The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 Configurations

Total Page:16

File Type:pdf, Size:1020Kb

The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 Configurations The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K. and Zerroukat, M. (2019) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development, 12 (5). pp. 1909-1963. ISSN 1991-9603 doi: https://doi.org/10.5194/gmd-12-1909- 2019 Available at http://centaur.reading.ac.uk/83821/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.5194/gmd-12-1909-2019 Publisher: EGU All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Geosci. Model Dev., 12, 1909–1963, 2019 https://doi.org/10.5194/gmd-12-1909-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations David Walters1, Anthony J. Baran1,2, Ian Boutle1, Malcolm Brooks1, Paul Earnshaw1, John Edwards1, Kalli Furtado1, Peter Hill3, Adrian Lock1, James Manners1, Cyril Morcrette1, Jane Mulcahy1, Claudio Sanchez1, Chris Smith1, Rachel Stratton1, Warren Tennant1, Lorenzo Tomassini1, Kwinten Van Weverberg1, Simon Vosper1, Martin Willett1, Jo Browse4, Andrew Bushell1, Kenneth Carslaw7, Mohit Dalvi1, Richard Essery5, Nicola Gedney6, Steven Hardiman1, Ben Johnson1, Colin Johnson1, Andy Jones1, Colin Jones8, Graham Mann7,8, Sean Milton1, Heather Rumbold1, Alistair Sellar1, Masashi Ujiie9, Michael Whitall1, Keith Williams1, and Mohamed Zerroukat1 1Met Office, FitzRoy Road, Exeter, EX1 3PB, UK 2School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK 3Department of Meteorology, University of Reading, Reading, RG6 6BB, UK 4Centre for Geography, Society and the Environment, University of Exeter – Penryn Campus, Cornwall, TR10 9EZ, UK 5School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK 6Met Office, Joint Centre for Hydrometeorological Research, Maclean Building, Wallingford, OX10 8BB, UK 7School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 8National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK 9Numerical Prediction Division, Japan Meteorological Agency, 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan Correspondence: David Walters (david.walters@metoffice.gov.uk) Received: 15 November 2017 – Discussion started: 28 November 2017 Revised: 15 February 2018 – Accepted: 20 March 2018 – Published: 14 May 2019 Abstract. We describe Global Atmosphere 7.0 and Global In addition, we describe the GA7.1 branch configura- Land 7.0 (GA7.0/GL7.0), the latest science configurations of tion, which reduces an overly negative anthropogenic aerosol the Met Office Unified Model (UM) and the Joint UK Land effective radiative forcing (ERF) in GA7.0 whilst main- Environment Simulator (JULES) land surface model devel- taining the quality of simulations of the present-day cli- oped for use across weather and climate timescales. GA7.0 mate. GA7.1/GL7.0 will form the physical atmosphere/land and GL7.0 include incremental developments and targeted component in the HadGEM3–GC3.1 and UKESM1 climate improvements that, between them, address four critical er- model submissions to the CMIP6. rors identified in previous configurations: excessive precipi- tation biases over India, warm and moist biases in the tropical tropopause layer (TTL), a source of energy non-conservation in the advection scheme and excessive surface radiation bi- 1 Introduction ases over the Southern Ocean. They also include two new parametrisations, namely the UK Chemistry and Aerosol In this paper, we document the Global Atmosphere 7.0 con- (UKCA) GLOMAP-mode (Global Model of Aerosol Pro- figuration (GA7.0) of the Met Office Unified Model (UM; cesses) aerosol scheme and the JULES multi-layer snow Brown et al., 2012) and the Global Land 7.0 configura- scheme, which improve the fidelity of the simulation and tion (GL7.0) of the Joint UK Land Environment Simulator were required for inclusion in the Global Atmosphere/Global (JULES) land surface model (Best et al., 2011; Clark et al., Land configurations ahead of the 6th Coupled Model Inter- 2011). These are the latest iterations in the line of GA/GL comparison Project (CMIP6). configurations developed for use in global atmosphere/land and coupled modelling systems across weather and climate Published by Copernicus Publications on behalf of the European Geosciences Union. 