Insect Consumption of Seeded Rangeland Herbage in a Selected Area of Diamond Fork Canyon, Utah County, Utah

Total Page:16

File Type:pdf, Size:1020Kb

Insect Consumption of Seeded Rangeland Herbage in a Selected Area of Diamond Fork Canyon, Utah County, Utah Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1976 Insect Consumption of Seeded Rangeland Herbage in a Selected Area of Diamond Fork Canyon, Utah County, Utah Diane M. Bowers Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Bowers, Diane M., "Insect Consumption of Seeded Rangeland Herbage in a Selected Area of Diamond Fork Canyon, Utah County, Utah" (1976). All Graduate Theses and Dissertations. 3478. https://digitalcommons.usu.edu/etd/3478 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INSECT CONSUMPTION OF SEEDED RANGELAND HERBAGE IN A SELECTED AREA OF DIAMOND FORK CANYON, UTAH COUNTY, UTAH by Diane M. Bowers A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology UTAH STATE UNIVERSITY Logan, Utah 1976 ACKNOWLEDGMENTS would like to thank my committee for the interest shown, the guidance given, and suggestions made in relation to this study. I am also grateful for their comments in reviewing and editing the manu- script. wish to extend my sincere gratitude to Dr. B. A. Haws, who served as my major professor and to whom am grateful for his personal interest and time given to the project. would also like to thank Dr. Clayton S. Gist and Dr. Cyrus r~. McKell for their suggestions on opera- tional procedures and comments on the rangeland aspect of this study. I would like to extend my appreciation to the Spanish Fork Forest Service for a 11 owing the study area to be on Sterl ing Ranch and for providing materials and manpower for the construction of the sampling enclosures. Finally, I would like to thank Naurice Zeeman, whose cheerful attitude and enco uragement made the long hours of sample counting endurable and the hours of writing tolerable. ~ 711. ,(3=./L~ Diane M. Bowers ii TABLE OF CONTENTS Page ABSTRACT INTRODUCTIO N REVIEW OF LITERATURE Utah range 1and 3 Wheatgrasses 3 Range 1and pests 4 Classification and description of the insect 4 Life cycle and behavior 5 Importance of problem 8 Control 10 STUDY AREA 12 METHODS AND PROCEDURES 13 Forage consumption treatments 13 Insecticide treatment . 13 Insect population inventories 15 Forage production . 19 Temik growth responses 20 RESULTS AND DISCUSSION . 21 Insect populations 21 Herbage production 24 Effects of forage consumption 27 CONCLUSIONS 32 APPENDICES 33 LITERATURE CITED 41 iii LIST OF TABLES Tabl e Page 1. Forage production in the three treatment areas 26 2. Amounts of forage consumed by cattle and insects at the study site 29 iv LIST OF FIGURES Figure Page 1. Adult black grass bugs 6 2. Discoloration of grass caused by L. hesperius 9 3. Area of discolored grass at the study site damaged by L. hesperius 4. Enclosure used for total and partial exclu­ sion plots 14 5. Land surrounding the enclosures comprised Area 3, the non-exclusion area 14 6. Sweeping method used for arthropod popula­ tion inventories 16 7. D-Vac machine used for quantification of the adult Labops population 18 8. Population trends of the four major groups of insects present at the study site in 1975 22 9. Duration of the nymphal and adult stages .of Labops hesperius at the study site in 1975 10. Average grass weights for the three treatment areas and indication of time periods of maxi­ mum populations of the four major insect groups at the study site 25 v ABSTRA CT Insect Consumption of Seeded Rangeland Herbage In a Selected Area of Diamond Fo r k Canyon, Utah County, Utah Diane M. Bowers, Master 9f Science Utah State University, 1976 Major Professor: Austin B. Haws Department: Biology This study compares insect and cattle consumption of crested wheat­ grass (Agropycon spp.) on a site in Sterling Ranch, Utah County, Utah. The hypothesis tested is that insect consumption in general, and specifi- cally consumption by Labops hesperius Uhler, significantly reduces total available cattle forage. Labops and grasshoppers were probably the major cause of secondary damage at the study site, while the impact of thrips is unknown. A detri- mental impact on range was suggested by the data, as insects consumed for- age equivalent to 2.8 animal units per month, while cattle consumed forage equivalent to 2.1 animal units per month at the study site. Based on a grazing fee of $1.60 per animal unit per month, this represents a loss of $3 . 