WESTERN COMMITTEE on CROP PESTS Th 44 ANNUAL MEETING October 13, 2004 Saskatoon, Saskatchewan

Total Page:16

File Type:pdf, Size:1020Kb

WESTERN COMMITTEE on CROP PESTS Th 44 ANNUAL MEETING October 13, 2004 Saskatoon, Saskatchewan WESTERN COMMITTEE ON CROP PESTS th 44 ANNUAL MEETING October 13, 2004 Saskatoon, Saskatchewan Minutes Prepared by Julie Soroka, Secretary WCCP [email protected] 1.0 Welcome and Introductions Chairperson Scott Hartley, SAFRR, called the meeting to order at 0810 hrs and welcomed attendees. Thirty members signed the attendance list. Mike Fagan Glen Forster John Gavloski Chad Grekul Rebecca Hallett Lloyd Harris Scott Hartley Al Kohlman Gord Knight Ted Labrun Alex Matus Scott Meers Nancy Muchka-Dahl Owen Olfert Chrystel Olivier Doon Pauly Hugh Philip Rob Reddekopp Lori Reichert Brian Rex Dale Risula Andrea Saunders Wendy Schatz Leeds Brian Schilling Tom Shanower Julie Soroka Neil Wagner Brad White Ian Wise Jerod Yasinowski 2.0 Additions to the agenda None. Motion to accept the Agenda: Wise/Harris CARRIED 3.0 Appointment of Resolutions Committee Hugh Philip volunteered to Chair. 4.0 Approval of 2003 Minutes Motion to accept the Minutes: Philip/Gavloski CARRIED 5.0 Business arising from 2003 minutes 5.1 Archiving of WCCP minutes Owen Olfert has compiled three complete sets of WCCP minutes from the inception of the meetings to date. One set will be stored at Agriculture and Agri-Food Canada, Saskatoon. The other two sets of minutes need to be stored elsewhere. After discussion it was decided that Scott Meers would arrange to have one set go to Alberta, archived at the University of Alberta or Alberta Agriculture, Food and Rural Development Edmonton office. Failing either of these two options, AAFC Lethbridge would be approached to be a repository. Owen Olfert will arrange to have the final set stored at the University of Saskatchewan Archives. 6.0 Provincial Insect Pest Summaries See Appendix Ia-d for reports from British Columbia, Alberta, Saskatchewan, and Manitoba. Following the Saskatchewan Provincial Entomologist’s Report is the Provincial Fruit Specialist’s Report on Pests of Fruits 2004, Appendix Ic.1. This report was not presented at the WCCP 1 meeting, but is included in the Minutes to provide a complete picture of pests of agriculture in Saskatchewan in 2004. Appointment of summarizers - to remain as for 2003. 7.0 Provincial Entomology Research Summaries See Appendix IIa-d for reports from British Columbia, Alberta, Saskatchewan, and Manitoba. Hugh Philip gave the BC report for Bob Vernon. Scott Meers gave the AB report for Hector Cárcamo. Chrystél Olivier has replaced M. Erlandson in Saskatchewan. 8.0 WCCP Guide - The question arose as to the handling of updates if the Guide is moved to the Western Forum website. Chapter editors will send changes to Section Editors, then to Ralph Lange (WF Webmaster). A definite date for yearly changes is necessary, although editors can make changes at any time. December 31 was decided as the deadline for Chapter changes to be posted on the Web. Therefore, Chapter editors must have their revisions in to the Section editors well before that date, preferably by the WCCP meeting. Motion by Olfert/Philip that we contact Ralph Lange to place the WCCP on the Western Forum website. CARRIED It is recommended that ‘Last Updated’ be added to the bottom of Chapters as they are edited, so that readers have an idea of the date of the information. 8.1 Appointment of Guide and section editors. See Appendix III for 2005 WCCP Chairs. Section editors to remain as J. Gavloski (Domestic), H. Philip (Horticulture), and I. Wise (Agriculture). 9.0 Canadian Food Inspection Agency Quarantine Update - Brian Rex See Appendix IV for the CFIA report from Brian Rex. 10.0 PMRA Report - Mike Fagan See Appendix V for the PMRA report from Mike Fagan 11.0 Ottawa research Centre Update - Peter Mason, read by Scott Hartley See Appendix VI for research report. 