Kitplanes 2020 02.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
November 2020
November 2020 e- Water Landing, Lake Tahoe, 2020 Presidents Message Editorial Safety Lessons from 2020 PASCO OGN Project Update 2020 PASCO Scholarship Update 2020 PASCO Flight Awards 2020 1 Statement of Purpose The purpose of this Corporation shall be to initiate, sponsor, promote, and carry out plans, policies, and activities that will further the growth and development of the soaring movement in Region 11 of the Soaring Society of America. Activities will be targeted at increasing the number of soaring pilots in the region in addition to the development of soaring pilots to promote safety of flight, training in the physiology of flight, cross country and high altitude soaring and the development of competition pilots and contest personnel at the local, regional, national and international level. Current dues are $25 annually from the month after receipt of payment. PASCO is a 501c(3) not for profit corporation and contributions are tax deductible. Consider PASCO in your charitable giving plans this year! WORLD WIDE WEB ADDRESSES - REGION 11 Soaring Society of America http://www.ssa.org Pacific Soaring Council http://www.pacificsoaring.org Air Sailing Inc. http://www.airsailing.org Bay Area Soaring Associates http://www.flybasa.org Central California Soaring Club http://www.soaravenal.com Las Vegas Valley Soaring Association http://www.lvvsa.org Minden Soaring Club http://www.mindensoaringclub.com/int2/ Northern California Soaring Assoc. http://www.norcalsoaring.org/ Silverado Soaring, Inc. http://www.silveradosoaring.org/ Hollister Soaring Center https://hollistersoaringcenter.com/ SoaringNV http://www.soaringnv.com/ Williams Soaring Center http://www.williamssoaring.com/ Valley Soaring Association http://www.valleysoaring.net/ Presidents Message It has been a challenging year for everyone for many reasons and, due to the ongoing health concerns, I am sorry to report that there will not be a PASCO safety seminar / awards banquet this winter. -
State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications
Dissertations and Theses Fall 2011 State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications Lori Anne Costello Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Costello, Lori Anne, "State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications" (2011). Dissertations and Theses. 37. https://commons.erau.edu/edt/37 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATE OF THE ART OF PILOTED ELECTRIC AIRPLANES, NASA’S CENTENNIAL CHALLENGE DATA AND FUNDAMENTAL DESIGN IMPLICATIONS by Lori Anne Costello A Thesis Submitted to the Graduate Studies Office in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida Fall 2011 1 Copyright by Lori Anne Costello 2011 All Rights Reserved 2 ACKNOWLEDGEMENTS This thesis is the culmination of two years of work on the Green Flight Challenge Eco-Eagle. The Eco- Eagle and this thesis would not have been possible without countless help and inspiration from friends and family. I would like to thank Dr. Anderson for giving me the opportunity to participate in Embry-Riddle’s Green Flight Challenge Team and for supporting me and the Eco-Eagle project. Without his guidance I would not have this paper and understood as much as I now do about electric airplanes. -
Slingsby T61F Venture T MK2 Motor Glider, G-BUGV