1910 D. Walters et al.: UM GA7.0/GA7.1 and JULES GL7.0 configurations timescales. This development is a continual process made so for consistency with that documentation, we list the trac up of small incremental changes to parameters and options ticket numbers (denoted by trac’s # character) along with within existing parametrisation schemes, the implementation these descriptions. Section4 includes an assessment of the of new schemes and options, and less frequent major changes configuration’s performance in global weather prediction and to the structure of the model and the framework on which it atmosphere/land-only climate simulations. This illustrates is built. The Global Atmosphere 6.0 configuration (GA6.0; the reduction of the critical model errors noted above, and Walters et al., 2017) fell into the latter category, as it included highlights some improvements in simple weather prediction a once-in-a-decade replacement of the model’s dynamical tests, but suggests that improvements are needed in the inter- core. To allow the configuration developers to concentrate action between the model and its data assimilation before im- on that change, the inclusion of other changes was limited plementation for operational forecasting. In Sect.5 we briefly to those that were known to be necessary alongside the dy- describe GA7.1, which is based on the GA7.0 “trunk” config- namical core, or to significantly improve system performance uration but includes a minimal set of changes for addressing measures, so as to make the dynamical core implementation the excessive aerosol forcing discussed in Sect. 4.5. As a re- easier. For this reason, GA7 sees the inclusion of a number sult of this work, GA7.1 and GL7.0 are suitable for use as the of bottom-up developments to the atmospheric parametrisa- physical atmosphere and land components in the HadGEM3– tion schemes developed over several years that improve the GC3.1 and UKESM1 climate models that will be submitted fidelity and internal consistency of the model. These include to the CMIP6. an improved treatment of gaseous absorption in the radiation scheme, improvements to the treatment of warm rain and ice cloud, and an improvement to the numerics in the model’s 2 Global Atmosphere 7.0 and Global Land 7.0 convection scheme. It also includes a number of top-down developments motivated by the findings of process evalu- 2.1 Dynamical formulation and discretisation ation groups (PEGs), which are tasked with understanding The UM’s ENDGame dynamical core uses a semi-implicit the root causes of model error. These changes include fur- semi-Lagrangian formulation to solve the non-hydrostatic, ther developments in the model’s microphysics and incre- fully compressible deep-atmosphere equations of mo- mental improvements to our implementation of the dynami- tion (Wood et al., 2014). The primary atmospheric prog- cal core. In combination with the bottom-up developments nostics are the three-dimensional wind components, virtual discussed previously, these lead to large reductions in our dry potential temperature, Exner pressure and dry density, four critical model errors, namely rainfall deficits over India whilst moist prognostics such as the mass mixing ratio of during the South Asian monsoon, temperature and humid- water vapour and prognostic cloud fields as well as other ity biases in the tropical tropopause layer (TTL), deficiencies atmospheric loadings are advected as free tracers. These in the model’s numerical conservation and surface flux bi- prognostic fields are discretised horizontally onto a regu- ases over the Southern Ocean. Finally, GA7 and GL7 include lar longitude–latitude grid with Arakawa C-grid stagger- new parametrisation schemes, which increase the complex- ing (Arakawa and Lamb, 1977), whilst the vertical discreti- ity and fidelity of the model and introduce new functionality sation utilises a Charney–Phillips staggering (Charney and that was deemed necessary for the next generation climate Phillips, 1953) using terrain-following hybrid height coor- modelling systems in which they will be used and which will dinates. The discretised equations are solved using a nested form the UK’s contribution to the 6th Coupled Model Inter- iterative approach centred about solving a linear Helmholtz comparison Project (CMIP6; Eyring et al., 2015). These new equation. By convention, global configurations are defined capabilities include a multi-moment modal representation of on 2× N longitudinal columns and 1:5× N latitudinal rows prognostic tropospheric aerosols, a multi-layer snow scheme of grid points for scalar variables, with the meridional wind and a seamless stochastic physics package, which will over- variable held at the north and south poles and scalar and see the inclusion of stochastic physics terms in production zonal wind variables first stored half a grid length away from UM climate simulations for the first time.
