Unified Model User Guide

Total Page:16

File Type:pdf, Size:1020Kb

Unified Model User Guide Unified Model User Guide Document Version: 2 Date of Issue: December 22, 1998 Unified Model Version: 4.4 The Meteorological Office London Road, Bracknell Berkshire, RG12 2SZ United Kingdom c Crown Copyright 1998 This document has not been published. Permission to quote from it must be obtained from the Head of Numerical Modelling at the above address. ii iii Contents List of Figures v List of Tables vi Preface vii 1 Introduction 1 1.1TheUnifiedModel........................................ 1 1.2 The History of the Unified Model . 12 2 Understanding the Unified Model 20 2.1AtmosphericPhysics....................................... 20 2.2AtmosphericDynamics...................................... 27 2.3OceanDynamicsandPhysics................................... 29 3 Code Management and Structure 33 3.1 Managing and Modifying Source Code . 33 3.2UMRoutines........................................... 39 3.3CompilationSystem........................................ 41 3.4MPPCapability.......................................... 58 3.5 Atmosphere Model Control Code . 63 4 Using the Unified Model 71 4.1 The Unified Model User Interface (UMUI) . 71 4.2GettingStarted.......................................... 81 4.3Reconfiguration.......................................... 88 4.4ChangingResolution....................................... 94 4.5AtmosphericTracers....................................... 99 4.6SelectingaNewLAMArea....................................102 iv CONTENTS 4.7ScienceOptions..........................................108 4.8 Assimilation in the Atmosphere Model . 111 4.9 Ancillary and Boundary Files . 115 4.10OceanModel...........................................123 4.11SlabModel............................................131 4.12 Atmosphere-Ocean Coupled Models . 137 4.13 OASIS Coupling Between Models . 141 4.14 Diagnostic Output (STASH) . 142 4.15ClimateMeaning.........................................147 4.16 Automatic Post-Processing for Climate Runs . 151 4.17FileUtilities............................................156 4.18Troubleshooting..........................................157 A The Portable UM 164 A.1Introduction............................................164 A.2PortingtheUM..........................................165 B The UK Met. Office UM 166 B.1FileTransfer............................................166 B.2OperationalArchives.......................................174 B.3 Obtaining Data from the ECMWF Archives . 181 Acronyms 185 References 187 v List of Figures 1.1 The main components of the Unified Model system . 2 1.2 The skill of Met Office operational global forecasts as measured by the NWP index. The index increases as the skill of the forecasts improves. It is calculated by normalising the root mean square (rms) error of the model against persistence and forming a weighted average of key forecast fields. The Unified Model was introduced into operational service in June 1991. 5 1.3 A 12 hour forecast of precipitation intensity obtained using a high resolution (17Km) regional configuration of the Unified Model (right). The observed precipitation as measured by the UK radar network is also shown (left). 5 1.4 Temperature anomaly at level 5 as analysed by FOAM . 6 1.5 A prediction of global temperature change in summer for the middle of next century, using theHadCM2coupledmodel................................... 7 1.6 Time series of winds over the equator, analysed using the stratospheric configuration of the Unified Model. The winds show a clear Quasi-Biennial Oscillation in the stratosphere and a Semi-Annual Oscillation near the stratopause. 7 1.7 The main navigation window of the UMUI. Nodes in the tree (left) may be expanded and collapsed. In this example, the atmospheric model node is expanded. Selected nodes are opened up to display windows (right). 8 1.8 A regional integration domain and grid. Initial data may be interpolated onto such domains viathereconfigurationmodule................................... 9 4.1 A simple example input panel from the UMUI showing entry boxes, a check box, a table widget and a pair of radiobuttons. The three buttons at the bottom of the window are common to all panels. ‘Help’ brings up local help for the window, ‘Close’ and ‘Abandon’ close the window with or without saving changes. 74 4.2FilterPop-UpWindow...................................... 83 4.3CopyWindow........................................... 83 vi List of Tables 1.1 Global configurations of the Unified Model used for production and research at the Met Office 2 1.2UnifiedModelVersions...................................... 13 2.1 Principle differences between the UKMO land surface scheme and MOSES I . 