Optics and Electrodynamics of Moving Bodies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalization of Lorentz-Poincare Ether Theory to Quantum Gravity
Abstract We present a quantum theory of gravity which is in agreement with observation in the relativistic domain. The theory is not rel- ativistic, but a Galilean invariant generalization of Lorentz-Poincare ether theory to quantum gravity. If we apply the methodological rule that the best available theory has to be preferred, we have to reject the relativistic paradigm and return to Galilean invariant ether theory. arXiv:gr-qc/9706055v1 18 Jun 1997 1 Generalization Of Lorentz-Poincare Ether Theory To Quantum Gravity Ilja Schmelzer∗ September 12, 2021 ... die bloße Berufung auf k¨unftig zu entdeckende Ableitungen bedeutet uns nichts. Karl Popper In quantum gravity, as we shall see, the space-time manifold ceases to exist as an objective physical reality; geometry becomes relational and contextual; and the foundational conceptual categories of prior science – among them, existence itself – become problematized and relativized. Alan Sokal Contents 1 The Problem Of Quantum Gravity 3 2 Introduction 4 3 Generalization Of Lorentz-Poincare Ether Theory To Gra- vity 6 3.1 Elementary Properties Of Post-Relativistic Gravity . 8 3.2 TheCosmologicalConstants . 9 3.2.1 The Observation Of The Cosmological Constants . 9 3.2.2 The Necessity Of Cosmological Constants . 10 3.3 TheGlobalUniverse ....................... 11 3.4 Gravitational Collapse . 12 ∗WIAS Berlin 2 3.5 A Post-Relativistic Lattice Theory . 13 3.6 BetterAtomicEtherTheories . 15 4 Canonical Quantization 16 5 Discussion 17 5.1 Conclusion............................. 18 1 The Problem Of Quantum Gravity We believe that there exists a unique physical theory which allows to describe the entire universe. That means, there exists a theory — quantum gravity — which allows to describe quantum effects as well as relativistic effects of strong gravitational fields. -
Interaction Energy of a Charged Medium and Its EM Field in a Curved Spacetime Mayeul Arminjon
Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime Mayeul Arminjon To cite this version: Mayeul Arminjon. Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime. Proceedings of the Twentieth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Jun 2018, Varna, Bulgaria. pp.88-98. hal-01881100 HAL Id: hal-01881100 https://hal.archives-ouvertes.fr/hal-01881100 Submitted on 25 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime Mayeul Arminjon Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR lab., F-38000 Grenoble, France Abstract In the electrodynamics of special relativity (SR) or general relativ- ity (GR), the energy tensors of the charged medium and its EM field add to give the total energy tensor that obeys the dynamical equation without external force. In the investigated scalar theory of gravitation (\SET"), this assumption leads to charge non-conservation, hence an additional, \interaction" energy tensor T inter has to be postulated. The present work aims at constraining this tensor. -
Ocabulary of Definitions : P
Service bibliothèque Catalogue historique de la bibliothèque de l’Observatoire de Nice Source : Monographie de l’Observatoire de Nice / Charles Garnier, 1892. Marc Heller © Observatoire de la Côte d’Azur Février 2012 Présentation << On trouve… à l’Ouest … la bibliothèque avec ses six mille deux cents volumes et ses trentes journaux ou recueils périodiques…. >> (Façade principale de la Bibliothèque / Phot. attribuée à Michaud A. – 188? - Marc Heller © Observatoire de la Côte d’Azur) C’est en ces termes qu’Henri Joseph Anastase Perrotin décrivait la bibliothèque de l’Observatoire de Nice en 1899 dans l’introduction du tome 1 des Annales de l’Observatoire de Nice 1. Un catalogue des revues et ouvrages 2 classé par ordre alphabétique d’auteurs et de lieux décrivait le fonds historique de la bibliothèque. 1 Introduction, Annales de l’Observatoire de Nice publiés sous les auspices du Bureau des longitudes par M. Perrotin. Paris,Gauthier-Villars,1899, Tome 1,p. XIV 2 Catalogue de la bibliothèque, Annales de l’Observatoire de Nice publiés sous les auspices du Bureau des longitudes par M. Perrotin. Paris,Gauthier-Villars,1899, Tome 1,p. 1 Le présent document est une version remaniée, complétée et enrichie de ce catalogue. (Bibliothèque, vue de l’intérieur par le photogr. Jean Giletta, 191?. - Marc Heller © Observatoire de la Côte d’Azur) Chaque référence est reproduite à l’identique. Elle est complétée par une notice bibliographique et éventuellement par un lien électronique sur la version numérisée. Les titres et documents non encore identifiés sont signalés en italique. Un index des auteurs et des titres de revues termine le document. -
Implementation of the Fizeau Aether Drag Experiment for An