Recommended publications
  • A Scale and Aerosol Aware Convective Parameterization
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Open Access Atmos. Chem. Phys. Discuss., 13, 23845–23893,Atmospheric 2013 Atmospheric www.atmos-chem-phys-discuss.net/13/23845/2013/Chemistry Chemistry doi:10.5194/acpd-13-23845-2013 ACPD © Author(s) 2013. CC Attribution 3.0 License.and Physics and Physics Discussions 13, 23845–23893, 2013 Open Access Open Access Atmospheric Atmospheric This discussion paper is/hasMeasurement been under review for the journal AtmosphericMeasurement Chemistry A scale and aerosol and Physics (ACP). Please referTechniques to the corresponding final paper in ACP ifTechniques available. aware convective Discussions parameterization Open Access Open Access A scale and aerosol aware stochastic G. A. Grell and Biogeosciences Biogeosciences convective parameterization for weatherDiscussions S. R. Freitas Open Access Open Access and air quality modelingClimate Climate Title Page of the Past of the Past G. A. Grell1 and S. R. Freitas2 Discussions Abstract Introduction Open Access 1 Open Access Conclusions References Earth Systems Research Laboratory of the National Oceanic and AtmosphericEarth System Administration (NOAA), Boulder,Earth Colorado System 80305-3337, USA 2 Dynamics Tables Figures Center for Weather ForecastingDynamics and Climate Studies, INPE, Cachoeira Paulista, Discussions Sao Paulo, Brazil J I Open Access Received: 27 July 2013 – Accepted:Geoscientific 15 August 2013 – Published: 11 SeptemberGeoscientific 2013Open Access Instrumentation Instrumentation Correspondence to: G. A. Grell ([email protected]) J I Methods and Methods and Published by Copernicus PublicationsData Systems on behalf of the European GeosciencesData Systems Union.
    [Show full text]
  • On the Uses of a New Linear Scheme for Stratospheric Methane in Global Models: Water Source, Transport Tracer and Radiative Forc
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 479–523, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/479/2012/ Chemistry doi:10.5194/acpd-12-479-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing B. M. Monge-Sanz1, M. P. Chipperfield1, A. Untch2, J.-J. Morcrette2, A. Rap1, and A. J. Simmons2 1Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, UK 2European Centre for Medium-Range Weather Forecasts, Reading, UK Received: 10 October 2011 – Accepted: 5 November 2011 – Published: 6 January 2012 Correspondence to: B. M. Monge-Sanz ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 479 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract A new linear parameterisation for stratospheric methane (CoMeCAT) has been devel- oped and tested. The scheme is derived from a 3-D full chemistry transport model (CTM) and tested within the same chemistry model itself, as well as in an independent 5 general circulation model (GCM). The new CH4/H2O scheme is suitable for any global model and here is shown to provide realistic profiles in the 3-D TOMCAT/SLIMCAT CTM and in the ECMWF (European Centre for Medium-Range Weather Forecasts) GCM.