12.0 Sponsor Updates - Rod McLeod, Bayer Crop Life gave a presentation on Poncho and Prosper. Neil Wagner, Peacock Industries - gave handout on EcoBran grasshopper bait. Currently the company is working towards registration of the product for cutworm control. There was no representation from Crop Life Canada 13.0 Special reports - Appendix VII. 13.1 Wheat Stem Sawfly - Tom Shanower, USDA, Sidney, Montana. See Appendix VII.a. 13.2 Swede Midge - Rebecca Hallett, University of Guelph, Guelph, Ontario. See Appendix VII.b. 13.3 Update of West Nile Virus in Saskatchewan 2004 - Phil Curry, Sask. Health, Regina. See Appendix VII.c. 14.0 Election of 2005 WCCP Chair 2 Scott Meers, AAFRD elected Chair. Secretary to be appointed. 15.0 Resolutions None. However, because there was no response to last year’s resolution, the Committee decided to resubmit the resolution, this time to the federal Minister of Agriculture. See Appendix VIII. 16.0 Other business. Funds solicited by Western Forum - because neither WCCP nor WCPD is generating funds (the Guides, their chief form of income generation, are now available free on the Web), discussion occurred on possibly acquiring some of the funds solicited by WF to invite speakers to Committee meeting as well as to WF. One suggestion was that assets at the end of the meeting above $6500 be divided three ways for speaker costs. The Weed Science Society of Canada informally inquired about having a joint meeting with WF at some time, suggesting BC in 2006. According to the current rotation, Western Forum will be held in Manitoba in 2006. Date is also a problem, with weed meetings usually in early December. Although the two groups have some points of mutual interest, such as weed biocontrol and IPM that includes weeds, no ready solution for a joint meeting was found. 17.0 Adjournment 3 Appendix I - Provincial insect pest summaries Appendix Ia. British Columbia BRITISH COLUMBIA MINISTRY OF AGRICULTURE, FOOD & FISHERIES 2004 INSECT PEST REPORT to the WESTERN COMMITTEE ON CROP PESTS Compiled by: Hugh Philip, PAg Food Safety and Quality Branch BC Ministry of Agriculture, Food & Fisheries 200 -1690 Powick Road Kelowna, BC, V1X 7G5 [email protected] SUMMARY: 2004 followed the on-going trend of significant agricultural and horticultural insect pest problems in BC. Isolated infestations of grasshoppers required control on some rangeland from the Peace River region to southern BC. Alfalfa weevil infestations continue to require chemical control in the Southern Interior. Wireworms again caused injury to various row crops in the Fraser Valley and on Vancouver Island, and to forage corn in the Okanagan. Apple leaf midge is suspected to be present in the Okanagan Valley, likely arriving on infested soil from the Fraser Valley. Shothole borer infestations were once again a problem in many Okanagan Valley sweet cherry orchards late in the season. Climbing cutworms continue to cause damage to emerging buds on grape plants in many vineyards in the South Okanagan. An agromyzid leafminer attacking hellebore was detected for the first time in Canada. FORAGE CROPS Alfalfa weevil (Hypera postica) continues to be a problem in alfalfa crops in the Souhern Interior. Affected growers target larvae feeding on the regrowth following first cut. This on-going problem may be a result of growers harvesting first cut later than previously recommended. Delaying harvest may increase available regrowth upon which the larvae can feed, causing greater yield reduction and delaying crop development. Grasshoppers required control in several isolated areas from the Peace River region to southern BC, mainly on Crown rangeland and adjacent forage crops. The cooler, wetter August and September will hopefully have reduced grasshopper mating and egg-laying activity. HORTICULTURAL CROPS Shothole borer (Scolytus rugulosus): several reports of severe infestations again in sweet cherry blocks in August. Speculation is the trees suffered frost injury last fall or late this spring that may have impaired upward water movement during the hot weather in July and early August. This stress attracts wood borers. Maintaining healthy trees and sanitation (destruction of dead or dying branches and trees, wood piles) is the only way to minimize attack by these beetles and ambrosia beetles, another group of wood borers. 