Assimila Blank

Total Page:16

File Type:pdf, Size:1020Kb

Assimila Blank NERC NERC Strategy for Earth System Modelling: Technical Support Audit Report Version 1.1 December 2009 Contact Details Dr Zofia Stott Assimila Ltd 1 Earley Gate The University of Reading Reading, RG6 6AT Tel: +44 (0)118 966 0554 Mobile: +44 (0)7932 565822 email: [email protected] NERC STRATEGY FOR ESM – AUDIT REPORT VERSION1.1, DECEMBER 2009 Contents 1. BACKGROUND ....................................................................................................................... 4 1.1 Introduction .............................................................................................................. 4 1.2 Context .................................................................................................................... 4 1.3 Scope of the ESM audit ............................................................................................ 4 1.4 Methodology ............................................................................................................ 5 2. Scene setting ........................................................................................................................... 7 2.1 NERC Strategy......................................................................................................... 7 2.2 Definition of Earth system modelling ........................................................................ 8 2.3 Broad categories of activities supported by NERC ................................................. 10 2.4 Structure of the report ............................................................................................ 12 3. Climate and Earth system modelling at Met Office /Hadley Centre ......................................... 13 3.1 Introduction ............................................................................................................ 13 3.2 A MOHC perspective.............................................................................................. 13 4. Climate and Earth system models .......................................................................................... 18 4.1 Introduction ............................................................................................................ 18 4.2 HadGEM ................................................................................................................ 18 4.2.1 High Resolution Climate Modelling Programme: HiGEM, NUGEM, HadGEM3-H. 18 4.2.2 QESM .................................................................................................................. 19 4.2.3 Vertically extended HadGEM models ................................................................... 19 4.2.4 Use of HadGEM models ...................................................................................... 20 4.3 HadCM3 and related models .................................................................................. 20 4.3.1 CHIME ................................................................................................................. 20 4.3.2 FAMOUS ............................................................................................................. 21 4.3.3 HadAM3 – enabled with water isotopes ............................................................... 22 4.3.4 Climateprediction.net ........................................................................................... 22 4.3.5 Use of HadCM3 ................................................................................................... 23 4.4 GENIE .................................................................................................................... 23 4.5 Other climate and Earth system models used in UK ............................................... 24 4.6 Key issues .............................................................................................................. 24 5. Atmospheric dynamics ........................................................................................................... 27 5.1 Introduction ............................................................................................................ 27 5.2 IGCM ..................................................................................................................... 27 5.3 Models used by NCAS Weather ............................................................................. 27 5.4 AtmosFOAM .......................................................................................................... 28 5.5 Key issues .............................................................................................................. 28 6. Atmospheric chemistry and aerosols ...................................................................................... 29 6.1 Introduction ............................................................................................................ 29 6.2 UKCA ..................................................................................................................... 29 6.3 GLOMAP ................................................................................................................ 30 6.4 CAM-Chem and WACCM ....................................................................................... 32 6.5 FRSGC/UCI Chemical Transport Model ................................................................. 32 1 NERC STRATEGY FOR ESM – AUDIT REPORT VERSION1.1, DECEMBER 2009 6.6 GEOS-Chem .......................................................................................................... 33 6.7 HadAM3-STOCHEM and HadCM3-STOCHEM ...................................................... 33 6.8 TOMCAT/SLIMCAT, p-TOMCAT............................................................................ 34 6.9 Key issues .............................................................................................................. 34 7. Land ....................................................................................................................................... 36 7.1 Introduction ............................................................................................................ 36 7.2 JULES and its components .................................................................................... 36 7.3 MEGAN .................................................................................................................. 37 7.4 Carbon Cycle Data Assimilation System ................................................................ 37 7.5 Global Dynamical Vegetation Models ..................................................................... 38 7.6 Key issues .............................................................................................................. 38 8. Physical ocean ....................................................................................................................... 40 8.1 Introduction ............................................................................................................ 40 8.2 NEMO .................................................................................................................... 40 8.3 ICOM ..................................................................................................................... 42 8.4 POLCOMS ............................................................................................................. 43 8.5 Other models ......................................................................................................... 43 8.6 Key issues .............................................................................................................. 43 9. Ocean biogeochemistry.......................................................................................................... 45 9.1 Introduction ............................................................................................................ 45 9.2 ERSEM .................................................................................................................. 45 9.3 MEDUSA ................................................................................................................ 46 9.4 PlankTOM .............................................................................................................. 46 9.5 Key issues .............................................................................................................. 47 10. Ice sheets and shelves .................................................................................................... 49 10.1 Introduction ............................................................................................................ 49 10.2 Glimmer-CISM ....................................................................................................... 49 10.3 BASISM ................................................................................................................. 50 10.4 Key issues .............................................................................................................. 50 11. Sea ice ............................................................................................................................ 51 11.1 Introduction ............................................................................................................ 51 11.2 CICE ...................................................................................................................... 51 11.3 LIM ........................................................................................................................
