63 2.4.12 Wrapping of EVs ....................................................................................
Recommended publications
  • Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones
    Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones Bliss M. Beernink*,1, Katerina L. Holan*,1, Ryan R. Lappe1, Steven A. Whitham1 1 Department of Plant Pathology and Microbiology, Iowa State University * These authors contributed equally Corresponding Author Abstract Steven A. Whitham [email protected] Agrobacterium-based inoculation approaches are widely used for introducing viral vectors into plant tissues. This study details a protocol for the injection of maize Citation seedlings near meristematic tissue with Agrobacterium carrying a viral vector. Beernink, B.M., Holan, K.L., Lappe, R.R., Recombinant foxtail mosaic virus (FoMV) clones engineered for gene silencing and Whitham, S.A. Direct Agroinoculation of Maize Seedlings by Injection with gene expression were used to optimize this method, and its use was expanded Recombinant Foxtail Mosaic Virus and to include a recombinant sugarcane mosaic virus (SCMV) engineered for gene Sugarcane Mosaic Virus Infectious Clones. J. Vis. Exp. (168), e62277, expression. Gene fragments or coding sequences of interest are inserted into a doi:10.3791/62277 (2021). modified, infectious viral genome that has been cloned into the binary T-DNA plasmid vector pCAMBIA1380. The resulting plasmid constructs are transformed into Date Published Agrobacterium tumefaciens strain GV3101. Maize seedlings as young as 4 days February 27, 2021 old can be injected near the coleoptilar node with bacteria resuspended in MgSO4 DOI
    [Show full text]
  • Adams Hawii 0085O 10232.Pdf
    ANALYSIS AND DEVELOPMENT OF MANAGEMENT TOOLS FOR ORYCTES RHINOCEROS (COLEOPTERA: SCARABAEIDAE) A THESIS SUBMITTED TO THE GRAUDATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT PATHOLOGY MAY 2019 By Brandi-Leigh H. Adams Thesis Committee: Michael Melzer, Chairperson Zhiqiang Cheng Brent Sipes ACKNOWLEDGEMENTS It is with deep gratitude that I thank the members of my committee, Dr. Michael Melzer, Dr. Zhiqiang Cheng, and Dr. Brent Sipes for their expert advice and knowledge, to which I have constantly deferred to during my time as a graduate student. A very special thank you goes to Dr. Michael Melzer, who took me in as an undergraduate lab assistant, and saw enough potential in me that he felt I deserved the opportunity to learn, travel, and grow under his guidance. I would also like to give special thanks to Dr. Shizu Watanabe, who always made time to answer even the smallest, most O.C.D. of my questions, who gave me words of encouragement when experiments did not go as planned or when I would find myself in doubt, and who has become a mentor and friend along the way. To my very first mentors in science; Dr. Wendy Kuntz, Dr. Matthew Tuthill, and Keolani Noa; thank you for encouraging me to pursue a major and career in STEM in the first place. I would also like to thank my lab mates, Nelson Masang Jr., Alexandra Kong, Alejandro Olmedo Velarde, Tomie Vowell, Asoka De Silva, Megan Manley, Jarin Loristo, and Cheyenne Barela for their support with experiments, and the knowledge and skills they have passed on to me.
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • Recombinant and Chimeric Viruses
    Recombinant and chimeric viruses: Evaluation of risks associated with changes in tropism Ben P.H. Peeters Animal Sciences Group, Wageningen University and Research Centre, Division of Infectious Diseases, P.O. Box 65, 8200 AB Lelystad, The Netherlands. May 2005 This report represents the personal opinion of the author. The interpretation of the data presented in this report is the sole responsibility of the author and does not necessarily represent the opinion of COGEM or the Animal Sciences Group. Dit rapport is op persoonlijke titel door de auteur samengesteld. De interpretatie van de gepresenteerde gegevens komt geheel voor rekening van de auteur en representeert niet de mening van de COGEM, noch die van de Animal Sciences Group. Advisory Committee Prof. dr. R.C. Hoeben (Chairman) Leiden University Medical Centre Dr. D. van Zaane Wageningen University and Research Centre Dr. C. van Maanen Animal Health Service Drs. D. Louz Bureau Genetically Modified Organisms Ing. A.M.P van Beurden Commission on Genetic Modification Recombinant and chimeric viruses 2 INHOUDSOPGAVE RECOMBINANT AND CHIMERIC VIRUSES: EVALUATION OF RISKS ASSOCIATED WITH CHANGES IN TROPISM Executive summary............................................................................................................................... 5 Introduction............................................................................................................................................ 7 1. Genetic modification of viruses .................................................................................................9
    [Show full text]
  • Virus Goes Viral: an Educational Kit for Virology Classes