50 per acre. Although a low level Labops population was present at the time of the study, potential exists for this population to reach higher level s that would cause much higher levels of damage. Crested wheatgrass, the major vegetation at the study site, is cap- able of resuming growth in the fall if there is sufficient moisture . Be- cause there is only one generation of Labops per year, fall herbage produc­ tion would not suffer Labops damage, but may suffer damage by other in­ sects that are present in the fall. (45 pages) vi INTRODUCTION Grazing lands are vital to the continued economic well-being of the western livestock industry. Estimates indicate the livestock grazing capacity in the western United States had decreased by half or more in the past century. Causes of this decline include factors such as excess livestock and big-game grazing, fire, unfavorable weather, large rodent populations, plant diseases, man's agricultural activities, and insects (Hormay, 1970). The magnitude of the ill effects of insects has only recently been realized. Studies of the impact of insect populations on ran geland indicate insects may damage forage by consumption, weakening or killing plants, making forage unattractive to livestock, and/or de­ stroying seed (Stoddart, Smith, and Box, 1975). One insect group of recent concern is the black grass bug complex, Labops spp . and Irbisia spp. These bugs are believed to severely damage thousands of acres of range grasses annually, especially if moi st springs make abundant forage growth possible, and may render entire range seedings unfit for forage (Jensen, 1971; Kotter, 1972). Because such damage adds to the cost of raising cattle, the black grass bug is considered a major range pest. This study was formulated to test the hypothesis that insect for­ age consumption in general, and specifically consumption by Labops hes­ perius Uhler, significantly reduces total available cattle forage. The objectives of the study were: l) to determine the effects of insect con­ sumption, and specifically that of Labops, on available herbage, 2) to learn more about the life hi story and habits of Labops , 3) to observe the interaction of the Labops population with other insects, and 4) to provide information beneficial to range users and range management pro­ grams . 3 REVIEW OF LITERATURE Utah range 1and Rangelands, as defined by Stoddart et al . (1975) are areas of ... low and erratic precipitation, rough topography, poor drainage, or cold temperatures--are unsuited to cultivation and which are a source of forage for free-ranging native and domestic animals, as well as a source of wood products, water, and wildlife. {p. 2) Eighty-nine per cent of Utah, approximately 19,000,000 ha, may be class­ ified as rangeland (Nielsen, 1967). The intermountain region, in which Utah is located, has an arid climate with dry summers and an average annual precipitation of 350 mm (Keller and Klebesadel, 1973). According to Keller and Klebesadel {1973), "The predominance of non-cropland in the area emphasizes grazing and a livestock-oriented economy." {p. 486) Wheat grasses Wheatgrasses (tribe Hordeae, genus Agropyron ) are important in western rangelands as they provide early season forage of high nutrition­ al value (Rogler, 1973) . Of this group, crested wheatgrasses are the most commonly used introduced grasses for range seedings in the western United States (Currie, 1970). Two members of the crested wheatgrass complex, A. aristatum and A. desertorum, were the predominant grasses seeded on the study site . Native to eastern Russia, western Siberia, and central Asia, these two grasses are hardy, drought resistant, perre­ nial bunch grasses (Rogler, 1973) . Like other members of the genus, they reacr maximum development in late spring or early summer, are semidormant in hot weather , and can resume growth in the fall if precipitation and temperature are favorable. For these reasons, they are classified as cool season grasses (Odum, 1971) . 4 Rangeland pests Pocket gophers (Thomomys spp.) were the rodents of major concern at the study area. Presently, much controversy exists as to the status of this rodent as a pest of range areas (Stoddart et al . , 1975). Some researchers, such as Julander, Low, and Morris {1969), believe pocket gop hers are detrimental to range in a variety of ways, while others, such as Ellison (1946), and Ellison and Aldous (1952) believe the rodents to be beneficial, or at least not primarily responsible for range deteriora­ tions such as erosion. Turner (1973), Branson and Payne (1958), and Humphrey (1962) believe pocket gopher activity to be both beneficial and detrimental . Apparently , the effects of this rodent vary with location, vegetation, size of gopher population, season, and interaction with other animals in the area (Turner, 1973) . According to Knowlton {1954), insects attack and damage almost all important range food plants . Insects may detrimentally affect vegetation by consuming forage, weakening or killing plants, making forage unattrac­ t i ve to animals, or destroying seed (Stoddart . et al . , 1975) . Classification and description of the insect Labops hesperius Uhler (Hemiptera, Miridae) was the primary object of thi s study.