4 Apple leaf midge (Dasineura mali), first detected in the Fraser Valley in 1992, is possibly present in the Okanagan Valley. Pathway of introduction is unknown but one scenario is that some overwintering pupae entered the valley in soil on the roots of apple nursery stock grown in the Fraser Valley. The distribution is currently restricted to apple orchards adjacent to the Agriculture and Agri-Food Canada Pacific Agri- Food Research Centre (Summerland) where the midge’s presence went unreported in 2003. This insect poses a risk to apple nursery stock and young apple trees because it attacks the terminals leaves, reducing limb extension which is important in developing proper limb structure of young trees. Plans are underway to introduce a larval parasitoid from Europe released a few years ago in Nova Scotia where it has effectively controlled the midge. Wireworms continue to plaque potato, corn and other row crop producers in the Fraser Valley and on Vancouver Island. Crows have learned to pull up strawberry, corn and cole crop seedlings in search of wireworms, causing considerable crop loss in some cases. Similar damage occurred in the North Okanagan where seagulls, ravens and crows destroyed about 30% of a seedling silage corn crop. Growers are looking forward to Poncho-treated seed to protect next year’s young crops. Cherry bark tortrix (Enarmonia formosana) may not be present in the Salmon Arm area as reported in 2003. The moths collected on CBT pheromone-baited traps may be another species of Tortricidae associated with native sumac. This could explain why investigating AA-FC entomologists could not locate host trees infested with larvae. Further investigation is underway. Scientists suspect up to 7 species of climbing cutworms are responsible for damaging developing wine grape buds in the spring.
Recommended publications
  • Biology and Integrated Pest Management of the Sunflower Stem
    E-821 (Revised) Biology and Integrated Pest Management of the SunflowerSunflower StemStem WeevilsWeevils inin thethe GreatGreat PlainsPlains Janet J. Knodel, Crop Protection Specialist Laurence D. Charlet, USDA, ARS Research Entomologist he sunflower stem weevil, Cylindrocopturus adspersus T(LeConte), is an insect pest that has caused economic damage to sunflower in the northern and southern Great Plains of the USA and into Canada. It belongs in the order Coleoptera (beetles) and family Curculionidae (weevils), and has also been called the spotted sunflower stem weevil. It is native to North America and has adapted to wild and cultivated Figure 1. Damage caused by sunflower stem weevil – sunflower lodging and stalk breakage. sunflowers feeding on the stem and leaves. The sunflower stem weevil was first reported as a pest in 1921 from severely wilted plants in fields grown for silage in Colorado. In North Dakota, the first sunflower stem weevil infestation ■ Distribution was recorded in 1973, causing 80% The sunflower stem weevil has been reported from most states yield loss due to lodging (Figure 1). west of the Mississippi River and into Canada. Economically Populations of sunflower stem weevil damaging populations have been recorded in Colorado, Kansas, have fluctuated over the years with high Nebraska, North Dakota, Minnesota, South Dakota, and Texas. numbers in some areas from the 1980s The black sunflower stem weevil can be found in most sunflower production areas with the greatest concentrations in to early 1990s in North Dakota. southern North Dakota and South Dakota. Another stem feeding weevil called the black sunflower stem weevil, Apion occidentale Fall, also occurs throughout the Great Plains, and attacks sunflower as a host.