    Souza et al. Virology Journal (2020) 17:13 https://doi.org/10.1186/s12985-020-1291-9 RESEARCH Open Access Virus goes viral: an educational kit for virology classes Gabriel Augusto Pires de Souza1†, Victória Fulgêncio Queiroz1†, Maurício Teixeira Lima1†, Erik Vinicius de Sousa Reis1, Luiz Felipe Leomil Coelho2 and Jônatas Santos Abrahão1* Abstract Background: Viruses are the most numerous entities on Earth and have also been central to many episodes in the history of humankind. As the study of viruses progresses further and further, there are several limitations in transferring this knowledge to undergraduate and high school students. This deficiency is due to the difficulty in designing hands-on lessons that allow students to better absorb content, given limited financial resources and facilities, as well as the difficulty of exploiting viral particles, due to their small dimensions. The development of tools for teaching virology is important to encourage educators to expand on the covered topics and connect them to recent findings. Discoveries, such as giant DNA viruses, have provided an opportunity to explore aspects of viral particles in ways never seen before. Coupling these novel findings with techniques already explored by classical virology, including visualization of cytopathic effects on permissive cells, may represent a new way for teaching virology. This work aimed to develop a slide microscope kit that explores giant virus particles and some aspects of animal virus interaction with cell lines, with the goal of providing an innovative approach to virology teaching. Methods: Slides were produced by staining, with crystal violet, purified giant viruses and BSC-40 and Vero cells infected with viruses of the genera Orthopoxvirus, Flavivirus, and Alphavirus.
    [Show full text]
  • And Γ- Cytoplasmic Actin in Vaccinia Virus Infection
    Lights, Camera, Actin: Divergent roles of β- and γ- cytoplasmic actin in vaccinia virus infection NOORUL BISHARA MARZOOK A thesis submitted in fulfillment of requirements for the degree of Doctor of Philosophy FACULTY OF SCIENCE SCHOOL OF MOLECULAR BIOSCIENCE UNIVERSITY OF SYDNEY 2017 i TABLE OF CONTENTS Table of Contents ........................................................................................................... ii Acknowledgements ....................................................................................................... v Declaration ................................................................................................................... vii Abstract ....................................................................................................................... viii List of Figures ................................................................................................................ x List of Publications Arising From This Work.............................................................. xi Abbreviations Used ..................................................................................................... xii Chapter 1: Introduction ............................................................................................... 1 1.1 The Cytoskeleton ............................................................................................................ 2 1.1.1 The Eukaryotic Cytoskeleton .....................................................................................
    [Show full text]
  • 1/11 FACULTAD DE VETERINARIA GRADO DE VETERINARIA Curso
    FACULTAD DE VETERINARIA GRADO DE VETERINARIA Curso 2015/16 Asignatura: MICROBIOLOGÍA E INMUNOLOGÍA DENOMINACIÓN DE LA ASIGNATURA Denominación: MICROBIOLOGÍA E INMUNOLOGÍA Código: 101463 Plan de estudios: GRADO DE VETERINARIA Curso: 2 Denominación del módulo al que pertenece: FORMACIÓN BÁSICA COMÚN Materia: MICROBIOLOGÍA E INMUNOLOGÍA Carácter: BASICA Duración: ANUAL Créditos ECTS: 12 Horas de trabajo presencial: 120 Porcentaje de presencialidad: 40% Horas de trabajo no presencial: 180 Plataforma virtual: UCO MOODLE DATOS DEL PROFESORADO __ Nombre: GARRIDO JIMENEZ, MARIA ROSARIO (Coordinador) Centro: Veterinaria Departamento: SANIDAD ANIMAL área: SANIDAD ANIMAL Ubicación del despacho: Edificio Sanidad Animal 3ª Planta E-Mail: [email protected] Teléfono: 957218718 _ Nombre: SERRANO DE BURGOS, ELENA (Coordinador) Centro: Veterinaria Departamento: SANIDAD ANIMAL área: SANIDAD ANIMAL Ubicación del despacho: Edificio Sanidad Animal 3ª Planta E-Mail: [email protected] Teléfono: 957218718 _ Nombre: HUERTA LORENZO, MARIA BELEN Centro: Veterianaria Departamento: SANIDAD ANIMAL área: SANIDAD ANIMAL Ubicación del despacho: Edificio Sanidad Animal 2ª Planta E-Mail: [email protected] Teléfono: 957212635 _ DATOS ESPECÍFICOS DE LA ASIGNATURA REQUISITOS Y RECOMENDACIONES Requisitos previos establecidos en el plan de estudios Ninguno Recomendaciones 1/11 MICROBIOLOGÍA E INMUNOLOGÍA Curso 2015/16 Se recomienda haber cursado las asignaturas de Biología Molecular Animal y Vegetal, Bioquímica, Citología e Histología y Anatomía Sistemática. COMPETENCIAS CE23 Estudio de los microorganismos que afectan a los animales y de aquellos que tengan una aplicación industrial, biotecnológica o ecológica. CE24 Bases y aplicaciones técnicas de la respuesta inmune. OBJETIVOS Los siguientes objetivos recogen las recomendaciones de la OIE para la formación del veterinario: 1. Abordar el concepto actual de Microbiología e Inmunología, la trascendencia de su evolución histórica y las líneas de interés o investigación futuras.