Recommended publications
  • Materials on Heteroptera of Uvs-Nuur Depression (Russia, Tuva) S
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2016 Materials on Heteroptera of Uvs-Nuur Depression (Russia, Tuva) S. V. Kuzhuget Russian Academy of Sciences, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Environmental Sciences Commons, Nature and Society Relations Commons, and the Other Animal Sciences Commons Kuzhuget, S. V., "Materials on Heteroptera of Uvs-Nuur Depression (Russia, Tuva)" (2016). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 170. http://digitalcommons.unl.edu/biolmongol/170 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Kuzhuget in Erforschung biologischer Ressourcen der Mongolei (2016) band 13: 185-189. Copyright 2016, Martin-Luther-Universität Halle Wittenberg, Halle (Saale). Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2016 (13): 185-189 Materials on Heteroptera of Uvs-nuur depression (Russia, Tuva) S.V. Kuzhuget Abstract In this article were reported new data about spreading of 43 species of heteropterans of 10 fam- ilies of the Tuvinian Uvs-nuur depression. Key words: Heteroptera, Tuva, Uvs-nuur. Introduction The most complete information about fauna of Heteroptera of the Tuvinian Uvs-nuur depression are to found in the article of CHEREPANOV & KIRITSHENKO (1962).
    [Show full text]
  • Liste Des Punaises Du Québec Et Des Régions Adjacentes (Hemiptera : Heteroptera)
    ENTOMOFAUNE DU QUÉBEC LISTE DES PUNAISES DU QUÉBEC ET DES RÉGIONS ADJACENTES (HEMIPTERA : HETEROPTERA) Jean-François Roch DOCUMENT FAUNIQUE no 27 Version 2,3 JUIN 2020 Entomofaune du Québec 2. Photo de la page frontispice Punaise terne Lygus lineolaris (P. de B.) par Lina Breton. Arsenault, J. & L. Breton. 2003. Insectes et maladies des peupliers dans les pépinières forestières. Ministère des Ressources naturelles, de la Faune et des Parcs, Direction de la conservation des forêts, Gouvernement du Québec. 38 p. Entomofaune du Québec inc. 637-108 boulevard Talbot Saguenay, Québec G7H 6A4 (418) 545-5011, poste 2461 (418) 545-5012 Adrélec : [email protected] Site sur la Toile : http://entomofaune.qc.ca/ DOCUMENT FAUNIQUE no 27 Version 2,3 JUIN 2020 HÉMIPTÈRES - HÉTÉROPTÈRES 3. INTRODUCTION Ce document présente une liste des punaises trouvées dans le territoire du Québec et ses régions adjacentes. Elle résulte d’une revue de la littérature entomologique, d’un inventaire de collections appartenant à des organismes publics et à des entomologistes et d’une recherche sur internet. Provancher fut le premier à publier, de 1885 à 1890, un ouvrage d’identification des punaises pour le Canada, mais il donne très peu d’information sur la répartition des espèces. Uhler (1917) cite 163 espèces pour la province et 286 autres dans les régions adjacentes. Fournier (1950) mentionne que Moore (1950) catalogua 560 espèces et variétées. Hutchinson (1979), en se basant seulement sur la littérature entomologique, produisit une liste préliminaire de 101 punaises aquatiques et subaquatiques du Québec, mais cette liste comporte de nombreuses erreurs. Larochelle (1984) publia un important ouvrage d’identification sur les punaises terrestres du Québec, rapportant 488 espèces; en outre, il annexe une liste de 283 espèces et sous-espèces pouvant se rencontrer dans la province.
