(Hadgem1). Part I: Model Description and Global Climatology

Total Page:16

File Type:pdf, Size:1020Kb

(Hadgem1). Part I: Model Description and Global Climatology 1274 JOURNAL OF CLIMATE VOLUME 19 The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology G. M. MARTIN,M.A.RINGER,V.D.POPE,A.JONES,C.DEARDEN, AND T. J. HINTON Hadley Centre for Climate Prediction and Research, Met Office, Exeter, United Kingdom (Manuscript received 28 April 2005, in final form 28 July 2005) ABSTRACT The atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is described and an assessment of its mean climatology presented. HadGEM1 includes substantially improved representations of physical processes, increased functionality, and higher resolution than its predecessor, the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). Major devel- opments are the use of semi-Lagrangian instead of Eulerian advection for both dynamical and tracer fields; new boundary layer, gravity wave drag, microphysics, and sea ice schemes; and major changes to the convection, land surface (including tiled surface characteristics), and cloud schemes. There is better cou- pling between the atmosphere, land, ocean, and sea ice subcomponents and the model includes an inter- active aerosol scheme, representing both the first and second indirect effects. Particular focus has been placed on improving the processes (such as clouds and aerosol) that are most uncertain in projections of climate change. These developments lead to a significantly more realistic simulation of the processes represented, the most notable improvements being in the hydrological cycle, cloud radiative properties, the boundary layer, the tropopause structure, and the representation of tracers. 1. Introduction Lagrangian dynamical core, which has recently been implemented in the Met Office’s operational forecast Advances in our understanding of the climate sys- models. In addition, continuing research into climate tem, together with the need to reduce the uncertainties processes has yielded a number of new physical param- associated with predictions of future climate change, eterizations, improving the representation of these pro- inevitably mean that global models will need to repre- cesses and adding new functionality to the model. Fur- sent the physical processes that determine climate with thermore, increases in computing resources have al- increasing levels of complexity. The development of the lowed us to increase the horizontal and vertical Met Office’s Hadley Centre Global Environmental resolutions in both the atmosphere and ocean com- Model (HadGEM) represents a major step in this di- pared to our previous model, the Third Hadley Centre rection, in which greater emphasis is placed on the in- Coupled Ocean–Atmosphere General Circulation teractions between climate, chemistry, and ecosystems. Model (HadCM3). Taken together, these develop- HadGEM1 marks the first stage of this process, which ments mean that HadGEM1 is thus very different from will eventually result in a suite of models incorporating its predecessor. many different subcomponents. Climate model development carries with it the re- A key aspect of our strategy is for a unified model quirement for continuing evaluation of all aspects of (UM), used for both numerical weather prediction and the simulated climate (e.g., the mean climatology, spa- climate modeling. It has therefore been a particular aim tial and temporal variability, and extreme events) to- in building HadGEM1 to incorporate the new semi- gether with a thorough investigation of model system- atic errors. In Part I of this paper we evaluate the mean climatology of the atmospheric component of Corresponding author address: Dr. G. M. Martin, Hadley Cen- tre for Climate Prediction and Research, Met Office, FitzRoy HadGEM1 and highlight the most important new fea- Road, Exeter EX1 3PB, United Kingdom. tures of the model. In Part II (Ringer et al. 2006) we E-mail: [email protected] assess several aspects of the global variability and re- JCLI3636 1APRIL 2006 MARTIN ET AL. 1275 gional climate. These include model energetics, North- monotone treatment of tracer transport; predictor–cor- ern Hemisphere storm tracks and blocking activity, syn- rector implementation of a two-time-level semi-implicit optic variability over Europe, tropical waves and the time