Slingsby T61F Venture T MK2 motor glider, G-BUGV AAIB Bulletin No: 2/99 Ref: EW/G98/11/10 Category: 1.3 Aircraft Type and Registration: Slingsby T61F Venture T MK2 motor glider, G-BUGV No & Type of Engines: 1 Rollason RS MK 2 piston engine Year of Manufacture: 1978 Date & Time (UTC): 21 November 1998 at 1035 hrs Location: Enstone Airport, Oxon Type of Flight: Private (Training) Persons on Board: Crew - 2 - Passengers - None Injuries: Crew - None - Passengers - N/A Nature of Damage: Damage to the aircraft's propeller Commander's Licence: Basic Commercial Pilot's Licence with Instrument Rating Commander's Age: 27 years Commander's Flying Experience: 604 hours (of which 102 were on type) Last 90 days - 124 hours Last 28 days - 36 hours Information Source: Aircraft Accident Report Form submitted by the pilot Before permitting a recently qualified member of the flying club to fly solo in crosswind conditions, the aircraft's commander decided to fly several circuits with him until he was satisfied with his ability to cope with the conditions. As the conditions were conducive to the formation of carburettor icing, with a temperature of +5°C and a dew point of +1.6°C, particular attention was paid to the use of carburettor heat during the run-up and immediately prior to take off. The engine reportedly performed normally and carburettor heat was used during the pre-landing downwind checks and again on base leg, with its selection maintained until after the glide approach and landing, in accordance with the normal operating procedure for this aircraft. -
Glider Handbook, Chapter 2: Components and Systems
Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil. -
Exergetic, Exergoeconomic and Sustainability Assessments of Piston-Prop Aircraft Engines
Isı Bilimi ve Tekniği Dergisi, 32, 2, 133-143, 2012 J. of Thermal Science and Technology ©2012 TIBTD Printed in Turkey ISSN 1300-3615 EXERGETIC, EXERGOECONOMIC AND SUSTAINABILITY ASSESSMENTS OF PISTON-PROP AIRCRAFT ENGINES Onder ALTUNTAS*, T. Hikmet KARAKOC** and Arif HEPBASLI*** *Anadolu University, School of Civil Aviation, 26470, ESKISEHIR, [email protected] ** Anadolu University, School of Civil Aviation, 26470, ESKISEHIR, [email protected] and [email protected] *** Yaşar University, Department of Energy Systems Engineering, Faculty of Engineering, 35100 Bornova, IZMIR [email protected] and [email protected] (Geliş Tarihi: 15. 02. 2011, Kabul Tarihi: 12. 04. 2011) Abstract: In this study, the exergetic, exergoeconomic, and sustainability aspects of piston-prop aircraft engines are comprehensively reviewed. These analysis and assessment tools are applied to a four-cylinder, spark ignition, naturally aspirated and air-cooled piston-prop aircraft engine in the landing and takeoff (LTO) phases of flight operations. LTO consists of four parts: takeoff, climb out, approach, and taxi. The results of energy analysis indicate that takeoff is a phase requiring high power with a maximum work rate of 111.90 kW. Maximum fuel energy and exergy rates are calculated to be 444.30 kW and 476.51 kW, respectively. The minimum total loss is found in the taxi phase, while maximum energy and exergy efficiency values are 26.76% and 24.95% in the climb out phase, respectively. Based on the results of the cost analysis, the taxi has the maximum exergy destruction cost rate with 23.41 $/h at a fixed production and 2.96 $/h at a fixed fuel. -
Products Catalogue
2017 Products catalogue TAURUS Lukasz Laskowski Ul. Dobrzyńska 146 42-202 Czestochowa POLAND VAT: PL9372329089 Tel. ++48 601 14 97 93 mail: [email protected] [email protected] Lukasz Laskowski www.turusmodels.pl TAURUSMODELS 2017-08-17 Number: Scale: D3201 Spark plugs 14 pieces 1:32 Number: Scale: D3202 Valves with lifters for Mercedes 1:32 DIIIa Number: Scale: D3202c Valves (Conic Springs) and lifters 1:32 for Mercedes DIIIa Number: Scale: D3203 Cockpit Selector Switches for 1:32 WNW's Gotha GIV (6 pieces) Number: Scale: D3204 Spark plugs late type 1:32 Number: Scale: D3205 Ammunition Mauser 9,72 1:32 Number: Scale: D3206 Complete Timing Gear for 1:32 Mercedes DIV (can be used in WNW's Gotha) Number: Scale: D3207a Complete Timing Gear for 1:32 Mercedes DIII (easy to paint) Number: Scale: D3207b Complete Timing Gear for 1:32 Mercedes DIII (easy to assembly) Number: Scale: D3208 Oberursel UI radial engine 1:32 Kit contains: 80 high quality resin parts, wires, instruction, box. Number: Scale: D3209 Complete Timing Gear for 1:32 Mercedes DIIIa Number: Scale: D3210a Spark plugs type III 1:32 used in German radial engines 10 pieces Number: Scale: D3210b Spark plugs type III 1:32 used in German radial engines 15 pieces Number: Scale: D3211 Intake manifold nuts 1:32 8 pieces Number: Scale: D3212 Aircraft maintenance tail stand 1:32 Number: Scale: D3213 Gnome Monosoupape B-2 engine 1:32 Kit contains: 91 high quality resin parts, wires, instruction, box. Number: Scale: D3214 Spark plugs type IV 1:32 used in British radial engines 20 pieces Number: Scale: D3215 Valves with lifters for BMW DIIIa 1:32 Number: Scale: D3216 Oberursel U.III 1:32 German double-row radial engine Kit contains: 127 high quality resin parts, wires, instruction, box. -
A Publication of the Southern Museum of Flight Birmingham, Al Historic Artifacts
A PUBLICATION OF THE SOUTHERN MUSEUM OF FLIGHT BIRMINGHAM, AL WWW.SOUTHERNMUSEUMOFFLIGHT.ORG HISTORIC ARTIFACTS THE gnome type N THE FAILED VENTRAL TURRET rotary engine isitors to the museum will have the opportunity to observe a V rare defensive weapon that was in use for a short time during he Gnome rotary is essentially a WWII. The production B-25B, B-25C, B-25D, and some B-25G T standard Otto engine (a stationary models had a retractable remote control belly turret, called a single-cylinder internal combustion four ventral turret. These turrets were often removed in the field -stroke engine designed by Nikolaus because they were ineffective and Otto), with cylinders arranged radially disliked by the crews. The lower turret around a central crankshaft just like a was officially deleted in the middle of the B-25G production run. The ventral turret was operated through a periscope that caused such intense vertigo and nausea in its' user that it was rarely used. In the Pacific, the turrets were removed because monsoon rains turned airfields into mud which covered the gunsight on takeoff rendering the turret useless. Harold Maul, a B-25 crewman, described the ball turret in Eric Bergerud's book, Fire in the Sky: The Air War in the South Pacific: "The worst thing ever designed was the bottom turret of the B-25. It was the conventional radial engine, but instead stupidest bit of equipment. My God, the operator is sitting in one of having a fixed cylinder block with place getting a reverse image through a mirror. -
Aa2016-5 Aircraft Accident Investigation Report
AA2016-5 AIRCRAFT ACCIDENT INVESTIGATION REPORT PRIVATELY OWNED J A 2 0 T D June 30, 2016 The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Japan Transport Safety Board and with Annex 13 to the Convention on International Civil Aviation is to determine the causes of an accident and damage incidental to such an accident, thereby preventing future accidents and reducing damage. It is not the purpose of the investigation to apportion blame or liability. Kazuhiro Nakahashi Chairman, Japan Transport Safety Board Note: This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report. AIRCRAFT ACCIDENT INVESTIGATION REPORT CRASH DURING ATTEMPTING TO OFF-FIELD LANDING PRIVATELY OWNED, SCHEMPP-HIRTH DISCUS bT (SINGLE-SEAT MOTOR GLIDER), JA20TD URAUSU TOWN, KABATO DISTRICT, HOKKAIDO, JAPAN AT 12:36 JST, MAY 30, 2015 June 3, 2016 Adopted by the Japan Transport Safety Board Chairman Kazuhiro Nakahashi Member Toru Miyashita Member Toshiyuki Ishikawa Member Sadao Tamura Member Keiji Tanaka Member Miwa Nakanishi SYNOPSIS <Summary of the Accident> On Saturday May 30, 2015, a privately owned Schempp-Hirth Discus bT, registered JA20TD, launched by aerotow from Takikawa Skypark for navigation training and was released from the towing aircraft in a point about 13 km west-southwest of Takikawa Skypark at an altitude of about 5,300 ft. At 12:36 Japan Standard Time (JST: UTC+9 hr: unless otherwise stated all times are indicated in JST), the glider crashed into the grassland about 11 km southwest of Takikawa Skypark at an elevation of about 85 m. -