26 4.1UnifiedModelSections......................................109 4.2FileUtilities............................................156 vii Preface This document is the User Guide for the Unified Model (UM). It gives basic information on how to use the model and includes references to relevant UM Documentation Papers (UMDPs) where more detailed information is required. Chapter 1 provides the introduction. It gives an overview description of the UM and its development history. Chapter 2 contains information describing various aspects of the Unified Model. It is intended to help explain how the UM works and describe some of its features but does not explain how to use it. Chapter 3 contains information about the UM source code. This includes information on its structure, management and compila- tion. The main part of the User Guide is chapter 4. It contains instructions on how to use various parts of the UM and how to perform particular tasks. The User Guide is intended for use both by users at the Met. Office and external users of the UM. It also contains additional information relating to the particular set up at the Met. Office. Where information is specific to one set of users it has been put into the appropriate appendix (appendix A for the Portable UM and appendix B for Met. Office specific information). This document was written in LATEX and is available in both HTML and PostScript forms. The HTML form contains links to allow easy navigation around the document and also out to external documents (such as UMDPs, source code listings, etc). External users will find that some of these links will not work since they are specific to the Met. Office or have not been configured. If you have any contributions, corrections, or any other feedback concerning this document please contact the editor by emailing to [email protected]. viii CHAPTER 0. PREFACE 1 Chapter 1 Introduction 1.1 The Unified Model Author: Anette Van der Wal, Last Updated: 1 Jun 98 1.1.1 Overview The Unified Model is the name given to the suite of atmospheric and oceanic numerical modelling software developed and used at the Met Office. The formulation of the model supports global and regional domains and is applicable to a wide range of temporal and spatial scales that allow it to be used for both numerical weather prediction and climate modelling as well as a variety of related research activities. The Unified Model was introduced into operational service in 1991. Since then, both its formulation and capabilities have been substantially enhanced. The modelling system is designed so that it can be run in atmosphere-only, ocean-only or in coupled mode. A number of sub-models are also available which may be used in place of or in addition to the main models. These include a simplified model of the ocean, known as the slab model, and models to simulate the thermo- dynamic and dynamic motion of sea ice. A typical run of the system consists of an optional period of data assimilation followed by a prediction phase. Forecasts from a few hours to a few days ahead are required for numerical weather prediction while for climate modelling the prediction phase may be for tens, hundreds or even thousands of years. The choice of horizontal and vertical resolution is arbitrary and may be varied by the user. In practice, the resolution is constrained by the available computing power and a number of stan- dard resolutions tend to be used (see table 1.1). A separate reconfiguration module allows model data to be optionally interpolated to a new grid or area prior to the start of a run. This applies to the atmosphere only. A range of ancillary data may be incorporated into the model as a run progresses. The options range from lat- eral boundary forcing information for regional configurations to the periodic updating of fields such as ozone concentration to allow for the effects of seasonal variations, and surface forcing for ocean-only configurations. Prognostic, diagnostic and derived fields of data may be output on a time-step by time-step basis for inspection and further analysis, or as forcing information for sub-models such as a sea-state prediction model. Time- meaned or accumulated quantities may also be specified. The wide range of options available within the Unified Model system means that a large number of parameters need to be defined in order to specify and control a particular model configuration. A user-friendly X-Windows based user interface has been developed to make this task much easier. By use of interactive windows, a user may control parameters such as model resolution, the date and time of the initial data, the length of forecast, the choice of output diagnostics and so on. The user may also control the scientific content of the model by selecting from a library of alternative representations of the physical processes. 2 CHAPTER 1. INTRODUCTION Application Status Version Resolution Grid Levels
Recommended publications
  • On the Uses of a New Linear Scheme for Stratospheric Methane in Global Models: Water Source, Transport Tracer and Radiative Forc
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 479–523, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/479/2012/ Chemistry doi:10.5194/acpd-12-479-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing B. M. Monge-Sanz1, M. P. Chipperfield1, A. Untch2, J.-J. Morcrette2, A. Rap1, and A. J. Simmons2 1Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, UK 2European Centre for Medium-Range Weather Forecasts, Reading, UK Received: 10 October 2011 – Accepted: 5 November 2011 – Published: 6 January 2012 Correspondence to: B. M. Monge-Sanz ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 479 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract A new linear parameterisation for stratospheric methane (CoMeCAT) has been devel- oped and tested. The scheme is derived from a 3-D full chemistry transport model (CTM) and tested within the same chemistry model itself, as well as in an independent 5 general circulation model (GCM). The new CH4/H2O scheme is suitable for any global model and here is shown to provide realistic profiles in the 3-D TOMCAT/SLIMCAT CTM and in the ECMWF (European Centre for Medium-Range Weather Forecasts) GCM.