    [Show full text]
  • An Annotated Checklist of Wisconsin Scarabaeoidea (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2002 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine A. Kriska University of Wisconsin-Madison, Madison, WI Daniel K. Young University of Wisconsin-Madison, Madison, WI Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Kriska, Nadine A. and Young, Daniel K., "An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera)" (2002). Insecta Mundi. 537. https://digitalcommons.unl.edu/insectamundi/537 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 3 1 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine L. Kriska and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract. A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years of field work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin. Introduction however, most of Wisconsin's scarabaeoid species diversity, life histories, and distributions were vir- The superfamily Scarabaeoidea is a large, di- tually unknown.
    [Show full text]
  • Insect Consumption of Seeded Rangeland Herbage in a Selected Area of Diamond Fork Canyon, Utah County, Utah
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1976 Insect Consumption of Seeded Rangeland Herbage in a Selected Area of Diamond Fork Canyon, Utah County, Utah Diane M. Bowers Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Bowers, Diane M., "Insect Consumption of Seeded Rangeland Herbage in a Selected Area of Diamond Fork Canyon, Utah County, Utah" (1976). All Graduate Theses and Dissertations. 3478. https://digitalcommons.usu.edu/etd/3478 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INSECT CONSUMPTION OF SEEDED RANGELAND HERBAGE IN A SELECTED AREA OF DIAMOND FORK CANYON, UTAH COUNTY, UTAH by Diane M. Bowers A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology UTAH STATE UNIVERSITY Logan, Utah 1976 ACKNOWLEDGMENTS would like to thank my committee for the interest shown, the guidance given, and suggestions made in relation to this study. I am also grateful for their comments in reviewing and editing the manu- script. wish to extend my sincere gratitude to Dr. B. A. Haws, who served as my major professor and to whom am grateful for his personal interest and time given to the project. would also like to thank Dr. Clayton S. Gist and Dr. Cyrus r~. McKell for their suggestions on opera- tional procedures and comments on the rangeland aspect of this study.
    [Show full text]
  • Larvae of Ataenius (Coleoptera: Scarabaeidae: Aphodiinae
    Eur. J. Entomol. 96: 57—68, 1999 ISSN 1210-5759 Larvae ofAtaenius (Coleóptera: Scarabaeidae: Aphodiinae): Generic characteristics and species descriptions José R. VERDÚ and E duardo GALANTE Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, E-03080 Alicante, Spain Key words.Scarabaeidae, Aphodiinae, Ataenius, larvae, description, key, dung beetles, turfgrass beetles, taxonomy Abstract. We compared the larval morphology of the genera Ataenius and Aphodius. The third larval instars of five Ataenius species: Ataenius opatrinus Harold, A. picinus Harold, A. platensis (Blanchard), A. simulator Harold and A. strigicauda Bates, are described or redescribed and illustrated. The most important morphological characteristics of the larvae of Ataenius are found in the respiratory plate of thoracic spiracle, the setation of venter of the last abdominal segment, the setation of the epicranial region and the morphology of the epipharynx. A key to larvae of the known species of Ataenius is included. INTRODUCTION del Sacramento (Uruguay). For the purpose of laboratory studies, a total of 10 to 20 adult specimens of each species were The genus Ataenius Harold comprises 320 species, of kept in cylindrical plastic breeding cages (20 cm high, 10 cm which 228 species are found in America, 49 in Australia, wide) with moist soil and dry cow dung from which they had 11 in Africa, 6 in East Asia, 2 in Madagascar, and single been collected. The lid was an opening (6 cm diameter) covered species in India, Sri Lanka, Turkestan, Japan, Hawaii and with gauze screen. These breeding cages were maintained in an Sumatra, respectively (Dellacasa, 1987). Despite the rich­ environmental chamber at 25 : 20°C (L : D), 80 ± 5% RH, with ness of this genus and its worldwide distribution, the lar­ a photoperiod of 15 : 9 (L : D).