Implementation of the Fizeau Aether Drag Experiment for an Undergraduate Physics Laboratory by Bahrudin Trbalic Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 c Massachusetts Institute of Technology 2020. All rights reserved. ○ Author................................................................ Department of Physics May 8, 2020 Certified by. Sean P. Robinson Lecturer of Physics Thesis Supervisor Certified by. Joseph A. Formaggio Professor of Physics Thesis Supervisor Accepted by . Nergis Mavalvala Associate Department Head, Department of Physics 2 Implementation of the Fizeau Aether Drag Experiment for an Undergraduate Physics Laboratory by Bahrudin Trbalic Submitted to the Department of Physics on May 8, 2020, in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics Abstract This work presents the description and implementation of the historically significant Fizeau aether drag experiment in an undergraduate physics laboratory setting. The implementation is optimized to be inexpensive and reproducible in laboratories that aim to educate students in experimental physics. A detailed list of materials, experi- mental setup, and procedures is given. Additionally, a laboratory manual, preparatory materials, and solutions are included. Thesis Supervisor: Sean P. Robinson Title: Lecturer of Physics Thesis Supervisor: Joseph A. Formaggio Title: Professor of Physics 3 4 Acknowledgments I gratefully acknowledge the instrumental help of Prof. Joseph Formaggio and Dr. Sean P. Robinson for the guidance in this thesis work and in my academic life. The Experimental Physics Lab (J-Lab) has been the pinnacle of my MIT experience and I’m thankful for the time spent there. -
Hendrik Antoon Lorentz's Struggle with Quantum Theory A. J
Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Archive for History of Exact Sciences ISSN 0003-9519 Volume 67 Number 2 Arch. Hist. Exact Sci. (2013) 67:149-170 DOI 10.1007/s00407-012-0107-8 1 23 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may self- archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Arch. Hist. Exact Sci. (2013) 67:149–170 DOI 10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Received: 15 June 2012 / Published online: 24 July 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentz in quantum theory. Although especially his early work is valuable, the main importance of Lorentz’s work lies in the conceptual clarifications he provided and in his critique of the foundations of quantum theory. 1 Introduction The Dutch physicist Hendrik Antoon Lorentz (1853–1928) is generally viewed as an icon of classical, nineteenth-century physics—indeed, as one of the last masters of that era. Thus, it may come as a bit of a surprise that he also made important contribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- ment in physics. The importance of Lorentz’s work lies not so much in his concrete contributions to the actual physics—although some of his early work was ground- breaking—but rather in the conceptual clarifications he provided and his critique of the foundations and interpretations of the new ideas. -
Einstein's Mistakes
Einstein’s Mistakes Einstein was the greatest genius of the Twentieth Century, but his discoveries were blighted with mistakes. The Human Failing of Genius. 1 PART 1 An evaluation of the man Here, Einstein grows up, his thinking evolves, and many quotations from him are listed. Albert Einstein (1879-1955) Einstein at 14 Einstein at 26 Einstein at 42 3 Albert Einstein (1879-1955) Einstein at age 61 (1940) 4 Albert Einstein (1879-1955) Born in Ulm, Swabian region of Southern Germany. From a Jewish merchant family. Had a sister Maja. Family rejected Jewish customs. Did not inherit any mathematical talent. Inherited stubbornness, Inherited a roguish sense of humor, An inclination to mysticism, And a habit of grüblen or protracted, agonizing “brooding” over whatever was on its mind. Leading to the thought experiment. 5 Portrait in 1947 – age 68, and his habit of agonizing brooding over whatever was on its mind. He was in Princeton, NJ, USA. 6 Einstein the mystic •“Everyone who is seriously involved in pursuit of science becomes convinced that a spirit is manifest in the laws of the universe, one that is vastly superior to that of man..” •“When I assess a theory, I ask myself, if I was God, would I have arranged the universe that way?” •His roguish sense of humor was always there. •When asked what will be his reactions to observational evidence against the bending of light predicted by his general theory of relativity, he said: •”Then I would feel sorry for the Good Lord. The theory is correct anyway.” 7 Einstein: Mathematics •More quotations from Einstein: •“How it is possible that mathematics, a product of human thought that is independent of experience, fits so excellently the objects of physical reality?” •Questions asked by many people and Einstein: •“Is God a mathematician?” •His conclusion: •“ The Lord is cunning, but not malicious.” 8 Einstein the Stubborn Mystic “What interests me is whether God had any choice in the creation of the world” Some broadcasters expunged the comment from the soundtrack because they thought it was blasphemous. -
Albert Einstein