    [Show full text]
  • University of Reading Boundary-Layer Type Classification and Pollutant Mixing
    University of Reading Department of Meteorology Boundary-layer type classification and pollutant mixing Natalie Jane Harvey A thesis submitted for the degree of Doctor of Philosophy March 2013 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Natalie Harvey Page ii Abstract In the atmospheric boundary layer the vertical distribution of heat, momentum, water and pollutants is controlled by mixing that is turbulent. This complex mixing is param- eterized in weather forecast and climate models. But are the parameterizations imple- mented in these models representative of the real world? For the first time, Doppler lidar and sonic anemometer data are used to objectively classify the observed boundary layer into nine different types based on the Met Office scheme. Examples of these types are decoupled stratocumulus cloud, cumulus capped and stable with no turbulent cloud. This method is applied to three years of data from the Chilbolton Observatory, UK, to create a climatology of boundary-layer type. This climatology exhibits clear seasonal and diurnal cycles with the most common type over the three years being a cloud-free stable boundary layer. The decoupled stratocumulus type and the cumulus cloud under a stratocumulus layer type are diagnosed 10.3% and 1.0% of the period respectively. This new observationally based boundary layer classification is used to evaluate the boundary-layer type diagnosed by the 4 km and 12 km resolution versions of the Met Office Unified Model. The model is found to predict too many decoupled stratocumulus boundary layers by a factor of 1.8, in both the stable and unstable regime.
    [Show full text]
  • Effects of Stratospheretroposphere Chemistry Coupling on Tropospheric Ozone
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D00M04, doi:10.1029/2009JD013515, 2010 Effects of stratosphere‐troposphere chemistry coupling on tropospheric ozone Wenshou Tian,1,2 Martyn P. Chipperfield,2 David S. Stevenson,3 Richard Damoah,3,4 Sandip Dhomse,2 Anu Dudhia,5 Hugh Pumphrey,3 and Peter Bernath6 Received 6 November 2009; revised 23 March 2010; accepted 13 April 2010; published 17 September 2010. [1] A new, computationally efficient coupled stratosphere‐troposphere chemistry‐climate model (S/T‐CCM) has been developed based on three well‐documented components: a64‐level general circulation model from the UK Met Office Unified Model, the tropospheric chemistry transport model (STOCHEM), and the UMSLIMCAT stratospheric chemistry module. This newly developed S/T‐CCM has been evaluated with various observations, and it shows good performance in simulating important chemical species and their interdependence in both the troposphere and stratosphere. The modeled total column ozone agrees well with Total Ozone Mapping Spectrometer observations. Modeled ozone profiles in the upper troposphere and lower stratosphere are significantly improved compared to runs with the stratospheric chemistry and tropospheric chemistry models alone, and they are in good agreement with Michelson Interferometer for Passive Atmospheric Sounding satellite ozone profiles. The observed CO tape recorder is also successfully captured by the new CCM, and ozone‐CO correlations are in accordance with Atmospheric Chemistry Experiment observations. However, because of limitations in vertical resolution, intrusion of CO‐rich air in the stratosphere from the mesosphere could not be simulated in the current version of S/T‐CCM. Additionally, the simulated stratosphere‐to‐troposphere ozone flux, which controls upper tropospheric OH and O3 concentrations, is found to be more realistic in the new coupled model compared to STOCHEM.