integration scheme; and better geostrophic adjust- Madden–Julian oscillation, the Asian summer mon- ment properties, bringing better balance (and reduced soon, and the quasi-biennial oscillation (QBO). time step dependence) to the coupling with physical The purpose of this paper is to focus on key aspects parameterizations, which now calculate increments in of the model atmosphere in order to provide informa- parallel based on balanced states rather than in se- tion that will help the scientific community to interpret quence. The new dynamical core brings the capability studies and predictions made using HadGEM1 within to run at much higher resolution in the future without the context of an understanding of its limitations and the need for further major revisions to the dynamics sensitivities. A detailed analysis of changes in model itself. HadGEM1 is thus one of the few fully coupled fields compared with the previous Hadley Centre models running without flux correction to use semi- model, HadCM3, and of the impacts of increasing hori- Lagrangian dynamics to advect the dynamical fields. zontal resolution and coupling between atmosphere Other examples are described in Douville et al. (2002) and ocean models, is given in Martin et al. (2004). A and Lazar et al. (2005), while models such as that de- paper by Johns et al. (2006, hereafter JOH) focuses on scribed in Kiehl et al. (1998) use such schemes solely to aspects of the coupled model such as sea surface tem- advect moisture. perature and salinity, ocean circulation, heat transport, The model uses the Arakawa-C grid in which the sea ice distribution, the El Niño–Southern Oscillation, zonal and meridional wind components are staggered cloud–climate interactions, and climate sensitivity, as as well as the momentum and thermodynamic vari- well as considering the overall skill of the model against ables. This arrangement has the best geostrophic ad- HadCM3. justment properties overall for atmospheric flows and The rest of this paper is arranged as follows: section tends to work better with semi-implicit time schemes 2 provides a description of the major new features of (Davies et al. 2005). The previous model, HadCM3, the atmospheric component of HadGEM1; section 3 used a resolution typically adopted in other climate describes the experiments performed and the datasets models, namely 2.5° latitude by 3.75° longitude (usually used for the model evaluation; section 4 provides an referred to as “N48”). HadGEM1 uses double this reso- overall statistical assessment of the model; section 5 lution in the atmosphere, that is, 1.25° latitude by 1.875° presents a more detailed assessment of the model’s cli- longitude (“N96”). The higher resolution has been matology compared to its predecessor, HadCM3; and shown in previous model versions to improve some as- section 6 provides a summary of the most important pects of the model’s climatology and its variability by results and conclusions. resolving smaller-scale features and improving the rep- resentation of dynamics (Pope and Stratton 2002). However, it can also reveal compensating errors in the 2. Model description model and may lead to degradation in some model fields while others improve. It is therefore important to The major differences between HadGEM1 and evaluate the benefits of higher resolution against the HadCM3 are summarized in Table 1. This section pre- increased cost of the simulations. Although most of the sents an overview of the most important new features results shown in this paper come from HadGEM1 at of the model’s atmospheric component. A full descrip- N96 resolution, we have compared HadGEM1 runs at tion of the changes to the ocean model is provided in both resolutions with those from HadCM3 in order to JOH. separate resolution effects from those of changing the model formulation. The new model runs on a Charney–Phillips vertical a. Dynamical core, configuration, and resolution grid in which the momentum and thermodynamic vari- The new dynamical core is described by Davies et al. ables are staggered. This avoids having undesirable (2005). It is a nonhydrostatic, fully compressible, deep computational modes and has more accurate normal atmosphere formulation using a terrain-following, modes. The latter avoids the possibility of oscillations height-based vertical coordinate. It includes the follow- across atmospheric boundaries such as subsidence in- ing features: semi-Lagrangian advection of all prognos- versions and the tropopause. The vertical resolution is tic variables except density, permitting relatively long twice that of HadCM3 and the model top extends to time steps (the model currently uses a time step of 30 over 39 km in height. The vertical levels are defined in min) to be used at high resolution; a conservative and Table 2. 