Recommended publications
  • Western Europe Is Warming Much Faster Than Expected
    Clim. Past, 5, 1–12, 2009 www.clim-past.net/5/1/2009/ Climate © Author(s) 2009. This work is distributed under of the Past the Creative Commons Attribution 3.0 License. Western Europe is warming much faster than expected G. J. van Oldenborgh1, S. Drijfhout1, A. van Ulden1, R. Haarsma1, A. Sterl1, C. Severijns1, W. Hazeleger1, and H. Dijkstra2 1KNMI (Koninklijk Nederlands Meteorologisch Instituut), De Bilt, The Netherlands 2Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands Received: 28 July 2008 – Published in Clim. Past Discuss.: 29 July 2008 Revised: 22 December 2008 – Accepted: 22 December 2008 – Published: 21 January 2009 Abstract. The warming trend of the last decades is now so by Regional Climate models (RCMs) do not deviate much strong that it is discernible in local temperature observations. from GCMs, as the prescribed SST and boundary condition This opens the possibility to compare the trend to the warm- determine the temperature to a large extent (Lenderink et al., ing predicted by comprehensive climate models (GCMs), 2007). which up to now could not be verified directly to observations By now, global warming can be detected even on the grid on a local scale, because the signal-to-noise ratio was too point scale. In this paper we investigate the high tempera- low. The observed temperature trend in western Europe over ture trends observed in western Europe over the last decades. the last decades appears much stronger than simulated by First we compare these with the trends expected on the basis state-of-the-art GCMs. The difference is very unlikely due of climate model experiments.
    [Show full text]
  • Climate Models and Their Evaluation
    8 Climate Models and Their Evaluation Coordinating Lead Authors: David A. Randall (USA), Richard A. Wood (UK) Lead Authors: Sandrine Bony (France), Robert Colman (Australia), Thierry Fichefet (Belgium), John Fyfe (Canada), Vladimir Kattsov (Russian Federation), Andrew Pitman (Australia), Jagadish Shukla (USA), Jayaraman Srinivasan (India), Ronald J. Stouffer (USA), Akimasa Sumi (Japan), Karl E. Taylor (USA) Contributing Authors: K. AchutaRao (USA), R. Allan (UK), A. Berger (Belgium), H. Blatter (Switzerland), C. Bonfi ls (USA, France), A. Boone (France, USA), C. Bretherton (USA), A. Broccoli (USA), V. Brovkin (Germany, Russian Federation), W. Cai (Australia), M. Claussen (Germany), P. Dirmeyer (USA), C. Doutriaux (USA, France), H. Drange (Norway), J.-L. Dufresne (France), S. Emori (Japan), P. Forster (UK), A. Frei (USA), A. Ganopolski (Germany), P. Gent (USA), P. Gleckler (USA), H. Goosse (Belgium), R. Graham (UK), J.M. Gregory (UK), R. Gudgel (USA), A. Hall (USA), S. Hallegatte (USA, France), H. Hasumi (Japan), A. Henderson-Sellers (Switzerland), H. Hendon (Australia), K. Hodges (UK), M. Holland (USA), A.A.M. Holtslag (Netherlands), E. Hunke (USA), P. Huybrechts (Belgium), W. Ingram (UK), F. Joos (Switzerland), B. Kirtman (USA), S. Klein (USA), R. Koster (USA), P. Kushner (Canada), J. Lanzante (USA), M. Latif (Germany), N.-C. Lau (USA), M. Meinshausen (Germany), A. Monahan (Canada), J.M. Murphy (UK), T. Osborn (UK), T. Pavlova (Russian Federationi), V. Petoukhov (Germany), T. Phillips (USA), S. Power (Australia), S. Rahmstorf (Germany), S.C.B. Raper (UK), H. Renssen (Netherlands), D. Rind (USA), M. Roberts (UK), A. Rosati (USA), C. Schär (Switzerland), A. Schmittner (USA, Germany), J. Scinocca (Canada), D. Seidov (USA), A.G.