THE COLLECTED PAPERS OF Albert Einstein VOLUME 15 THE BERLIN YEARS: WRITINGS & CORRESPONDENCE JUNE 1925–MAY 1927 Diana Kormos Buchwald, József Illy, A. J. Kox, Dennis Lehmkuhl, Ze’ev Rosenkranz, and Jennifer Nollar James EDITORS Anthony Duncan, Marco Giovanelli, Michel Janssen, Daniel J. Kennefick, and Issachar Unna ASSOCIATE & CONTRIBUTING EDITORS Emily de Araújo, Rudy Hirschmann, Nurit Lifshitz, and Barbara Wolff ASSISTANT EDITORS Princeton University Press 2018 Copyright © 2018 by The Hebrew University of Jerusalem Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA (Revised for volume 15) Einstein, Albert, 1879–1955. The collected papers of Albert Einstein. German, English, and French. Includes bibliographies and indexes. Contents: v. 1. The early years, 1879–1902 / John Stachel, editor — v. 2. The Swiss years, writings, 1900–1909 — — v. 15. The Berlin years, writings and correspondence, June 1925–May 1927 / Diana Kormos Buchwald... [et al.], editors. QC16.E5A2 1987 530 86-43132 ISBN 0-691-08407-6 (v.1) ISBN 978-0-691-17881-3 (v. 15) This book has been composed in Times. The publisher would like to acknowledge the editors of this volume for providing the camera-ready copy from which this book was printed. Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed in the United States of America 13579108642 INTRODUCTION TO VOLUME 15 The present volume covers a thrilling two-year period in twentieth-century physics, for during this time matrix mechanics—developed by Werner Heisenberg, Max Born, and Pascual Jordan—and wave mechanics, developed by Erwin Schrödinger, supplanted the earlier quantum theory. -
General Relativity Requires Absolute Space and Time 1 Space
CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server General Relativity Requires Amp`ere’s theory of magnetism [10]. Maxwell uni- Absolute Space and Time fied Faraday’s theory with Huyghens’ wave the- ory of light, where in Maxwell’s theory light is Rainer W. K¨uhne considered as an oscillating electromagnetic wave Lechstr. 63, 38120 Braunschweig, Germany which propagates through the luminiferous aether of Huyghens. We all know that the classical kinematics was re- placed by Einstein’s Special Relativity [11]. Less We examine two far-reaching and somewhat known is that Special Relativity is not able to an- heretic consequences of General Relativity. swer several problems that were explained by clas- (i) It requires a cosmology which includes sical mechanics. a preferred rest frame, absolute space and According to the relativity principle of Special time. (ii) A rotating universe and time travel Relativity, all inertial frames are equivalent, there are strict solutions of General Relativity. is no preferred frame. Absolute motion is not re- quired, only the relative motion between the iner- tial frames is needed. The postulated absence of an absolute frame prohibits the existence of an aether [11]. 1 Space and Time Before Gen- According to Special Relativity, each inertial eral Relativity frame has its own relative time. One can infer via the Lorentz transformations [12] on the time of the According to Aristotle, the Earth was resting in the other inertial frames. Absolute space and time do centre of the universe. He considered the terrestrial not exist. Furthermore, space is homogeneous and frame as a preferred frame and all motion relative isotropic, there does not exist any rotational axis of to the Earth as absolute motion. -
The Concept of Field in the History of Electromagnetism
The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”. -
Relativistic Solutions 11.1 Free Particle Motion
Physics 411 Lecture 11 Relativistic Solutions Lecture 11 Physics 411 Classical Mechanics II September 21st, 2007 With our relativistic equations of motion, we can study the solutions for x(t) under a variety of different forces. The hallmark of a relativistic solution, as compared with a classical one, is the bound on velocity for massive particles. We shall see this in the context of a constant force, a spring force, and a one-dimensional Coulomb force. This tour of potential interactions leads us to the question of what types of force are even allowed { we will see changes in the dynamics of a particle, but what about the relativistic viability of the mechanism causing the forces? A real spring, for example, would break long before a mass on the end of it was accelerated to speeds nearing c. So we are thinking of the spring force, for example, as an approximation to a well in a more realistic potential. To the extent that effective potentials are uninteresting (or even allowed in general), we really only have one classical, relativistic force { the Lorentz force of electrodynamics. 11.1 Free Particle Motion For the equations of motion in proper time parametrization, we have x¨µ = 0 −! xµ = Aµ τ + Bµ: (11.1) Suppose we rewrite this solution in terms of t { inverting the x0 = c t equation with the initial conditions that t(τ = 0) = 0, we have c t τ = (11.2) A0 and then the rest of the equations read: c t c t c t x = A1 + B1 y = A2 + B2 z = A3 + B3; (11.3) A0 A0 A0 1 of 8 11.2. -
Voigt Transformations in Retrospect: Missed Opportunities?