1276 JOURNAL OF CLIMATE VOLUME 19 TABLE 1. Summary of HadCM3 and HadGEM1 configurations. HadCM3 HadGEM1 Atmospheric grid Arakawa-B grid Arakawa-C grid Hydrostatic Yes No Horizontal resolution 2.5° latitude ϫ 3.75° longitude 1.25° latitude ϫ 1.875° longitude Vertical resolution 19 levels; hybrid pressure; Lorenz grid 38 levels; hybrid height; terrain-following near bottom (atmosphere) boundary;
Recommended publications
  • Western Europe Is Warming Much Faster Than Expected
    Clim. Past, 5, 1–12, 2009 www.clim-past.net/5/1/2009/ Climate © Author(s) 2009. This work is distributed under of the Past the Creative Commons Attribution 3.0 License. Western Europe is warming much faster than expected G. J. van Oldenborgh1, S. Drijfhout1, A. van Ulden1, R. Haarsma1, A. Sterl1, C. Severijns1, W. Hazeleger1, and H. Dijkstra2 1KNMI (Koninklijk Nederlands Meteorologisch Instituut), De Bilt, The Netherlands 2Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands Received: 28 July 2008 – Published in Clim. Past Discuss.: 29 July 2008 Revised: 22 December 2008 – Accepted: 22 December 2008 – Published: 21 January 2009 Abstract. The warming trend of the last decades is now so by Regional Climate models (RCMs) do not deviate much strong that it is discernible in local temperature observations. from GCMs, as the prescribed SST and boundary condition This opens the possibility to compare the trend to the warm- determine the temperature to a large extent (Lenderink et al., ing predicted by comprehensive climate models (GCMs), 2007). which up to now could not be verified directly to observations By now, global warming can be detected even on the grid on a local scale, because the signal-to-noise ratio was too point scale. In this paper we investigate the high tempera- low. The observed temperature trend in western Europe over ture trends observed in western Europe over the last decades. the last decades appears much stronger than simulated by First we compare these with the trends expected on the basis state-of-the-art GCMs. The difference is very unlikely due of climate model experiments.
    [Show full text]
  • Climate Models and Their Evaluation
    8 Climate Models and Their Evaluation Coordinating Lead Authors: David A. Randall (USA), Richard A. Wood (UK) Lead Authors: Sandrine Bony (France), Robert Colman (Australia), Thierry Fichefet (Belgium), John Fyfe (Canada), Vladimir Kattsov (Russian Federation), Andrew Pitman (Australia), Jagadish Shukla (USA), Jayaraman Srinivasan (India), Ronald J. Stouffer (USA), Akimasa Sumi (Japan), Karl E. Taylor (USA) Contributing Authors: K. AchutaRao (USA), R. Allan (UK), A. Berger (Belgium), H. Blatter (Switzerland), C. Bonfi ls (USA, France), A. Boone (France, USA), C. Bretherton (USA), A. Broccoli (USA), V. Brovkin (Germany, Russian Federation), W. Cai (Australia), M. Claussen (Germany), P. Dirmeyer (USA), C. Doutriaux (USA, France), H. Drange (Norway), J.-L. Dufresne (France), S. Emori (Japan), P. Forster (UK), A. Frei (USA), A. Ganopolski (Germany), P. Gent (USA), P. Gleckler (USA), H. Goosse (Belgium), R. Graham (UK), J.M. Gregory (UK), R. Gudgel (USA), A. Hall (USA), S. Hallegatte (USA, France), H. Hasumi (Japan), A. Henderson-Sellers (Switzerland), H. Hendon (Australia), K. Hodges (UK), M. Holland (USA), A.A.M. Holtslag (Netherlands), E. Hunke (USA), P. Huybrechts (Belgium), W. Ingram (UK), F. Joos (Switzerland), B. Kirtman (USA), S. Klein (USA), R. Koster (USA), P. Kushner (Canada), J. Lanzante (USA), M. Latif (Germany), N.-C. Lau (USA), M. Meinshausen (Germany), A. Monahan (Canada), J.M. Murphy (UK), T. Osborn (UK), T. Pavlova (Russian Federationi), V. Petoukhov (Germany), T. Phillips (USA), S. Power (Australia), S. Rahmstorf (Germany), S.C.B. Raper (UK), H. Renssen (Netherlands), D. Rind (USA), M. Roberts (UK), A. Rosati (USA), C. Schär (Switzerland), A. Schmittner (USA, Germany), J. Scinocca (Canada), D. Seidov (USA), A.G.