    [Show full text]
  • A Scale and Aerosol Aware Convective Parameterization
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Open Access Atmos. Chem. Phys. Discuss., 13, 23845–23893,Atmospheric 2013 Atmospheric www.atmos-chem-phys-discuss.net/13/23845/2013/Chemistry Chemistry doi:10.5194/acpd-13-23845-2013 ACPD © Author(s) 2013. CC Attribution 3.0 License.and Physics and Physics Discussions 13, 23845–23893, 2013 Open Access Open Access Atmospheric Atmospheric This discussion paper is/hasMeasurement been under review for the journal AtmosphericMeasurement Chemistry A scale and aerosol and Physics (ACP). Please referTechniques to the corresponding final paper in ACP ifTechniques available. aware convective Discussions parameterization Open Access Open Access A scale and aerosol aware stochastic G. A. Grell and Biogeosciences Biogeosciences convective parameterization for weatherDiscussions S. R. Freitas Open Access Open Access and air quality modelingClimate Climate Title Page of the Past of the Past G. A. Grell1 and S. R. Freitas2 Discussions Abstract Introduction Open Access 1 Open Access Conclusions References Earth Systems Research Laboratory of the National Oceanic and AtmosphericEarth System Administration (NOAA), Boulder,Earth Colorado System 80305-3337, USA 2 Dynamics Tables Figures Center for Weather ForecastingDynamics and Climate Studies, INPE, Cachoeira Paulista, Discussions Sao Paulo, Brazil J I Open Access Received: 27 July 2013 – Accepted:Geoscientific 15 August 2013 – Published: 11 SeptemberGeoscientific 2013Open Access Instrumentation Instrumentation Correspondence to: G. A. Grell ([email protected]) J I Methods and Methods and Published by Copernicus PublicationsData Systems on behalf of the European GeosciencesData Systems Union.
    [Show full text]
  • The Lagrangian Chemistry and Transport Model ATLAS: Validation of Advective Transport and Mixing
    Geosci. Model Dev., 2, 153–173, 2009 www.geosci-model-dev.net/2/153/2009/ Geoscientific © Author(s) 2009. This work is distributed under Model Development the Creative Commons Attribution 3.0 License. The Lagrangian chemistry and transport model ATLAS: validation of advective transport and mixing I. Wohltmann and M. Rex Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany Received: 25 June 2009 – Published in Geosci. Model Dev. Discuss.: 3 July 2009 Revised: 15 September 2009 – Accepted: 2 October 2009 – Published: 2 November 2009 Abstract. We present a new global Chemical Transport In the context of this paper, numerical diffusion is defined Model (CTM) with full stratospheric chemistry and La- as any process that is triggered by the model calculations grangian transport and mixing called ATLAS (Alfred We- and behaves like a diffusive process acting on the chemical gener InsTitute LAgrangian Chemistry/Transport System). species in the model. Typically, numerical diffusion will be Lagrangian (trajectory-based) models have several important spurious and unrealistic, e.g. present in every grid cell with advantages over conventional Eulerian (grid-based) models, the same magnitude. We do not consider processes as nu- including the absence of spurious numerical diffusion, ef- merical diffusion here which are deliberately introduced into ficient code parallelization and no limitation of the largest the model, e.g. to mimic the observed diffusion. Eulerian ap- time step by the Courant-Friedrichs-Lewy criterion. The ba- proaches suffer from numerical diffusion because they con- sic concept of transport and mixing is similar to the approach tain an advection step that transfers information between dif- in the commonly used CLaMS model.