    [Show full text]
  • Physical Processes
    Part IV: Physical Processes IFS DOCUMENTATION { Cy41r1 Operational implementation 12 May 2015 PART IV: PHYSICAL PROCESSES Table of contents Chapter 1 Overview Chapter 2 Radiation Chapter 3 Turbulent transport and interactions with the surface Chapter 4 Subgrid-scale orographic drag Chapter 5 Non-orographic gravity wave drag Chapter 6 Convection Chapter 7 Clouds and large-scale precipitation Chapter 8 Surface parametrization Chapter 9 Methane oxidation Chapter 10 Ozone chemistry parametrization Chapter 11 Climatological data Chapter 12 Basic physical constants and thermodynamic functions References c Copyright 2015 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. IFS Documentation { Cy41r1 1 Part IV: Physical Processes Chapter 1 Overview Table of contents 1.1 Introduction 1.2 Overview of the code 1.1 INTRODUCTION The physical processes associated with radiative transfer, turbulent mixing, convection, clouds, surface exchange, subgrid-scale orographic drag and non-orographic gravity wave drag have a strong impact on the large scale flow of the atmosphere. However, these mechanisms are often active at scales smaller than the resolved scales of the model grid.
    [Show full text]
  • University of Reading Boundary-Layer Type Classification and Pollutant Mixing
    University of Reading Department of Meteorology Boundary-layer type classification and pollutant mixing Natalie Jane Harvey A thesis submitted for the degree of Doctor of Philosophy March 2013 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Natalie Harvey Page ii Abstract In the atmospheric boundary layer the vertical distribution of heat, momentum, water and pollutants is controlled by mixing that is turbulent. This complex mixing is param- eterized in weather forecast and climate models. But are the parameterizations imple- mented in these models representative of the real world? For the first time, Doppler lidar and sonic anemometer data are used to objectively classify the observed boundary layer into nine different types based on the Met Office scheme. Examples of these types are decoupled stratocumulus cloud, cumulus capped and stable with no turbulent cloud. This method is applied to three years of data from the Chilbolton Observatory, UK, to create a climatology of boundary-layer type. This climatology exhibits clear seasonal and diurnal cycles with the most common type over the three years being a cloud-free stable boundary layer. The decoupled stratocumulus type and the cumulus cloud under a stratocumulus layer type are diagnosed 10.3% and 1.0% of the period respectively. This new observationally based boundary layer classification is used to evaluate the boundary-layer type diagnosed by the 4 km and 12 km resolution versions of the Met Office Unified Model. The model is found to predict too many decoupled stratocumulus boundary layers by a factor of 1.8, in both the stable and unstable regime.
    [Show full text]
  • Effects of Stratospheretroposphere Chemistry Coupling on Tropospheric Ozone
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D00M04, doi:10.1029/2009JD013515, 2010 Effects of stratosphere‐troposphere chemistry coupling on tropospheric ozone Wenshou Tian,1,2 Martyn P. Chipperfield,2 David S. Stevenson,3 Richard Damoah,3,4 Sandip Dhomse,2 Anu Dudhia,5 Hugh Pumphrey,3 and Peter Bernath6 Received 6 November 2009; revised 23 March 2010; accepted 13 April 2010; published 17 September 2010. [1] A new, computationally efficient coupled stratosphere‐troposphere chemistry‐climate model (S/T‐CCM) has been developed based on three well‐documented components: a64‐level general circulation model from the UK Met Office Unified Model, the tropospheric chemistry transport model (STOCHEM), and the UMSLIMCAT stratospheric chemistry module. This newly developed S/T‐CCM has been evaluated with various observations, and it shows good performance in simulating important chemical species and their interdependence in both the troposphere and stratosphere. The modeled total column ozone agrees well with Total Ozone Mapping Spectrometer observations. Modeled ozone profiles in the upper troposphere and lower stratosphere are significantly improved compared to runs with the stratospheric chemistry and tropospheric chemistry models alone, and they are in good agreement with Michelson Interferometer for Passive Atmospheric Sounding satellite ozone profiles. The observed CO tape recorder is also successfully captured by the new CCM, and ozone‐CO correlations are in accordance with Atmospheric Chemistry Experiment observations. However, because of limitations in vertical resolution, intrusion of CO‐rich air in the stratosphere from the mesosphere could not be simulated in the current version of S/T‐CCM. Additionally, the simulated stratosphere‐to‐troposphere ozone flux, which controls upper tropospheric OH and O3 concentrations, is found to be more realistic in the new coupled model compared to STOCHEM.