    [Show full text]
  • Assimila Blank
    NERC NERC Strategy for Earth System Modelling: Technical Support Audit Report Version 1.1 December 2009 Contact Details Dr Zofia Stott Assimila Ltd 1 Earley Gate The University of Reading Reading, RG6 6AT Tel: +44 (0)118 966 0554 Mobile: +44 (0)7932 565822 email: [email protected] NERC STRATEGY FOR ESM – AUDIT REPORT VERSION1.1, DECEMBER 2009 Contents 1. BACKGROUND ....................................................................................................................... 4 1.1 Introduction .............................................................................................................. 4 1.2 Context .................................................................................................................... 4 1.3 Scope of the ESM audit ............................................................................................ 4 1.4 Methodology ............................................................................................................ 5 2. Scene setting ........................................................................................................................... 7 2.1 NERC Strategy......................................................................................................... 7 2.2 Definition of Earth system modelling ........................................................................ 8 2.3 Broad categories of activities supported by NERC ................................................. 10 2.4 Structure of the report ...........................................................................................
    [Show full text]
  • Review of the Global Models Used Within Phase 1 of the Chemistry–Climate Model Initiative (CCMI)
    Geosci. Model Dev., 10, 639–671, 2017 www.geosci-model-dev.net/10/639/2017/ doi:10.5194/gmd-10-639-2017 © Author(s) 2017. CC Attribution 3.0 License. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI) Olaf Morgenstern1, Michaela I. Hegglin2, Eugene Rozanov18,5, Fiona M. O’Connor14, N. Luke Abraham17,20, Hideharu Akiyoshi8, Alexander T. Archibald17,20, Slimane Bekki21, Neal Butchart14, Martyn P. Chipperfield16, Makoto Deushi15, Sandip S. Dhomse16, Rolando R. Garcia7, Steven C. Hardiman14, Larry W. Horowitz13, Patrick Jöckel10, Beatrice Josse9, Douglas Kinnison7, Meiyun Lin13,23, Eva Mancini3, Michael E. Manyin12,22, Marion Marchand21, Virginie Marécal9, Martine Michou9, Luke D. Oman12, Giovanni Pitari3, David A. Plummer4, Laura E. Revell5,6, David Saint-Martin9, Robyn Schofield11, Andrea Stenke5, Kane Stone11,a, Kengo Sudo19, Taichu Y. Tanaka15, Simone Tilmes7, Yousuke Yamashita8,b, Kohei Yoshida15, and Guang Zeng1 1National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand 2Department of Meteorology, University of Reading, Reading, UK 3Department of Physical and Chemical Sciences, Universitá dell’Aquila, L’Aquila, Italy 4Environment and Climate Change Canada, Montréal, Canada 5Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland 6Bodeker Scientific, Christchurch, New Zealand 7National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA 8National Institute of Environmental Studies (NIES), Tsukuba, Japan 9CNRM UMR 3589, Météo-France/CNRS,
    [Show full text]
  • The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 Configurations
    The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K. and Zerroukat, M. (2019) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development, 12 (5). pp. 1909-1963. ISSN 1991-9603 doi: https://doi.org/10.5194/gmd-12-1909- 2019 Available at http://centaur.reading.ac.uk/83821/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.5194/gmd-12-1909-2019 Publisher: EGU All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Geosci. Model Dev., 12, 1909–1963, 2019 https://doi.org/10.5194/gmd-12-1909-2019 © Author(s) 2019.
    [Show full text]
  • On the Uses of a New Linear Scheme for Stratospheric Methane in Global Models: Water Source, Transport Tracer and Radiative Forcing
    This is a repository copy of On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/76980/ Version: Published Version Article: Monge-Sanz, BM, Chipperfield, MP, Untch, A et al. (3 more authors) (2013) On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing. Atmospheric Chemistry and Physics, 13 (18). 9641 - 9660. ISSN 1680-7316 https://doi.org/10.5194/acp-13-9641-2013 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Atmos. Chem. Phys., 13, 9641–9660, 2013 Atmospheric Open Access www.atmos-chem-phys.net/13/9641/2013/ doi:10.5194/acp-13-9641-2013 Chemistry © Author(s) 2013.