    [Show full text]
  • Arthropod Investigations of the North Cascades National Park Service Complex Hemiptera: Heteroptera, 1, 1997-1998
    ARTHROPOD INVESTIGATIONS OF THE NORTH CASCADES NATIONAL PARK SERVICE COMPLEX HEMIPTERA: HETEROPTERA, 1, 1997-1998 John D. Lattin Systematic Entomology Laboratory Department of Entomology, Oregon State University Corvallis,OR 97331-2907 U.S. Department of the Interior National Park Service - Pacific West Region North Cascades National Park Service Complex Sedro-Woolley, WA 98284 May 1999 ARTHROPOD INVESTIGATIONS OF THE NORTH CASCADES NATIONAL PARK SERVICE COMPLEX HEMIPTERA: HETEROPTERA, 1,1997-1998 John D. Lattin Systematic Entomology Laboratory Department of Entomology, Oregon State University CorvallisOR 97331-2907 Technical Report >JPS/baTNOCA/NRTR/99-01 May, 1999 North Cascades National Park Service Complex 2105 State Route 20 Sedro-Woolley, WA 98284 United States Department of the Interior - National Park Service - Pacific West Region North Cascades National Park Service Complex, comprising North Cascades National Park, Ross Lake National Recreation Area, and Lake Chelan National Recreation Area, was established in October, 1968 and is located in northwestern Washington. North Cascades National Park was established to preserve certain majestic mountain scenery, snow fields, glaciers, alpine meadows, and other unique natural features in the North Cascade Mountains for the benefit, use, and inspiration of present and future generations. Ross Lake and Lake Chelan National Recreation Areas were established to provide for outdoor recreation use and enjoyment and to conserve scenic, scientific, historic, and other values contributing to public enjoyment of these lands and waters. The National Park Service disseminates results of biological, physical, or social science research through the Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops or conferences are also disseminated through this series.
    [Show full text]
  • Heteroptera: Miridae: Orthotylinae: Halticini)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 15.xii.2010 Volume 50(2), pp. 341–368 ISSN 0374-1036 Revision of the genus Pachytomella (Heteroptera: Miridae: Orthotylinae: Halticini) Anna A. NAMYATOVA Department of Entomology, Faculty of Biology and Soil Sciences, Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034; e-mail: [email protected] Abstract. The Palaearctic genus Pachytomella Reuter, 1890, comprising six species, is revised, and new synonymies for varieties of P. phoenicea (Horváth, 1884) – P. phoenicea var. antennalis Reuter, 1891, P. phoenicea var. pedalis Reu- ter, 1904, P. phoenicea var. nigricornis Reuter, 1904 – are proposed. Diagnoses and detailed descriptions for the genus and all species are given. Keys to males and females, as well as colour digital habitus images and illustrations of genital structures are provided. The lectotype for Pachytomella cursitans Reuter, 1905 is designated. Pachytomella parallela is recorded for the first time from Andorra and P. phoenicea from Jordan and Syria. Key words. Heteroptera, Miridae, Halticini, Pachytomella, taxonomy, revision, key, distribution Introduction The genus Pachytomella Reuter, 1890 includes dark-coloured, small halticines (Miridae: Orthotylini: Halticini) clothed with only short simple setae and having a distinctly transverse head. The distribution is principally Mediterranean but also covers Central, Northern and Eastern Europe. COSTA (1842) described the genus Pachytoma to accommodate a new species, Pachytoma minor A. Costa, 1842 (junior synonym of P. passerinii (A. Costa, 1842)) known only from females. Later, COSTA (1853) described males and broadened the diagnosis. He included in the genus P. flavomarginatus (A. Costa, 1842), subsequently transferred to Schoenocoris Reuter, 1890 by REUTER (1890), and P.
    [Show full text]
  • Insect Conservation and Pest Management
    Biodiversity and Conservation 2,242-257 (1993) Insect conservation and pest management MARCOS KOGAN* Integrated Plant Protection Center, Oregon State University. Cordley 2040, Corvallis, OR 97331-2915, USA JOHN D. LATT1N Systematic Entomology Laboratory, Department of Entomology, Oregon State Universi~, Cordlev 2046, Corvallis', OR 97331-2907, USA Received 11 November 1992; accepted 21 December 1992 The issue of insect conservation in pest management has many conflicting aspects. For instance, it is desirable to conserve a pest residue in order to maintain natural enemy population and it is imperative to conserve natural enemies. However, conservation of pest species is not relevant if the pest species is an exotic invader and a candidate for eradication, mainly because eradication, if successful, achieves only regional extinction. Conservation of native pests depends, to a large extent, on whether the species is a direct pest of a high value crop or an indirect pest with an acceptable economic injury level. In this paper, integrated pest management is defined in terms of sustainable agriculture and the conservation of biodiversity, and give five premises that stress the level of disturbance of agricultural communities and the dynamics of pest status for arthropod species in the community. The possible impacts of the main integrated pest management tactics on arthropod conservation are tabulated and the results reached stress that diversification of agricul- tural systems through maximum use of native plants should benefit both integrated pest manage- ment and regional arthropod conservation. Key words: eradication; biological control; exotic pests; cultural control; pest-crop interactions Introduction The notion of insect conservation generally implies the perceived desirability of protect- ing local biological diversity.