USE of ELECTRIC MOTORS in the CONTEXT of GLIDER AVIATION Zastosowanie Silników Elektrycznych W Szybownictwie
Journal of KONBiN 2021 Volume 51, Issue 2 DOI 10.2478/jok-2021-0025 Jarosław KOZUBA, Tomasz WOJNAR, Magda MROZIK, Bartosz STOŁTNY The Silesian University of Technology (Politechnika Śląska) USE OF ELECTRIC MOTORS IN THE CONTEXT OF GLIDER AVIATION Zastosowanie silników elektrycznych w szybownictwie Abstract: In sailplane aviation, I attach great importance to the achieved aerodynamic parameters due to the main idea of sailplane flights, which is the flight of a sailplane without external energy supply for staying in the air and only in favourable weather conditions, e.g. increasing thermal movements of the air. Only during take-off, external devices, such as a winch or a towing plane, can be used. Therefore, the use of a propulsion installed in sailplanes and operating only during take-off is a very convenient solution. This is a step towards facilitating the access to flying for a wider group of people due to the reduction of costs related to the take-off processes, and also increases the level of safety of sailplane flights by enabling the use of propulsion at critical moments of the flight. The study presents the current trends in the development of gliding, in particular motor gliders. Additionally, as a result of research works, the energy storage system was shown, which is the weakest element of the system, and at the same time the one with the greatest development potential. Keywords: transport, glider, electric motor, Li-POL cell Streszczenie: W lotnictwie szybowcowym dużą wagę przywiązuje się do osiąganych parametrów aerodynamicznych ze względu na główną ideę, jaką jest lot bez zewnętrznego zasilania energią do przebywania w powietrzu i tylko w sprzyjających warunkach atmosferycznych, np. -
XXXIV OSTIV CONGRESS Congress Program and Proceedings
XXXIV OSTIV CONGRESS 28 July - 3 August 2018 Hosín, Czech Republic Congress Program and Proceedings Die Deutsche Bibliothek – CIP Einheitsaufnahme Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet unter http://dnb.d-nb.de abrufbar. Rolf Radespiel, Alexander Barklage, Tim Landa (Eds.) XXXIV OSTIV Congress – Congress Program and Proceedings © 2018 ISBN 978-3-947623-07-5 Copyright notice The copyright to all contributed articles collected in this volume resides with the authors. Any reproduction – in parts or as a whole, electronically or in print – of material from within this volume requires the written consent of the author(s). Publisher of OSTIV Conference Proceedings: TU Braunschweig – Niedersächsisches Forschungszentrum für Luftfahrt Hermann-Blenk-Straße 27 • 38108 Braunschweig Tel: 0531-391-9822 • Fax: 0531-391-9804 Mail: [email protected] Internet: www.tu-braunschweig.de/nfl Reis Dijital Baskı Sistemleri Sanayi ve Ticaret Limited Şirketi Davutpaşa V.D.:7340058478 Litros Yolu 2. Matbaacılar Sitesi 1 BD 20 Topkapı, Istanbul, Turkey Tel: +90212 5015957/61-61 Internet: http://www.reisdijital.com/ Copyright Title Page Photo: Julian West Abstract The XXXIV Congress of the International Scientific and Technical Organisation for Gliding (OSTIV) is held at the site of the 35th FAI World Gliding Championships in the 18m-, 20m-, and Open Class, in Hosín, Czech Republic, from 28 July - 3 August, 2018. OSTIV Congresses address all scientific and technical aspects of soaring flight. The Congress 2018 features presentations from 10 countries worldwide. These contributions describe new knowledge in the meteorological fields of atmospheric convection and atmospheric waves. -