    [Show full text]
  • <I>AUREOCOCCUS ANOPHAGEFFERENS</I>
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS Mohammad Moniruzzaman University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Moniruzzaman, Mohammad, "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4152 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Mohammad Moniruzzaman entitled "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this dissertation
    [Show full text]
  • Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
    Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    THE ROLE OF CELL SIGNALING IN POXVIRUS TROPISM: THE CASE OF THE M-T5 HOST-RANGE PROTEIN OF MYXOMA VIRUS By STEVEN JAMES WERDEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Steven James Werden 2 To my family 3 ACKNOWLEDGMENTS I would like to thank Dr. Grant McFadden for continuous support, encouragement and advice during the course of my PhD. I am truly grateful for all the time and energy he has spent training me to become a better scientist and critical thinker. Without his guidance and persistent help this dissertation would not have been possible. In addition, I am appreciative to my committee members, Drs. Richard Condit, Greg Schultz and Dave Bloom for their encouraging words, fruitful discussion and most importantly, their commitment to helping me succeed. During the past five years, I have had the opportunity and privilege to work with many talented individuals. I would like to acknowledge all members of the McFadden laboratory, both past and present, for creating a work environment that fostered creativity. Special thanks go to Drs.Gen Wang, Steve Nazarian, Marianne Stanford and Fuan Wang for providing technical training. Dr. John Barrett deserves a special mention for his continued mentorship and support. I must not forget to thank those who attended the weekly “Poxaholics” meetings, for providing constructive criticism and a wonderful atmosphere to present data. Thanks go out to Doug Smith for assistance with the confocal microscope and to all who contributed reagents that were used in this dissertation.
    [Show full text]
  • 1 RNA-Seq of the Medusavirus Suggests Remodeling of the Host Nuclear Environment at An
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.10.439121; this version posted April 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 RNA-seq of the medusavirus suggests remodeling of the host nuclear environment at an 2 early infection stage 3 4 Running Head: Transcription profile of the medusavirus 5 6 Authors: 7 Ruixuan Zhanga, Hisashi Endoa, Masaharu Takemurab, Hiroyuki Ogataa 8 9 aBioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611- 10 0011, Japan 11 bLaboratory of Biology, Institute of Arts and Sciences, Tokyo University of Science, Shinjuku, 12 Tokyo 162-8601, Japan 13 14 Address correspondence to Hiroyuki Ogata, [email protected], or Masaharu Takemura, 15 [email protected]. 16 17 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.10.439121; this version posted April 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 18 Abstract 19 Nucleo−cytoplasmic large DNA viruses (NCLDVs) undergo a cytoplasmic or 20 nucleo−cytoplasmic cycle, and the latter involves both nuclear and cytoplasmic compartments to 21 proceed viral replication. Medusavirus, a recently isolated NCLDV, has a nucleo−cytoplasmic 22 replication cycle in amoebas during which the host nuclear membrane apparently remains intact, 23 a unique feature among amoeba−infecting giant viruses.
    [Show full text]
  • FUNCTIONAL IMPLICATIONS of the BAF-B1 AXIS DURING the VACCINIA VIRUS LIFE CYCLE Nouhou Ibrahim University of Nebraska-Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of Spring 2-13-2014 FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE Nouhou Ibrahim University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscidiss Part of the Other Microbiology Commons, and the Virology Commons Ibrahim, Nouhou, "FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE" (2014). Dissertations and Theses in Biological Sciences. 61. http://digitalcommons.unl.edu/bioscidiss/61 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE by Nouhou Ibrahim A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biological Sciences (Microbiology and Molecular Biology) Under the Supervision of Professor Matthew S. Wiebe Lincoln, Nebraska May, 2014 FUNCTIONAL IMPLICATIONS OF THE BAF-B1 AXIS DURING THE VACCINIA VIRUS LIFE CYCLE Nouhou Ibrahim, MSc., Ph.D. University of Nebraska, 2014 Advisor: Matthew Wiebe Vaccinia virus is the prototypic member of the Poxviridae family, which includes variola virus, the agent of smallpox. Poxviruses encode their own transcriptional machinery and a set of proteins to evade the host defense system, and thus are able to replicate entirely in the cytoplasm of their host.
    [Show full text]