    [Show full text]
  • Hemiptera: Heteroptera)
    ISSN 1015-8391 External Male Genitalia of the Miridae (Hemiptera: Heteroptera) Cheng-Shing Lin and Chung-Tu Yang Special Publication Number 9 National Museum of Natural Science Isometopidea yangi Lin, 2005 1 NMNS SPEC. PUBL. No. 9 External Male Genitalia of the Miridae (Hemiptera: Heteroptera) Cheng-Shing Lin1* and Chung-Tu Yang2 1 Department of Zoology, National Museum of Natural Science, Taichung 404, Taiwan 2 Department of Entomology, National Chung Hsing University, Taichung 402, Taiwan ABSTRACT The external male genitalia of 121 species in 20 tribes of eight subfamilies in the Miridae were examined (except for Diphleps unica Bergroth which was cited from Konstantinov, 2003). Some structures were rejudged or given a new interpretation, i.e., Singh-Pruthi's bulbous vesica was rejudged as being the exposed ejaculatory conjunctiva; Singh-Pruthi's ejaculatory duct within the bulbous vesica was rejudged as being the actual aedeagus; Singh-Pruthi's endosoma undifferentiated into the conjunctiva and vesica was interpreted as being a wholly reduced aedeagus. The support bridge, support tube, and phallobasal conjunctival processes exposed in the genital chamber were distinguished. The expanded ejaculatory duct between the apex of the support tube and the base of the aedeagus were judged to be independent modifications, not homologous structures of the ejaculatory reservoir in the Pentatomomorpha. The following phylogenetic relationships in the Miridae are proposed: (Isometopinae + (Psallopinae + Cylapinae)) + ((Orthotylinae + Phylinae) + (Bryocorinae
    [Show full text]
  • Vol, 37, No.~ November 1984 ARTICLES 483 Forage Response of a Mesquite-Buffalograss Community Following Range Reha- Bilitation by Donald J
    TABLE OF CONTENTS: Vol, 37, No.~ November 1984 ARTICLES 483 Forage Response of a Mesquite-Buffalograss Community Following Range Reha- bilitation by Donald J. Bedunah and Ronald E. Sosebee 488 Low. Rates of Tebuthiuron for Control of Sand Shinnery Oak by V.E. Jones and R.D. Pettit 491 Short-term Vegetation Responses to Fire in the Upper Sonoran Desert by George H. Cave and Duncan T. Patten 4% Callie Bermudagrass Yield and Nutrient Uptake with Liquid and Soil N-P-K Fertilizers by Galen D. Mooso, Von D. Jolley, Sheldon D. Nelson, and Bruce L. Webb 501 Establishment of Diffuse and Spotted Knapweed from Seed on Disturbed Ground in British Columbia, Canada by L.D. Roze, B.D. Frazer, and A. McLean 503 Phenological Development and Water Relations in Plains Silver Sagebrush by Richard S. White and Pat 0. Currie 507 Germination ProtIles of Introduced Lovegrasses at Six Constant Temperatures by Martha H. Martin and Jerry R. Cox 509 Seed Pretreatments and Their Effects on Field Establishment of Spring-Seeded ’ Gardner Saltbush by R. James Ansley and Rollin H. Abernethy 514 Leaf Area, Nonstructural Carbohydrates, and Root Growth Characteristics of BlueGrama Seedlings by A.M. Wilson 517 Copper and Molybdenum Uptake by Forages Grown on Coal Mine Soils by Dennis R. Neuman and Frank F. Munshower 521 Natural Establishment of Aspen from Seed on a Phosphate Mine Dump by Bryan D. Williams and Robert s. Johnston 523 Variability of Infiltration within Large Runoff Plots on Rangelands Micheline Devaurs and Gerald F. Gifford 529 Evaluating Soil Water Models on Western Rangelands by Keith R.