    [Show full text]
  • FINAL DRAFT Technical Summary IPCC SR Ocean and Cryosphere
    FINAL DRAFT Technical Summary IPCC SR Ocean and Cryosphere Technical Summary Editorial Team): Hans-Otto Pörtner (Germany), Debra Roberts (South Africa), Valerie Masson-Delmotte (France), Panmao Zhai (China), Elvira Poloczanska (UK/Australia), Katja Mintenbeck (Germany), Melinda Tignor (USA), Jan Petzold (Germany), Nora Weyer (Germany), Andrew Okem (Nigeria), Marlies Craig (South Africa), Maike Nicolai (Germany), Andrés Alegría (Honduras), Stefanie Langsdorf (Germany), Bard Rama (Kosovo), Anka Freund (Germany) Authors: Amro Abd-Elgawad (Egypt), Nerilie Abram (Australia), Carolina Adler (Switzerland/Australia), Andrés Alegría (Honduras), Javier Arístegui (Spain), Nathaniel L. Bindoff (Australia), Laurens Bouwer (Netherlands), Bolívar Cáceres (Ecuador), Rongshuo Cai (China), Sandra Cassotta (Denmark), Lijing Cheng (China), So-Min Cheong (Republic of Korea), William W. L. Cheung (Canada), Maria Paz Chidichimo (Argentina), Miguel Cifuentes-Jara (Costa Rica), Matthew Collins (UK), Susan Crate (USA), Rob Deconto (USA), Chris Derksen (Canada), Alexey Ekaykin (Russian Federation), Hiroyuki Enomoto (Japan), Thomas Frölicher (Switzerland), Matthias Garschagen (Germany), Jean-Pierre Gattuso (France), Tuhin Ghosh (India), Bruce Glavovic (New Zealand), Nicolas Gruber (Switzerland), Stephan Gruber (Canada/Germany), Valeria A. Guinder (Argentina), Robert Hallberg (USA), Sherilee Harper (Canada), John Hay (Cook Islands), Nathalie Hilmi (France), Jochen Hinkel (Germany), Yukiko Hirabayashi (Japan), Regine Hock (USA), Elisabeth Holland (Fiji), Anne Hollowed
    [Show full text]
  • Assimila Blank
    NERC NERC Strategy for Earth System Modelling: Technical Support Audit Report Version 1.1 December 2009 Contact Details Dr Zofia Stott Assimila Ltd 1 Earley Gate The University of Reading Reading, RG6 6AT Tel: +44 (0)118 966 0554 Mobile: +44 (0)7932 565822 email: [email protected] NERC STRATEGY FOR ESM – AUDIT REPORT VERSION1.1, DECEMBER 2009 Contents 1. BACKGROUND ....................................................................................................................... 4 1.1 Introduction .............................................................................................................. 4 1.2 Context .................................................................................................................... 4 1.3 Scope of the ESM audit ............................................................................................ 4 1.4 Methodology ............................................................................................................ 5 2. Scene setting ........................................................................................................................... 7 2.1 NERC Strategy......................................................................................................... 7 2.2 Definition of Earth system modelling ........................................................................ 8 2.3 Broad categories of activities supported by NERC ................................................. 10 2.4 Structure of the report ...........................................................................................