    [Show full text]
  • ESM-Tools Version 4.0: a Modular Infrastructure for Stand-Alone
    ESM-Tools Version 4.0: A modular infrastructure for stand-alone and coupled Earth System Modelling (ESM) Dirk Barbi1, Nadine Wieters1, Paul Gierz1, Fatemeh Chegini1, 3, Sara Khosravi2, and Luisa Cristini1 1Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany 2Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany 3Max Planck Institute for Meteorology, Hamburg, Germany Correspondence: Luisa Cristini ([email protected]) Abstract. Earth system and climate modelling involves the simulation of processes on a wide range of scales and within and across various compartments of the Earth system. In practice, component models are often developed independently by different research groups, adapted by others to their special interests, and then combined using a dedicated coupling software. This 5 procedure not only leads to a strongly growing number of available versions of model components and coupled setups, but also to model- and HPC-system dependent ways of obtaining, configuring, building, and operating them. Therefore, implementing these Earth System Models (ESMs) can be challenging and extremely time consuming, especially for less experienced mod- ellers, or scientists aiming to use different ESMs as in the case of inter-comparison projects. To assist researchers and modellers by reducing avoidable complexity, we developed the ESM-Tools software, which provides 10 a standard way for downloading, configuring, compiling, running and monitoring different models on a variety of High Perfor- mance Computing (HPC) systems. It should be noted that the ESM-Tools are equally applicable and helpful for stand-alone as for coupled models. In fact, the ESM-Tools are used as standard compile and runtime infrastructure for FESOM2, and currently also applied for ECHAM and ICON standalone simulations.
    [Show full text]
  • Downloaded 10/02/21 08:25 AM UTC
    15 NOVEMBER 2006 A R O R A A N D B O E R 5875 The Temporal Variability of Soil Moisture and Surface Hydrological Quantities in a Climate Model VIVEK K. ARORA AND GEORGE J. BOER Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, University of Victoria, Victoria, British Columbia, Canada (Manuscript received 4 October 2005, in final form 8 February 2006) ABSTRACT The variance budget of land surface hydrological quantities is analyzed in the second Atmospheric Model Intercomparison Project (AMIP2) simulation made with the Canadian Centre for Climate Modelling and Analysis (CCCma) third-generation general circulation model (AGCM3). The land surface parameteriza- tion in this model is the comparatively sophisticated Canadian Land Surface Scheme (CLASS). Second- order statistics, namely variances and covariances, are evaluated, and simulated variances are compared with observationally based estimates. The soil moisture variance is related to second-order statistics of surface hydrological quantities. The persistence time scale of soil moisture anomalies is also evaluated. Model values of precipitation and evapotranspiration variability compare reasonably well with observa- tionally based and reanalysis estimates. Soil moisture variability is compared with that simulated by the Variable Infiltration Capacity-2 Layer (VIC-2L) hydrological model driven with observed meteorological data. An equation is developed linking the variances and covariances of precipitation, evapotranspiration, and runoff to soil moisture variance via a transfer function. The transfer function is connected to soil moisture persistence in terms of lagged autocorrelation. Soil moisture persistence time scales are shorter in the Tropics and longer at high latitudes as is consistent with the relationship between soil moisture persis- tence and the latitudinal structure of potential evaporation found in earlier studies.
    [Show full text]
  • A Destabilizing Thermohaline Circulation–Atmosphere–Sea Ice
    642 JOURNAL OF CLIMATE VOLUME 12 NOTES AND CORRESPONDENCE A Destabilizing Thermohaline Circulation±Atmosphere±Sea Ice Feedback STEVEN R. JAYNE MIT±WHOI Joint Program in Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts JOCHEM MAROTZKE Center for Global Change Science, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 18 November 1996 and 9 March 1998 ABSTRACT Some of the interactions and feedbacks between the atmosphere, thermohaline circulation, and sea ice are illustrated using a simple process model. A simpli®ed version of the annual-mean coupled ocean±atmosphere box model of Nakamura, Stone, and Marotzke is modi®ed to include a parameterization of sea ice. The model includes the thermodynamic effects of sea ice and allows for variable coverage. It is found that the addition of sea ice introduces feedbacks that have a destabilizing in¯uence on the thermohaline circulation: Sea ice insulates the ocean from the atmosphere, creating colder air temperatures at high latitudes, which cause larger atmospheric eddy heat and moisture transports and weaker oceanic heat transports. These in turn lead to thicker ice coverage and hence establish a positive feedback. The results indicate that generally in colder climates, the presence of sea ice may lead to a signi®cant destabilization of the thermohaline circulation. Brine rejection by sea ice plays no important role in this model's dynamics. The net destabilizing effect of sea ice in this model is the result of two positive feedbacks and one negative feedback and is shown to be model dependent. To date, the destabilizing feedback between atmospheric and oceanic heat ¯uxes, mediated by sea ice, has largely been neglected in conceptual studies of thermohaline circulation stability, but it warrants further investigation in more realistic models.