    [Show full text]
  • Influence of Plant Parameters on Occurrence and Abundance Of
    HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • Volume 42, Number 2 June 2015
    Wisconsin Entomological Society N e w s I e t t e r Volume 42, Number 2 June 2015 Monitoring and Management - A That is, until volunteer moth surveyor, Steve Sensible Pairing Bransky, came onto the scene. Steve had By Beth Goeppinger, Wisconsin Department done a few moth and butterfly surveys here ofN atural Resources and there on the property. But that changed in 2013. Armed with mercury vapor lights, Richard Bong State Recreation Area is a bait and a Wisconsin scientific collector's heavily used 4,515 acre property in the permit, along with our permission, he began Wisconsin State Park system. It is located in surveying in earnest. western Kenosha County. The area is oak woodland, savanna, wetland, sedge meadow, He chose five sites in woodland, prairie and old field and restored and remnant prairie. savanna habitats. He came out many nights Surveys of many kinds and for many species in the months moths might be flying. After are done on the property-frog and toad, finding that moth populations seemed to drift fence, phenology, plants, ephemeral cycle every 3-5 days, he came out more ponds, upland sandpiper, black tern, frequently. His enthusiasm, dedication and grassland and marsh birds, butterfly, small never-ending energy have wielded some mammal, waterfowl, muskrat and wood surprising results. Those results, in turn, ducks to name a few. Moths, except for the have guided us in our habitat management showy and easy-to-identify species, have practices. been ignored. Of the 4,500 moth species found in the state, Steve has confirmed close to 1,200 on the property, and he isn't done yet! He found one of the biggest populations of the endangered Papaipema silphii moths (Silphium borer) in the state as well as 36 species of Catocola moths (underwings), them.
    [Show full text]
  • Wireworms' Management
    Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management.
    [Show full text]
  • Control Biológico De Insectos: Clara Inés Nicholls Estrada Un Enfoque Agroecológico
    Control biológico de insectos: Clara Inés Nicholls Estrada un enfoque agroecológico Control biológico de insectos: un enfoque agroecológico Clara Inés Nicholls Estrada Ciencia y Tecnología Editorial Universidad de Antioquia Ciencia y Tecnología © Clara Inés Nicholls Estrada © Editorial Universidad de Antioquia ISBN: 978-958-714-186-3 Primera edición: septiembre de 2008 Diseño de cubierta: Verónica Moreno Cardona Corrección de texto e indización: Miriam Velásquez Velásquez Elaboración de material gráfico: Ana Cecilia Galvis Martínez y Alejandro Henao Salazar Diagramación: Luz Elena Ochoa Vélez Coordinación editorial: Larissa Molano Osorio Impresión y terminación: Imprenta Universidad de Antioquia Impreso y hecho en Colombia / Printed and made in Colombia Prohibida la reproducción total o parcial, por cualquier medio o con cualquier propósito, sin autorización escrita de la Editorial Universidad de Antioquia. Editorial Universidad de Antioquia Teléfono: (574) 219 50 10. Telefax: (574) 219 50 12 E-mail: [email protected] Sitio web: http://www.editorialudea.com Apartado 1226. Medellín. Colombia Imprenta Universidad de Antioquia Teléfono: (574) 219 53 30. Telefax: (574) 219 53 31 El contenido de la obra corresponde al derecho de expresión del autor y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. El autor asume la responsabilidad por los derechos de autor y conexos contenidos en la obra, así como por la eventual información sensible publicada en ella. Nicholls Estrada, Clara Inés Control biológico de insectos : un enfoque agroecológico / Clara Inés Nicholls Estrada. -- Medellín : Editorial Universidad de Antioquia, 2008. 282 p. ; 24 cm. -- (Colección ciencia y tecnología) Incluye glosario. Incluye bibliografía e índices.