Voigt transformations in retrospect: missed opportunities? Olga Chashchina Ecole´ Polytechnique, Palaiseau, France∗ Natalya Dudisheva Novosibirsk State University, 630 090, Novosibirsk, Russia† Zurab K. Silagadze Novosibirsk State University and Budker Institute of Nuclear Physics, 630 090, Novosibirsk, Russia.‡ The teaching of modern physics often uses the history of physics as a didactic tool. However, as in this process the history of physics is not something studied but used, there is a danger that the history itself will be distorted in, as Butterfield calls it, a “Whiggish” way, when the present becomes the measure of the past. It is not surprising that reading today a paper written more than a hundred years ago, we can extract much more of it than was actually thought or dreamed by the author himself. We demonstrate this Whiggish approach on the example of Woldemar Voigt’s 1887 paper. From the modern perspective, it may appear that this paper opens a way to both the special relativity and to its anisotropic Finslerian generalization which came into the focus only recently, in relation with the Cohen and Glashow’s very special relativity proposal. With a little imagination, one can connect Voigt’s paper to the notorious Einstein-Poincar´epri- ority dispute, which we believe is a Whiggish late time artifact. We use the related historical circumstances to give a broader view on special relativity, than it is usually anticipated. PACS numbers: 03.30.+p; 1.65.+g Keywords: Special relativity, Very special relativity, Voigt transformations, Einstein-Poincar´epriority dispute I. INTRODUCTION Sometimes Woldemar Voigt, a German physicist, is considered as “Relativity’s forgotten figure” [1]. -
Principles of Optics
Principles of optics Electromagnetic theory of propagation, interference and diffraction of light MAX BORN MA, Dr Phil, FRS Nobel Laureate Formerly Professor at the Universities of Göttingen and Edinburgh and EMIL WOLF PhD, DSc Wilson Professor of Optical Physics, University of Rochester, NY with contributions by A.B.BHATIA, P.C.CLEMMOW, D.GABOR, A.R.STOKES, A.M.TAYLOR, P.A.WAYMAN AND W.L.WILCOCK SEVENTH (EXPANDED) EDITION CAMBRIDGE UNIVERSITY PRESS Contents Historical introduction xxv I Basic properties of the electromagnetic field 1 1.1 The electromagnetic field 1 1.1.1 Maxwells equations 1 1.1.2 Material equations 2 1.1.3 Boundary conditions at a surface of discontinuity 4 1.1.4 The energy law of the electromagnetic field 7 1.2 The wave equation and the velocity of light 11 1.3 Scalar waves 14 1.3.1 Plane waves 15 1.3.2 Spherical waves 16 1.3.3 Harmonie waves. The phase velocity 16 1.3.4 Wave packets. The group velocity 19 1.4 Vector waves 24 1.4.1 The general electromagnetic plane wave 24 1.4.2 The harmonic electromagnetic plane wave 25 (a) Elliptic polarization 25 (b) Linear and circular polarization 29 (c) Characterization of the state of polarization by Stoltes parameters 31 1.4.3 Harmonie vector waves of arbitrary form 33 1.5 Reflection and refraction of a plane wave 38 1.5.1 The laws of reflection and refraction 38 1.5.2 Fresnel formulae 40 1.5.3 The reflectivity and transmissivity; polarization an reflection and refraction 43 1.5.4 Total reflection 49 1.6 Wave propagation in a stratified medium.