    [Show full text]
  • Review of the Global Models Used Within Phase 1 of the Chemistry–Climate Model Initiative (CCMI)
    Geosci. Model Dev., 10, 639–671, 2017 www.geosci-model-dev.net/10/639/2017/ doi:10.5194/gmd-10-639-2017 © Author(s) 2017. CC Attribution 3.0 License. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI) Olaf Morgenstern1, Michaela I. Hegglin2, Eugene Rozanov18,5, Fiona M. O’Connor14, N. Luke Abraham17,20, Hideharu Akiyoshi8, Alexander T. Archibald17,20, Slimane Bekki21, Neal Butchart14, Martyn P. Chipperfield16, Makoto Deushi15, Sandip S. Dhomse16, Rolando R. Garcia7, Steven C. Hardiman14, Larry W. Horowitz13, Patrick Jöckel10, Beatrice Josse9, Douglas Kinnison7, Meiyun Lin13,23, Eva Mancini3, Michael E. Manyin12,22, Marion Marchand21, Virginie Marécal9, Martine Michou9, Luke D. Oman12, Giovanni Pitari3, David A. Plummer4, Laura E. Revell5,6, David Saint-Martin9, Robyn Schofield11, Andrea Stenke5, Kane Stone11,a, Kengo Sudo19, Taichu Y. Tanaka15, Simone Tilmes7, Yousuke Yamashita8,b, Kohei Yoshida15, and Guang Zeng1 1National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand 2Department of Meteorology, University of Reading, Reading, UK 3Department of Physical and Chemical Sciences, Universitá dell’Aquila, L’Aquila, Italy 4Environment and Climate Change Canada, Montréal, Canada 5Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland 6Bodeker Scientific, Christchurch, New Zealand 7National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA 8National Institute of Environmental Studies (NIES), Tsukuba, Japan 9CNRM UMR 3589, Météo-France/CNRS,
    [Show full text]
  • A Comprehensive Set of Benchmark Tests for a Land Surface Model of Simultaneous fluxes of Water and Carbon at Both the Global and Seasonal Scale
    Geosci. Model Dev., 4, 255–269, 2011 www.geosci-model-dev.net/4/255/2011/ Geoscientific doi:10.5194/gmd-4-255-2011 Model Development © Author(s) 2011. CC Attribution 3.0 License. A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale E. Blyth1, D. B. Clark1, R. Ellis1, C. Huntingford1, S. Los2, M. Pryor3, M. Best3, and S. Sitch4 1Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK 2Department of Geography, Swansea University, Singleton Park, Swansea, SA2 8PP, UK 3Hadley Centre for climate prediction and research, Met Office, Joint Centre for Hydro-Meteorological Research, Wallingford OX10 8BB, UK 4School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK Received: 15 September 2010 – Published in Geosci. Model Dev. Discuss.: 26 October 2010 Revised: 11 March 2011 – Accepted: 22 March 2011 – Published: 6 April 2011 Abstract. Evaluating the models we use in prediction is im- 1 Introduction portant as it allows us to identify uncertainties in prediction as well as guiding the priorities for model development. This Changes in atmospheric carbon dioxide and water vapour af- paper describes a set of benchmark tests that is designed to fect the global radiation budget and are important drivers of quantify the performance of the land surface model that is climate change. One key control is the land surface which used in the UK Hadley Centre General Circulation Model absorbs, stores and releases carbon and water. The terrestrial (JULES: Joint UK Land Environment Simulator). The tests cycling of carbon and water varies across the climate regions are designed to assess the ability of the model to reproduce of the world and is also temporally variable: from diurnal, the observed fluxes of water and carbon at the global and re- seasonal, inter-annual, decadal timescales and even longer.
    [Show full text]
  • On the Uses of a New Linear Scheme for Stratospheric Methane in Global Models: Water Source, Transport Tracer and Radiative Forcing
    This is a repository copy of On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/76980/ Version: Published Version Article: Monge-Sanz, BM, Chipperfield, MP, Untch, A et al. (3 more authors) (2013) On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing. Atmospheric Chemistry and Physics, 13 (18). 9641 - 9660. ISSN 1680-7316 https://doi.org/10.5194/acp-13-9641-2013 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Atmos. Chem. Phys., 13, 9641–9660, 2013 Atmospheric Open Access www.atmos-chem-phys.net/13/9641/2013/ doi:10.5194/acp-13-9641-2013 Chemistry © Author(s) 2013.