MAGNUS DESIGN DEFINITIONS MA-P-02 Valid As Of: 2009, Dec
AMS – Flight, d.o.o. Kavciceva 4 SI-1000 Ljubljana Slovenia Tel.: +386 45 35 14 00 www.ams-flight.si Fax: +386 45 35 14 05 E-mail: [email protected] MAGNUS DESIGN DEFINITIONS MA-P-02 Valid as of: 2009, Dec. Magnus is a two seat, side-by-side advanced light-weight airplane family. The Magnus, with its custom designed wing profile is a unique multi functional and multi purpose single engine aircraft for primary and advanced flying. The Magnus combines the unequalled advantages of a high performance motor-glider with unparalleled efficiency during powered long-range cruise flight. Because it is equipped with high-tech features such as flaperons, wing upper side effective airbrakes and a ground adjustable or variable-pitch propeller the Magnus can excel at every task pilots put it to. Magnus exploitation and handling costs are low due to the simple design solutions and high aerodynamic performances. Advanced design engineering concepts, gliders designs advantages, excellent aerodynamics and unique safety features make it the performance future orientated choice of Ultra Light- and Advanced Light Aircraft categories. Magnus and Mingus load measurements, structural dimensions, calculations and proofs of compliance are being completed by the Magnus family experienced design team. This will result in certification in category UL LTF in Germany (MTOM 472.5 kg) and in ULA categories of many European countries (MTOM 450 kg) and with no technical changes in category LSA for US of America and in coming ELSA for Europe as well (MTOM 590 kg). Magnus (13,35 m / 43,8 ft span, 80 hp engine) deliveries will start first, Mingus (10,6 m / 34.8 ft span, 100 hp engine) deliveries will continue and Maxus with its 17 m + / 55,8 ft + wing span (wing candidates: custom design, LS6-18w modified, LS4-b modified) will make first flights in the second half of the year 2011. -
Download GI MAY 2021
MAY 2021 VOLUME 14 - No 8 GLIDINGlNTERNATIONAL May 2021ANOTHER JONKER TRIUMPH 1 May 2021 VOLUME 14 - No 8 Editor: John H. Roake Manager: Janice Armstrong Correspondents: lNTERNATIONAL Aldo Cernezzi GLIDING Robert (Bob) Downe Joseph King Myles Hynde Arthur Liddington Gliding International published by: Gliding International Ltd From Offices At: 79 Fifth Ave, Tauranga, New Zealand Phone +64-7-571-4161 Office email: [email protected] Editor’s email: [email protected] The magazine’s web pages can be viewed INDEX at www.glidinginternational.com Introducing the GFW – 4 4 You can subscribe through our web page Squawk 1202 – Compulsory ? 8 Gliding International is published Viewing Thermals Now Possible 9 monthly with the exception of December German Aerospace Centre Update – Hydrogen Power 10 and January Ten issues per annum. Prince Philip (5000 P.I.C. hours) 13 Subscriptions: Bird Strikes - 30 Year Review 14 Printed Version Air Mailed: New feature From Beringer 19 1 Year: $136 ($US82) or equivalent Smithsonian Museum and the Wright Brothers 20 2 Years: $259 ($US165) or equivalent (all prices quoted in NZ Dollars) or Forget Electric Cars For Trailer Towing 24 the equivalent in your currency. Is Gliding Getting too Expensive? 26 Digital Version emailed: Coldest Day Ever Recorded 28 1 Year $86 ($US56) or equivalent Electricity, Winds and Climate Change 29 2 Years $163 ($US106) or equivalent Covid 19 Afflicted Pilots 30 (all prices quoted in NZ Dollars) or the equivalent in your currency. Free Bonus Issue DVD 31 Personal