    [Show full text]
  • Corrections for the Hemiptera: Heteroptera of Canada and Alaska
    J. ENTOMOL. SOC. BRIT. COLUMBIA 115, DECEMBER 2018 !25 Corrections for the Hemiptera: Heteroptera of Canada and Alaska G.G.E. SCUDDER1 ABSTRACT A total of 175 changes to the current checklist of Hemiptera: Heteroptera of Canada and Alaska are reported. Eighty deletions, eighty-eight nomenclature changes, and seven spelling corrections are detailed. In addition, comments are given on Anthocoris tomentosus Péricart, Orius diespeter Herring, O. tristicolor (White), and Tupiocoris agilis (Uhler). Key words: Changes, checklist, Heteroptera, Canada, Alaska INTRODUCTION Maw et al. (2000) published a checklist of the Hemiptera of Canada and Alaska, giving details of the occurrence of the species of Heteroptera. Since then, there have been a large number of taxonomic changes that have resulted in deletions and nomenclature modifications for many of the taxa. In addition, a few spelling errors have been noted. Details of the 175 changes are outlined here, and comments on four taxa are given. The order of taxa follows Maw et al. (2000), but species are listed in alphabetical order in each family. Museum abbreviations are as follows: CNC Canadian National Collection of Insects, Agriculture and Agri-Food Canada, Ottawa, Ontario RBCM Royal British Columbia Museum, Victoria, B.C. UAM University of Alaska Museum, Fairbanks, Alaska. UBCZ Spencer Entomological Collection, Beaty Biodiversity Museum (formerly Spencer Entomological Museum, Department of Zoology) University of British Columbia, Vancouver, B.C. USNM National Museum of Natural History (formerly United States National Museum), Washington, D.C. SYSTEMATIC TREATMENT I. Deletions Family CORIXIDAE Glaenocorisa quadrata Walley This corixid was originally described by Walley (1930) from Quebec. Jaczewski and Lansbury (1961) followed Ossianilsson (1960) and considered G.
    [Show full text]
  • Arthropod Abundance Associated with the Natural Resources Conservation Service
    bioRxiv preprint doi: https://doi.org/10.1101/356451; this version posted July 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Goosey, H.B. Arthropod Abundance Hayes B. Goosey and Livestock Grazing Department of Animal and Range Sciences Montana State University Bozeman, MT 59717 e-mail: [email protected] Arthropod Abundance Associated with the Natural Resources Conservation Service: Implications for Greater Sage-Grouse Management. Authorship TBD 1 bioRxiv preprint doi: https://doi.org/10.1101/356451; this version posted July 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT One goal of the Natural Resource Conservation Service’s Sage-Grouse Initiative was to reverse the western US trend of declining sage-grouse populations. The sage-grouse initiative aims at preventing ‘sod-busting’ activities (conversion of native habitats into cropland) which is identified as the largest threat to stable sage-grouse populations and their habitats (USFWS 2010). Rest-rotation livestock grazing is implemented on sage-grouse ‘core areas’ with the purpose of improving rangeland health on private lands and eliminate the need of listing sage-grouse on the threatened or endangered species list. We collected arthropods in central Montana from three habitat classes associated with the Sage-grouse Initiative: 1) Grazed (actively grazed livestock pastures), 2) Deferred (Ungrazed pastures), and 3) Idle (Lands of the Lake Mason National Wildlife Refuge lower unit) and report here on 2012-2014 findings.
    [Show full text]
  • Observations of Selected True Bugs (Hemiptera: Heteroptera) of the Pacific Northwest Shrubsteppe Zone
    Western North American Naturalist Volume 66 Number 2 Article 14 5-18-2006 Observations of selected true bugs (Hemiptera: Heteroptera) of the Pacific Northwest shrubsteppe zone John D. Lattin Oregon State University, Corvallis Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Lattin, John D. (2006) "Observations of selected true bugs (Hemiptera: Heteroptera) of the Pacific Northwest shrubsteppe zone," Western North American Naturalist: Vol. 66 : No. 2 , Article 14. Available at: https://scholarsarchive.byu.edu/wnan/vol66/iss2/14 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 66(2), © 2006, pp. 256–259 OBSERVATIONS OF SELECTED TRUE BUGS (HEMIPTERA: HETEROPTERA) OF THE PACIFIC NORTHWEST SHRUB-STEPPE ZONE John D. Lattin1 Key words: Pacific Northwest, Hemiptera, Heteroptera, Miridae, Labops, Myrmecophyes, Tingidae, Acalypta, host plants. The shrub-steppe zone of the Pacific North- Artemesia and Purshia. While little is known west extends over a vast interior region. Bailey about the distribution and habits of most insects (1998) published a broadscale treatment of the and mites found on these plants, Kraft (1960) ecoregions of the world, complete with a cited more than 250 species he collected on detailed map. Much of western North America bitterbrush, Purshia tridentata (Pursh.) DC., is included in the Temperate Steppe Division, in portions of the shrub-steppe in the Pacific Temperate Steppe Regime Mountains, and the Northwest during 1957 and 1958.