    [Show full text]
  • The New Hadley Centre Climate Model (Hadgem1): Evaluation of Coupled Simulations
    1APRIL 2006 J OHNS ET AL. 1327 The New Hadley Centre Climate Model (HadGEM1): Evaluation of Coupled Simulations T. C. JOHNS,* C. F. DURMAN,* H. T. BANKS,* M. J. ROBERTS,* A. J. MCLAREN,* J. K. RIDLEY,* ϩ C. A. SENIOR,* K. D. WILLIAMS,* A. JONES,* G. J. RICKARD, S. CUSACK,* W. J. INGRAM,# M. CRUCIFIX,* D. M. H. SEXTON,* M. M. JOSHI,* B.-W. DONG,* H. SPENCER,@ R. S. R. HILL,* J. M. GREGORY,& A. B. KEEN,* A. K. PARDAENS,* J. A. LOWE,* A. BODAS-SALCEDO,* S. STARK,* AND Y. SEARL* *Met Office, Exeter, United Kingdom ϩNIWA, Wellington, New Zealand #Met Office, Exeter, and Department of Physics, University of Oxford, Oxford, United Kingdom @CGAM, University of Reading, Reading, United Kingdom &Met Office, Exeter, and CGAM, University of Reading, Reading, United Kingdom (Manuscript received 30 May 2005, in final form 9 December 2005) ABSTRACT A new coupled general circulation climate model developed at the Met Office’s Hadley Centre is pre- sented, and aspects of its performance in climate simulations run for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) documented with reference to previous models. The Hadley Centre Global Environmental Model version 1 (HadGEM1) is built around a new atmospheric dynamical core; uses higher resolution than the previous Hadley Centre model, HadCM3; and contains several improvements in its formulation including interactive atmospheric aerosols (sulphate, black carbon, biomass burning, and sea salt) plus their direct and indirect effects. The ocean component also has higher resolution and incorporates a sea ice component more advanced than HadCM3 in terms of both dynamics and thermodynamics.
    [Show full text]
  • The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 Configurations
    The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open Access Walters, D., Brooks, M., Boutle, I., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J., Willett, M., Woolnough, S. and Xavier, P. (2017) The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model Development, 10 (4). pp. 1487-1520. ISSN 1991-9603 doi: https://doi.org/10.5194/gmd-10-1487-2017 Available at http://centaur.reading.ac.uk/69108/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.5194/gmd-10-1487-2017 Publisher: European Geosciences Union All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Geosci.
    [Show full text]
  • Technical Manual for PRECIS
    Technical Manual for PRECIS The Met Office Hadley Centre regional climate modelling system Version 2.0.0 www.metoffice.gov.uk/precis Simon Wilson, David Hassell, David Hein, Changgui Wang, Simon Tucker Richard Jones and Ruth Taylor November 16, 2015 Contents 1 Introduction 11 1.1 Background .............................. 11 1.2 Objectivesandstructureofthemanual . 12 2 Hardware, operating system and software environment 13 2.1 Recommended Hardware Configurations . 13 2.2 Multi-processorsystems . 14 2.3 InstallationofLinux ......................... 14 2.4 Compilers ............................... 16 2.5 System setup before installing PRECIS . 17 3 PRECIS software and installation 19 3.1 Introduction.............................. 19 3.2 Disklayout .............................. 20 3.3 Main steps in installation process . 21 3.4 Installation of PRECIS software and data . 22 3.5 InstallationofMetOfficedata . 26 3.5.1 Boundary data supplied on hard drive . 26 3.6 Installation verification . 28 3.7 InstallationofCDAT ......................... 29 4 Experimental design and setup 30 4.1 Experimentaldesign ......................... 30 4.1.1 Regional climate model . 30 2 4.1.2 Choice of driving model and forcing scenario . 30 4.1.3 CMIP5 Driving GCMs and Representative Concentration Pathways ........................... 37 4.1.4 Simulationlength. 40 4.1.5 Initial condition ensembles . 41 4.1.6 Choice of land surface scheme . 42 4.1.7 Outputdata.......................... 42 4.1.8 Spinup............................. 42 4.1.9 Choice of region . 43 4.1.10 Land-seamask ........................ 43 4.1.11 Altitude ............................ 45 4.1.12 Altitude of inland waters . 45 4.1.13 Soil and land cover . 45 4.1.14 RCM calendar and clock . 46 4.1.15 RCM Resolution . 46 4.1.16 Outputformat .......................