    [Show full text]
  • The Lagrangian Chemistry and Transport Model ATLAS: Validation of Advective Transport and Mixing
    Geosci. Model Dev., 2, 153–173, 2009 www.geosci-model-dev.net/2/153/2009/ Geoscientific © Author(s) 2009. This work is distributed under Model Development the Creative Commons Attribution 3.0 License. The Lagrangian chemistry and transport model ATLAS: validation of advective transport and mixing I. Wohltmann and M. Rex Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany Received: 25 June 2009 – Published in Geosci. Model Dev. Discuss.: 3 July 2009 Revised: 15 September 2009 – Accepted: 2 October 2009 – Published: 2 November 2009 Abstract. We present a new global Chemical Transport In the context of this paper, numerical diffusion is defined Model (CTM) with full stratospheric chemistry and La- as any process that is triggered by the model calculations grangian transport and mixing called ATLAS (Alfred We- and behaves like a diffusive process acting on the chemical gener InsTitute LAgrangian Chemistry/Transport System). species in the model. Typically, numerical diffusion will be Lagrangian (trajectory-based) models have several important spurious and unrealistic, e.g. present in every grid cell with advantages over conventional Eulerian (grid-based) models, the same magnitude. We do not consider processes as nu- including the absence of spurious numerical diffusion, ef- merical diffusion here which are deliberately introduced into ficient code parallelization and no limitation of the largest the model, e.g. to mimic the observed diffusion. Eulerian ap- time step by the Courant-Friedrichs-Lewy criterion. The ba- proaches suffer from numerical diffusion because they con- sic concept of transport and mixing is similar to the approach tain an advection step that transfers information between dif- in the commonly used CLaMS model.
    [Show full text]
  • ESM-Tools Version 4.0: a Modular Infrastructure for Stand-Alone
    ESM-Tools Version 4.0: A modular infrastructure for stand-alone and coupled Earth System Modelling (ESM) Dirk Barbi1, Nadine Wieters1, Paul Gierz1, Fatemeh Chegini1, 3, Sara Khosravi2, and Luisa Cristini1 1Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany 2Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany 3Max Planck Institute for Meteorology, Hamburg, Germany Correspondence: Luisa Cristini ([email protected]) Abstract. Earth system and climate modelling involves the simulation of processes on a wide range of scales and within and across various compartments of the Earth system. In practice, component models are often developed independently by different research groups, adapted by others to their special interests, and then combined using a dedicated coupling software. This 5 procedure not only leads to a strongly growing number of available versions of model components and coupled setups, but also to model- and HPC-system dependent ways of obtaining, configuring, building, and operating them. Therefore, implementing these Earth System Models (ESMs) can be challenging and extremely time consuming, especially for less experienced mod- ellers, or scientists aiming to use different ESMs as in the case of inter-comparison projects. To assist researchers and modellers by reducing avoidable complexity, we developed the ESM-Tools software, which provides 10 a standard way for downloading, configuring, compiling, running and monitoring different models on a variety of High Perfor- mance Computing (HPC) systems. It should be noted that the ESM-Tools are equally applicable and helpful for stand-alone as for coupled models. In fact, the ESM-Tools are used as standard compile and runtime infrastructure for FESOM2, and currently also applied for ECHAM and ICON standalone simulations.