    [Show full text]
  • HETEROPTERA:MIRIDAE) Redacted for Privacy Abstract Approved: John D
    AN ABSTRACT OF THE THESIS OF MICHAEL DAVID SCHWARTZ for the degree of MASTER OF SCIENCE in ENTOMOLOGY presented on Title: A REVISION OF THE BLACK GRASS BUG GENUS IRBISIA REUTER (HETEROPTERA:MIRIDAE) Redacted for privacy Abstract approved: John D. Lattin The black grass bug genus Irbisia Reuter was revised. Over 18,000 specimens were examined and information concerning the biology, host plant and distributional relationships of the species was compiled. In addition to external characters, the male claspers and vesica, and the female dorsal libiate plate of the bursa copulatrix and sclero- tized rings were used to distinguish the species. Sixty-nine charac- ters selected from male and female genitalia, and external morphology were cladistically analyzed. Thirty-two characters are intra- correlated, defining four species groups. Twenty-three species are recognized in the genus. Two keys to the species are presented. One new species, Irbisia knighti is described. The following synonymies are proposed: I. brachycera (Uhler) = I. gorgoniensis Bliven, I. paeta Van Duzee, I. tejonica Bliven, I. vestifera Bliven; I. californica Van Duzee = I. eurekae Bliven, I. paenulata Bliven; I. elongata Knight = I. retrusa Bliven; I. setosa Van Duzee = I. ustricula Bliven; I. solani (Heidemann) = I. lacertosa Bliven. Irbisia species diversity is greatest in the Coastal, Peninsular, Sierra and Transverse Ranges of California and decreases northward, northeastward and eastward. Major centers of endemism are located in California and the Rocky Mountains northwest of the Wyoming Basin; a minor center is located in the Siskiyou Mountains of southwestern Oregon. Faunal similarity analysis suggests that the present Irbisia fauna is derived from two source areas - one Californian, and one in the Rocky Mountains.
    [Show full text]
  • The Plant Bugs, Or Miridae
    % STATE OF ILLINOIS DwiGHT H. Green, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Frank G. Thompson, Director NATURAL HISTORY SURVEY DIVISION Theodore H. Prison, Chief ^^olume 22 BULLETIN Article 1 The Plant Bugs, or Miridae, of Illinois HARRY^ H. KNIGHT Printed by Authority oj the State of Illinois URBANA, ILLINOIS September 1041 STATE OF ILLINOIS DwiGHT H. Green, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Frank G. Thompson, Director BOARD OF NATURAL RESOURCES AND CONSERVATION Frank G. Thompson, Chairman William Trelease, D.Sc, LL.D., Biology William A. Noyes, Ph.D., LL.D. Chem.D. Forestry D.Sc, Chemistry Ezra J. Kraus, Ph.D., D.Sc, L. R. HowsoN, B.S.C.E., C.E., Engineering Edson S. Bastin, Ph.D., Geology Arthur Cutts Willard, D.Eng., LL.D., President of the University of Illinois NATURAL HISTORY SURVEY DIVISION Urbana, Illinois Scientific and Technical Staff Theodore H. Frison, Ph.D., Chief Section of Economic Entomology Section of Aquatic Biology W. P. Flint, B.S., Chief Entomologist David H. Thompson, Ph.D., Zoologist C. C. Compton, Ph.D., Associate Entomologist George W. Bennett, Ph.D., Limnologist M. D. Farrar, Ph.D., Research Entomologist D. F. Hansen, Ph.D., Assistant Zoologist Entomologist Bruno Limbach, B.S , Zoological /Assistant J. H. Bigger, B.S., Associate S. C. Chandler, B.S., Southern Field Entomolo- R. G. Rennels, M.F., Assistant Aquatic Biolo- gist gist Northern Field Ento- L. H. Shropshire, M.S., Section of Game Research and Management mologist Ralph E. Yeatter, Ph.D., Game Specialist B. G. Berger, M.A., Assistant Entomologist H.^B. Petty, B.A., Assistant, Entomology Ex- Section of Wildlife Experimental Areas tension Arthur S.
    [Show full text]