    [Show full text]
  • (Hadgem1). Part I: Model Description and Global Climatology
    1274 JOURNAL OF CLIMATE VOLUME 19 The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology G. M. MARTIN,M.A.RINGER,V.D.POPE,A.JONES,C.DEARDEN, AND T. J. HINTON Hadley Centre for Climate Prediction and Research, Met Office, Exeter, United Kingdom (Manuscript received 28 April 2005, in final form 28 July 2005) ABSTRACT The atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is described and an assessment of its mean climatology presented. HadGEM1 includes substantially improved representations of physical processes, increased functionality, and higher resolution than its predecessor, the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). Major devel- opments are the use of semi-Lagrangian instead of Eulerian advection for both dynamical and tracer fields; new boundary layer, gravity wave drag, microphysics, and sea ice schemes; and major changes to the convection, land surface (including tiled surface characteristics), and cloud schemes. There is better cou- pling between the atmosphere, land, ocean, and sea ice subcomponents and the model includes an inter- active aerosol scheme, representing both the first and second indirect effects. Particular focus has been placed on improving the processes (such as clouds and aerosol) that are most uncertain in projections of climate change. These developments lead to a significantly more realistic simulation of the processes represented, the most notable improvements being in the hydrological cycle, cloud radiative properties, the boundary layer, the tropopause structure, and the representation of tracers. 1. Introduction Lagrangian dynamical core, which has recently been implemented in the Met Office’s operational forecast Advances in our understanding of the climate sys- models.
    [Show full text]
  • Unified Model Documentation Paper No. 84: United Kingdom Chemistry and Aerosol (UKCA) Technical Description Metum Version
    Unified Model Documentation Paper No. 84: United Kingdom Chemistry and Aerosol (UKCA) Technical Description MetUM Version 8.4 N. Luke Abraham2, Alexander T. Archibald2, Nicolas Bellouin1, Olivier Boucher1, Peter Braesicke2, Andrew Bushell1, Ken Carslaw3, Bill Collins1, Mohit Dalvi1, Kathyrn Emmerson3, Gerd Folberth1, Jim Haywood1, Colin Johnson1, Zak Kipling4, Helen Macintyre3, Graham Mann3, Paul Telford2, Joonas Merikanto3, Olaf Morgenstern5, Fiona O’Connor1, Carlos Ord´o˜nez1, Scott Osprey4, Kirsty Pringle3, John Pyle2, Jamie Rae1, Carly Reddington3, Nicholas Savage1, Dominick Spracklen3, Philip Stier4, Rosalind West4 1Met Office, FitzRoy Road, Exeter, EX1 3PB, UK 2National Centre for Atmospheric Science, University of Cambridge, UK 3National Centre for Atmospheric Science, School of Earth and Environment, University of Leeds, UK 4Oxford University, Atmospheric, Oceanic, and Planetary Physics, UK 5National Institute of Water and Atmospheric Research, Lauder, New Zealand c Crown Copyright 2012 ° This document has not been published. Permission to quote from it must be obtained from the Met Office IPR manager at the above address. 1 Contents 1 Introduction 5 2 Prognostic and diagnostic variables 5 3 Interface with UM Atmosphere 6 3.1 Interfacecode...................................... 6 3.2 Error handling and checking . 7 4 Chemical schemes 7 4.1 Standard Tropospheric Chemistry . 8 4.2 Tropospheric chemistry with parameterised Isoprene scheme . 10 4.3 Chemistry for Regional Air Quality (RAQ) . 10 4.4 Stratospheric Chemistry . 11 4.5 Chemistry for stratosphere and troposphere (CheST) . 12 4.6 Heterogeneous chemistry for the troposphere . 15 5 Aerosol Chemistry 16 5.1 Tropospheric aerosol chemistry for Newton-Raphson solver . 16 5.1.1 Gas and Aqueous phase Chemistry .
    [Show full text]