    [Show full text]
  • Improving Climate Model Accuracy by Exploring Parameter Space with an O(105) Member
    Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-198 Manuscript under review for journal Geosci. Model Dev. Discussion started: 23 October 2018 c Author(s) 2018. CC BY 4.0 License. 1 Improving climate model accuracy by exploring parameter space with an O(105) member 2 ensemble and emulator 3 Sihan Li1,2, David E. Rupp3, Linnia Hawkins3,6, Philip W. Mote3,6, Doug McNeall4, Sarah 4 N. Sparrow2, David C. H. Wallom2, Richard A. Betts4,5, Justin J. Wettstein6,7,8 5 1Environmental Change Institute, School of Geography and the Environment, University 6 of Oxford, Oxford, United Kingdom 7 2Oxford e-Research Centre, University of Oxford, Oxford, United Kingdom 8 3Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric 9 Science, Oregon State University, Corvallis, Oregon 10 4Met Office Hadley Centre, FitzRoy Road, Exeter, United Kingdom 11 5College of Life and Environmental Sciences, University of Exeter, Exeter, UK 12 6College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, 13 Oregon 14 7Geophysical Institute, University of Bergen, Bergen, Norway 15 8Bjerknes Centre for Climate Change Research, Bergen, Norway 16 Correspondence to: Sihan Li ([email protected]) 17 18 19 20 21 22 23 1 Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-198 Manuscript under review for journal Geosci. Model Dev. Discussion started: 23 October 2018 c Author(s) 2018. CC BY 4.0 License. 24 Abstract 25 Understanding the unfolding challenges of climate change relies on climate models, many 26 of which have large summer warm and dry biases over Northern Hemisphere continental 27 mid-latitudes.
    [Show full text]
  • Documentation and Software User’S Manual, Version 4.1
    The Canadian Seasonal to Interannual Prediction System version 2 (CanSIPSv2) Canadian Meteorological Centre Technical Note H. Lin1, W. J. Merryfield2, R. Muncaster1, G. Smith1, M. Markovic3, A. Erfani3, S. Kharin2, W.-S. Lee2, M. Charron1 1-Meteorological Research Division 2-Canadian Centre for Climate Modelling and Analysis (CCCma) 3-Canadian Meteorological Centre (CMC) 7 May 2019 i Revisions Version Date Authors Remarks 1.0 2019/04/22 Hai Lin First draft 1.1 2019/04/26 Hai Lin Corrected the bias figures. Comments from Ryan Muncaster, Bill Merryfield 1.2 2019/05/01 Hai Lin Figures of CanSIPSv2 uses CanCM4i plus GEM-NEMO 1.3 2019/05/03 Bill Merrifield Added CanCM4i information, sea ice Hai Lin verification, 6.6 and 9 1.4 2019/05/06 Hai Lin All figures of CanSIPSv2 with CanCM4i and GEM-NEMO, made available by Slava Kharin ii © Environment and Climate Change Canada, 2019 Table of Contents 1 Introduction ............................................................................................................................. 4 2 Modifications to models .......................................................................................................... 6 2.1 CanCM4i .......................................................................................................................... 6 2.2 GEM-NEMO .................................................................................................................... 6 3 Forecast initialization .............................................................................................................
    [Show full text]
  • Prep Publi Catio on Cop Py
    Attribution of Extreme Weather Events in the Context of Climate Change PREPUBLICATION COPY Committee on Extreme Weather Events and Climate Change Attribution Board on Atmospheric Sciencees and Climate Division on Earth and Life Studies This prepublication version of Attribution of Extreme Weather Events in the Context of Climate Change has been provided to the public to facilitate timely access to the report. Although the substance of the report is final, editorial changes may be made throughout the text and citations will be checked prior to publication. The final report will be available through the National Academies Press in spring 2016. Copyright © National Academy of Sciences. All rights reserved. Attribution of Extreme Weather Events in the Context of Climate Change THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study was supported by the David and Lucile Packard Foundation under contract number 2015- 63077, the Heising-Simons Foundation under contract number 2015-095, the Litterman Family Foundation, the National Aeronautics and Space Administration under contract number NNX15AW55G, the National Oceanic and Atmospheric Administration under contract number EE- 133E-15-SE-1748, and the U.S. Department of Energy under contract number DE-SC0014256, with additional support from the National Academy of Sciences’ Arthur L. Day Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of any organization or agency that provided support for the project. International Standard Book Number-13: International Standard Book Number-10: Digital Object Identifier: 10.17226/21852 Additional copies of this report are available for sale from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu.