    [Show full text]
  • Tropical Climate
    UGAMP: A network of excellence in climate modelling and research Issue 27 October 2003 UGAMP Coordinator: Prof. Julia Slingo [email protected] Newsletter Editor: Dr. Glenn Carver [email protected] Newsletter website: acmsu.nerc.ac.uk/newsletter.html Contents NCAS News . 2 NCAS Websites . 3 NCAS Centres and Facilities . 3 UGAMP Coordinator . 4 CGAM Director . 4 ACMSU Director . 4 HPC Facilities . 5 New areas of UGAMP science 7 Chemistry-climate interactions . 19 Climate variability and predictability . 32 Atmospheric Composition . 48 Tropospheric chemistry and aerosols . 58 Climate Dynamics . 64 Model development . 72 Group News . 78 (for full contents see listing on the inside back cover) NERC Centres for Atmospheric Science, NCAS Alan Thorpe ([email protected]): Director NCAS Since the last UGAMP Newsletter there have been a significant number of NCAS developments relevant to the UK atmospheric science community. These include the following, which are particularly pertinent to the UGAMP community: • NERC have agreed to fund a new directed (new name for thematic) programme called “Surface Ocean – Lower Atmosphere Study” or SOLAS for short. • NERC have agreed to fund a “pump-priming” activity for a proposed new directed programme called Flood Risk from Extreme Events, FREE. The full proposal for FREE will be considered by NERC early in 2004. •NCAS is supporting a project to develop a new chemistry module for the HadGEM model. This is called UK-CHEM and Olaf Morgenstern at ACMSU is collaborating closely with the Hadley Centre on the project. •NCAS is supporting a project to develop the science for a new aerosol module for HadGEM.
    [Show full text]
  • Results from the Implementation of the Elastic Viscous Plastic Sea Ice Rheology in Hadcm3 W
    Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3 W. M. Connolley, A. B. Keen, A. J. Mclaren To cite this version: W. M. Connolley, A. B. Keen, A. J. Mclaren. Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3. Ocean Science, European Geosciences Union, 2006, 2 (2), pp.201- 211. hal-00298295 HAL Id: hal-00298295 https://hal.archives-ouvertes.fr/hal-00298295 Submitted on 23 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ocean Sci., 2, 201–211, 2006 www.ocean-sci.net/2/201/2006/ Ocean Science © Author(s) 2006. This work is licensed under a Creative Commons License. Results from the implementation of the Elastic Viscous Plastic sea ice rheology in HadCM3 W. M. Connolley1, A. B. Keen2, and A. J. McLaren2 1British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 2Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK Received: 13 June 2006 – Published in Ocean Sci. Discuss.: 10 July 2006 Revised: 21 September 2006 – Accepted: 16 October 2006 – Published: 23 October 2006 Abstract. We present results of an implementation of the a full dynamical model incorporating wind stresses and in- Elastic Viscous Plastic (EVP) sea ice dynamics scheme into ternal ice stresses leads to errors in the detailed representa- the Hadley Centre coupled ocean-atmosphere climate model tion of sea ice and limits our confidence in its future predic- HadCM3.