    [Show full text]
  • Global Future Drought 21St C
    Technical Report No. 43 DROUGHT AT THE GLOBAL SCALE IN THE 21 ST CENTURY Gerald A. Corzo Perez, Henny A.J. van Lanen, Nathalie Bertrand, Cui Chen, Douglas Clark, Sonja Folwell, Simon N. Gosling, Naota Hanasaki, Jens Heinke & Frank Voβ 25 August 2011 WATCH is an Integrated Project Funded by the European Commission under the Sixth Framework Programme, Global Change and Ecosystems Thematic Priority Area (contract number: 036946). The WACH project started 01/02/2007 and will continue for 4 years. Title: Drought at the global scale in the 21 st Century Authors: Gerald A. Corzo Perez, Henny A.J. van Lanen, Nathalie Bertrand, Cui Chen, Douglas Clark, Sonja Folwell, Simon N. Gosling, Naota Hanasaki, Jens Heinke & Frank Voβ Organisations: - Wageningen University - Hydrology and Quantitative Water Management Group (WUR) - Laboratoire de Météorologie Dynamique (LMD), France - Max Planck Institute for Meteorology, Germany - Centre for Ecology and Hydrology, UK - University of Nottingham, UK - National Institute for Environment Studies, Japan - Potsdam-Institute for Climate Impact Research, Germany - University of Kassel, Germany Submission date: 25 August 2011 Function: This report is an output from Work Block 4 ; Task 4.3.1 Frequency, severity and extent of droughts in 21 st century. Deliverable WATCH deliverables D 4.3.1 Assessment of the future change in major droughts (part 1) and their main physical aspects (likely frequency, severity, extent), D 4.3.2 Report on the sensitivity of future droughts and large-scale floods for climate change, and it contributes to M4.3-1 Future change of droughts. Photo cover: Left: dry soil in the Upper-Guadiana Basin (2008) Right: change in number of drought (2021-2050 vs CTRL) derived from the simulated runoff with the large-scale model MPI-HM, ECHAM A2 scenario Technical Report No.
    [Show full text]
  • The New Hadley Centre Climate Model (Hadgem1): Evaluation of Coupled Simulations
    1APRIL 2006 J OHNS ET AL. 1327 The New Hadley Centre Climate Model (HadGEM1): Evaluation of Coupled Simulations T. C. JOHNS,* C. F. DURMAN,* H. T. BANKS,* M. J. ROBERTS,* A. J. MCLAREN,* J. K. RIDLEY,* ϩ C. A. SENIOR,* K. D. WILLIAMS,* A. JONES,* G. J. RICKARD, S. CUSACK,* W. J. INGRAM,# M. CRUCIFIX,* D. M. H. SEXTON,* M. M. JOSHI,* B.-W. DONG,* H. SPENCER,@ R. S. R. HILL,* J. M. GREGORY,& A. B. KEEN,* A. K. PARDAENS,* J. A. LOWE,* A. BODAS-SALCEDO,* S. STARK,* AND Y. SEARL* *Met Office, Exeter, United Kingdom ϩNIWA, Wellington, New Zealand #Met Office, Exeter, and Department of Physics, University of Oxford, Oxford, United Kingdom @CGAM, University of Reading, Reading, United Kingdom &Met Office, Exeter, and CGAM, University of Reading, Reading, United Kingdom (Manuscript received 30 May 2005, in final form 9 December 2005) ABSTRACT A new coupled general circulation climate model developed at the Met Office’s Hadley Centre is pre- sented, and aspects of its performance in climate simulations run for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) documented with reference to previous models. The Hadley Centre Global Environmental Model version 1 (HadGEM1) is built around a new atmospheric dynamical core; uses higher resolution than the previous Hadley Centre model, HadCM3; and contains several improvements in its formulation including interactive atmospheric aerosols (sulphate, black carbon, biomass burning, and sea salt) plus their direct and indirect effects. The ocean component also has higher resolution and incorporates a sea ice component more advanced than HadCM3 in terms of both dynamics and thermodynamics.
    [Show full text]