    [Show full text]
  • On the Uses of a New Linear Scheme for Stratospheric Methane in Global Models: Water Source, Transport Tracer and Radiative Forc
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 479–523, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/479/2012/ Chemistry doi:10.5194/acpd-12-479-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing B. M. Monge-Sanz1, M. P. Chipperfield1, A. Untch2, J.-J. Morcrette2, A. Rap1, and A. J. Simmons2 1Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, UK 2European Centre for Medium-Range Weather Forecasts, Reading, UK Received: 10 October 2011 – Accepted: 5 November 2011 – Published: 6 January 2012 Correspondence to: B. M. Monge-Sanz ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 479 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract A new linear parameterisation for stratospheric methane (CoMeCAT) has been devel- oped and tested. The scheme is derived from a 3-D full chemistry transport model (CTM) and tested within the same chemistry model itself, as well as in an independent 5 general circulation model (GCM). The new CH4/H2O scheme is suitable for any global model and here is shown to provide realistic profiles in the 3-D TOMCAT/SLIMCAT CTM and in the ECMWF (European Centre for Medium-Range Weather Forecasts) GCM.
    [Show full text]
  • Validation of Climate Models
    Validation of Climate Models Simon Tett 19/6/06 with thanks to: Keith Williams, Mark Webb, Mark Rodwell, Roy Kershaw, Sean Milton, Gill Martin, Tim Johns, Jonathan Gregory, Peter Thorne, Philip Brohan & © Crown copyright John Caesar Page 1 Approaches Parameterisation & Forecast error Climatology's Climate Variability Climate Change. © Crown copyright Page 2 Methodology for improving parametrizations CRMs Observations Forcing Evaluation Evaluation g Fo Analysis Development in rc rc on in Fo ati g alu Ev NWP Forecast SCMs Development Forcing Evaluation (consistent errors?) © Crown copyright Page 3 Tropical Systematic Biases in NWP Moisture balance from Thermodynamic (RH) Profile Errors Idealised Aquaplanet – suggest Vs ARM Manus Sondes JAS 2003– convection largest contributor to Errors in convection? humidity biases Convection too shallow? 20 hPa Unrealistic 77 Moistening and drying 192 in forecasts 367 576 777 Moister at cloud base & Freezing level 922 © Crown copyright Page 4 S.Milton & M.Willett NWP Tropical T, RH, and Wind Errors vs Sondes Summer 2005 – Impact of new Physics A package of physics improvements introduced in March 2006 Improved Thermodynamic Profiles • Adaptive detrainment (conv) –> improve detrainment of moisture. • Changes to marine BL –> reduce LH fluxes Old • Non-gradient momentum stress. -> Improve low level winds Model New Physics ΔRH Day 5 Circulation Errors In Equatorial Winds Reduced ΔT Day 5 S. Derbyshire, A. Maidens, A. Brown, J.Edwards, M.Willett & S.Milton © Crown copyright Page 5 Spinup Tendencies Used to assess the contribution of individual physical parametrisations and dynamics to systematic errors. Run a ~60-member ensemble of 1 to 5 day integrations started from operational NWP analyses scattered evenly over a period e.g.