    [Show full text]
  • Inventory and Review of Quantitative Models for Spread of Plant Pests for Use in Pest Risk Assessment for the EU Territory1
    EFSA supporting publication 2015:EN-795 EXTERNAL SCIENTIFIC REPORT Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory1 NERC Centre for Ecology and Hydrology 2 Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK ABSTRACT This report considers the prospects for increasing the use of quantitative models for plant pest spread and dispersal in EFSA Plant Health risk assessments. The agreed major aims were to provide an overview of current modelling approaches and their strengths and weaknesses for risk assessment, and to develop and test a system for risk assessors to select appropriate models for application. First, we conducted an extensive literature review, based on protocols developed for systematic reviews. The review located 468 models for plant pest spread and dispersal and these were entered into a searchable and secure Electronic Model Inventory database. A cluster analysis on how these models were formulated allowed us to identify eight distinct major modelling strategies that were differentiated by the types of pests they were used for and the ways in which they were parameterised and analysed. These strategies varied in their strengths and weaknesses, meaning that no single approach was the most useful for all elements of risk assessment. Therefore we developed a Decision Support Scheme (DSS) to guide model selection. The DSS identifies the most appropriate strategies by weighing up the goals of risk assessment and constraints imposed by lack of data or expertise. Searching and filtering the Electronic Model Inventory then allows the assessor to locate specific models within those strategies that can be applied.
    [Show full text]
  • Table of Contents I
    Comparison of the gut microbiome of a generalist insect, Spodoptera littoralis and a specialist, leaf and root feeder one, Melolontha hippocastani Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty Of Biology and Pharmacy of the Friedrich Schiller University By Master of Science of Horticulture Erika Arias Cordero Born on 01.11.1977 in San José, Costa Rica Gutachter: 1. ___________________________ 2. ___________________________ 3. ___________________________ Tag der öffentlichen verteidigung:……………………………………. Table of Contents i Table of Contents 1. General Introduction 1 1.1 Insect-bacteria associations ......................................................................................... 1 1.1.1 Intracellular endosymbiotic associations ........................................................... 2 1.1.2 Exoskeleton-ectosymbiotic associations ........................................................... 4 1.1.3 Gut lining ectosymbiotic symbiosis ................................................................... 4 1.2 Description of the insect species ................................................................................ 12 1.2.1 Biology of Spodoptera littoralis ............................................................................ 12 1.2.2 Biology of Melolontha hippocastani, the forest cockchafer ................................... 14 1.3 Goals of this study ....................................................................................................
    [Show full text]
  • Invertebrate Pest Management for Pacific Northwest Pastures
    Invertebrate Pest Management for Pacific Northwest Pastures A.J. Dreves, N. Kaur. M.G. Bohle, D. Hannaway, G.C. Fisher and S.I. Rondon Photo: Mylen Bohle, © Oregon State University Figure 1. A pasture in the Pacific Northwest. Introduction Amy J. Dreves, Extension A well-managed pasture (Figure 1) has several ecological and economic benefits. pest management However, a variety of pests can diminish those benefits. specialist, University of the Virgin Islands; Several species of arthropods (insects, mites and garden symphylans), and gastropods Navneet Kaur, Extension (slugs) inhabit pastures of the Pacific Northwest of the United States. Newly planted entomologist; Mylen Bohle, pastures are more vulnerable to damage caused by invertebrate pests carried over Extension agronomist; from previous rotations if preventative measures such as tillage practices, adjustment David Hannaway, Extension of planting times, removal of infected plant material and healthy plant-management forage specialist; Glenn tactics are not followed. Infestations in established pastures occur when migrating pest Fisher, emeritus Extension populations attack from adjacent areas. entomologist; and Silvia Either way, an invertebrate pest population can reduce a pasture’s productivity and Rondon, Extension yield when damage exceeds an intolerable level generally referred to as an economic entomology specialist, all of threshold level. Pest populations tend to fluctuate in nature and are heavily regulated Oregon State University. by climate, food availability and ecosystem disturbance. Biological factors such as predators, parasites and entomopathogens also play an important role in pest population suppression (Figure 2, page 2). An integrated pest management strategy can maintain pest populations below economically damaging levels. IPM is a holistic approach that relies on knowledge of pest biology and ecology and their interactions with and within systems.
    [Show full text]