    [Show full text]
  • Large-Scale Tropospheric Transport in the Chemistry–Climate Model Initiative (CCMI) Simulations
    Atmos. Chem. Phys., 18, 7217–7235, 2018 https://doi.org/10.5194/acp-18-7217-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations Clara Orbe1,2,3,a, Huang Yang3, Darryn W. Waugh3, Guang Zeng4, Olaf Morgenstern 4, Douglas E. Kinnison5, Jean-Francois Lamarque5, Simone Tilmes5, David A. Plummer6, John F. Scinocca7, Beatrice Josse8, Virginie Marecal8, Patrick Jöckel9, Luke D. Oman10, Susan E. Strahan10,11, Makoto Deushi12, Taichu Y. Tanaka12, Kohei Yoshida12, Hideharu Akiyoshi13, Yousuke Yamashita13,14, Andreas Stenke15, Laura Revell15,16, Timofei Sukhodolov15,17, Eugene Rozanov15,17, Giovanni Pitari18, Daniele Visioni18, Kane A. Stone19,20,b, Robyn Schofield19,20, and Antara Banerjee21 1Goddard Earth Sciences Technology and Research (GESTAR), Columbia, MD, USA 2Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 3Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA 4National Institute of Water and Atmospheric Research, Wellington, New Zealand 5National Center for Atmospheric Research (NCAR), Atmospheric Chemistry Observations and Modeling (ACOM) Laboratory, Boulder, USA 6Climate Research Branch, Environment and Climate Change Canada, Montreal, QC, Canada 7Climate Research Branch, Environment and Climate Change Canada, Victoria, BC, Canada 8Centre National de Recherches Météorologiques UMR 3589, Météo-France/CNRS,
    [Show full text]
  • Ocean Circulation Models and Modeling
    2512-5 Fundamentals of Ocean Climate Modelling at Global and Regional Scales (Hyderabad - India) 5 - 14 August 2013 Ocean Circulation Models and Modeling GRIFFIES Stephen Princeton University U.S. Department of Commerce N.O.A.A., Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Forrestal Campus P.O. Box 308, 08542-6649 Princeton NJ U.S.A. 5.1: Ocean Circulation Models and Modeling Stephen.Griffi[email protected] NOAA/Geophysical Fluid Dynamics Laboratory Princeton, USA [email protected] Laboratoire de Physique des Oceans,´ LPO Brest, France Draft from May 24, 2013 1 5.1.1. Scope of this chapter 2 We focus in this chapter on numerical models used to understand and predict large- 3 scale ocean circulation, such as the circulation comprising basin and global scales. It 4 is organized according to two themes, which we consider the “pillars” of numerical 5 oceanography. The first addresses physical and numerical topics forming a foundation 6 for ocean models. We focus here on the science of ocean models, in which we ask 7 questions about fundamental processes and develop the mathematical equations for 8 ocean thermo-hydrodynamics. We also touch upon various methods used to represent 9 the continuum ocean fluid with a discrete computer model, raising such topics as the 10 finite volume formulation of the ocean equations; the choice for vertical coordinate; 11 the complementary issues related to horizontal gridding; and the pervasive questions 12 of subgrid scale parameterizations. The second theme of this chapter concerns the 13 applications of ocean models, in particular how to design an experiment and how to 14 analyze results.
    [Show full text]
  • On the Uses of a New Linear Scheme for Stratospheric Methane in Global Models: Water Source, Transport Tracer and Radiative Forc
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 479–523, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/479/2012/ Chemistry doi:10.5194/acpd-12-479-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing B. M. Monge-Sanz1, M. P. Chipperfield1, A. Untch2, J.-J. Morcrette2, A. Rap1, and A. J. Simmons2 1Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, UK 2European Centre for Medium-Range Weather Forecasts, Reading, UK Received: 10 October 2011 – Accepted: 5 November 2011 – Published: 6 January 2012 Correspondence to: B. M. Monge-Sanz ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 479 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract A new linear parameterisation for stratospheric methane (CoMeCAT) has been devel- oped and tested. The scheme is derived from a 3-D full chemistry transport model (CTM) and tested within the same chemistry model itself, as well as in an independent 5 general circulation model (GCM). The new CH4/H2O scheme is suitable for any global model and here is shown to provide realistic profiles in the 3-D TOMCAT/SLIMCAT CTM and in the ECMWF (European Centre for Medium-Range Weather Forecasts) GCM.
    [Show full text]