    [Show full text]
  • Global Climate Models and Their Limitations Anthony Lupo (USA) William Kininmonth (Australia) Contributing: J
    1 Global Climate Models and Their Limitations Anthony Lupo (USA) William Kininmonth (Australia) Contributing: J. Scott Armstrong (USA), Kesten Green (Australia) 1. Global Climate Models and Their Limitations Key Findings Introduction 1.1 Model Simulation and Forecasting 1.2 Modeling Techniques 1.3 Elements of Climate 1.4 Large Scale Phenomena and Teleconnections Key Findings Confidence in a model is further based on the The IPCC places great confidence in the ability of careful evaluation of its performance, in which model general circulation models (GCMs) to simulate future output is compared against actual observations. A climate and attribute observed climate change to large portion of this chapter, therefore, is devoted to anthropogenic emissions of greenhouse gases. They the evaluation of climate models against real-world claim the “development of climate models has climate and other biospheric data. That evaluation, resulted in more realism in the representation of many summarized in the findings of numerous peer- quantities and aspects of the climate system,” adding, reviewed scientific papers described in the different “it is extremely likely that human activities have subsections of this chapter, reveals the IPCC is caused more than half of the observed increase in overestimating the ability of current state-of-the-art global average surface temperature since the 1950s” GCMs to accurately simulate both past and future (p. 9 and 10 of the Summary for Policy Makers, climate. The IPCC’s stated confidence in the models, Second Order Draft of AR5, dated October 5, 2012). as presented at the beginning of this chapter, is likely This chapter begins with a brief review of the exaggerated.
    [Show full text]
  • Atmospheric Dispersion of Radioactive Material in Radiological Risk Assessment and Emergency Response
    Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 1, p.7-13 (2011) REVIEW Atmospheric Dispersion of Radioactive Material in Radiological Risk Assessment and Emergency Response YAO Rentai * China Institute for Radiation Protection, P.O.Box 120, Taiyuan, Shanxi 030006, China The purpose of a consequence assessment system is to assess the consequences of specific hazards on people and the environment. In this paper, the studies on technique and method of atmospheric dispersion modeling of radioactive material in radiological risk assessment and emergency response are reviewed in brief. Some current statuses of nuclear accident consequences assessment in China were introduced. In the future, extending the dispersion modeling scales such as urban building scale, establishing high quality experiment dataset and method of model evaluation, improved methods of real-time modeling using limited inputs, and so on, should be promoted with high priority of doing much more work. KEY WORDS: atmospheric model, risk assessment, emergency response, nuclear accident 11) I. Introduction from U.S. NOAA, and SPEEDI/WSPEEDI from The studies and developments of techniques and methods Japan/JAERI. However, the needs of emergency of atmospheric dispersion modeling of radioactive material management may not be well satisfied by existing models in radiological risk assessment and emergency response which are not well designed and confronted with difficulty have evolved over the past 50-60 years. The three marked in detailed constructions of local wind and turbulence
    [Show full text]
  • Lecture 29. Introduction to Atmospheric Chemical Transport Models
    Lecture 29. Introduction to atmospheric chemical transport models. Part 1. Objectives: 1. Model types. 2. Box models. 3. One-dimensional models. 4. Two-dimensional models. 5. Three-dimensional models. Readings: Graedel T. and P.Crutzen. “Atmospheric change: an earth system perspective”. Chapter 15.”Bulding environmental chemical models”, 1992. 1. Model types. Mathematical models provide the necessary framework for integration of our understanding of individual atmospheric processes and study of their interactions. Note, that atmosphere is a complex reactive system in which numerous physical and chemical processes occur simultaneously. • Atmospheric chemical transport models are defined according to their spatial scale: Model Typical domain scale Typical resolution Microscale 200x200x100 m 5 m Mesoscale(urban) 100x100x5 km 2 km Regional 1000x1000x10 km 20 km Synoptic(continental) 3000x3000x20 km 80 km Global 65000x65000x20km 50x50 1 Figure 29.1 Components of a chemical transport model (Seinfeld and Pandis, 1998). 2 • Domain of the atmospheric model is the area that is simulated. The computation domain consists of an array of computational cells, each having uniform chemical composition. The size of cells determines the spatial resolution of the model. • Atmospheric chemical transport models are also characterized by their dimensionality: zero-dimensional (box) model; one-dimensional (column) model; two-dimensional model; and three-dimensional model. • Model time scale depends on a specific application varying from hours (e.g., air quality model) to hundreds of years (e.g., climate models) 3 Two principal approaches to simulate changes in the chemical composition of a given air parcel: 1) Lagrangian approach: air parcel moves with the local wind so that there is no mass exchange that is allowed to enter the air parcel and its surroundings (except of species emissions).
    [Show full text]